| /* |
| * Copyright (C) 2007 Google Inc. |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <math.h> |
| #include <stdio.h> |
| |
| static double sinc(double x) { |
| if (fabs(x) == 0.0f) return 1.0f; |
| return sin(x) / x; |
| } |
| |
| static double sqr(double x) { |
| return x*x; |
| } |
| |
| static double I0(double x) { |
| // from the Numerical Recipes in C p. 237 |
| double ax,ans,y; |
| ax=fabs(x); |
| if (ax < 3.75) { |
| y=x/3.75; |
| y*=y; |
| ans=1.0+y*(3.5156229+y*(3.0899424+y*(1.2067492 |
| +y*(0.2659732+y*(0.360768e-1+y*0.45813e-2))))); |
| } else { |
| y=3.75/ax; |
| ans=(exp(ax)/sqrt(ax))*(0.39894228+y*(0.1328592e-1 |
| +y*(0.225319e-2+y*(-0.157565e-2+y*(0.916281e-2 |
| +y*(-0.2057706e-1+y*(0.2635537e-1+y*(-0.1647633e-1 |
| +y*0.392377e-2)))))))); |
| } |
| return ans; |
| } |
| |
| static double kaiser(int k, int N, double alpha) { |
| if (k < 0 || k > N) |
| return 0; |
| return I0(M_PI*alpha * sqrt(1.0 - sqr((2.0*k)/N - 1.0))) / I0(M_PI*alpha); |
| } |
| |
| int main(int argc, char** argv) |
| { |
| // nc is the number of bits to store the coefficients |
| int nc = 32; |
| |
| // ni is the minimum number of bits needed for interpolation |
| // (not used for generating the coefficients) |
| const int ni = nc / 2; |
| |
| // cut off frequency ratio Fc/Fs |
| // The bigger the stop-band, the less coefficients we'll need. |
| double Fcr = 22050.0 / 48000.0; |
| |
| // nzc is the number of zero-crossing on one half of the filter |
| int nzc = 16; |
| |
| // alpha parameter of the kaiser window |
| // Larger numbers reduce ripples in the rejection band but increase |
| // the width of the transition band. |
| // the table below gives some value of alpha for a given |
| // stop-band attenuation. |
| // 30 dB 2.210 |
| // 40 dB 3.384 |
| // 50 dB 4.538 |
| // 60 dB 5.658 |
| // 70 dB 6.764 |
| // 80 dB 7.865 |
| // 90 dB 8.960 |
| // 100 dB 10.056 |
| double alpha = 10.056; // -100dB stop-band attenuation |
| |
| // 2^nz is the number coefficients per zero-crossing |
| // (int theory this should be 1<<(nc/2)) |
| const int nz = 4; |
| |
| // total number of coefficients |
| const int N = (1 << nz) * nzc; |
| |
| // generate the right half of the filter |
| printf("const int32_t RESAMPLE_FIR_SIZE = %d;\n", N); |
| printf("const int32_t RESAMPLE_FIR_NUM_COEF = %d;\n", nzc); |
| printf("const int32_t RESAMPLE_FIR_COEF_BITS = %d;\n", nc); |
| printf("const int32_t RESAMPLE_FIR_LERP_FRAC_BITS = %d;\n", ni); |
| printf("const int32_t RESAMPLE_FIR_LERP_INT_BITS = %d;\n", nz); |
| printf("\n"); |
| printf("static int16_t resampleFIR[%d] = {", N); |
| for (int i=0 ; i<N ; i++) |
| { |
| double x = (2.0 * M_PI * i * Fcr) / (1 << nz); |
| double y = kaiser(i+N, 2*N, alpha) * sinc(x); |
| |
| long yi = floor(y * ((1ULL<<(nc-1))) + 0.5); |
| if (yi >= (1LL<<(nc-1))) yi = (1LL<<(nc-1))-1; |
| |
| if ((i % (1 << 4)) == 0) printf("\n "); |
| if (nc > 16) |
| printf("0x%08x, ", int(yi)); |
| else |
| printf("0x%04x, ", int(yi)&0xFFFF); |
| } |
| printf("\n};\n"); |
| return 0; |
| } |
| |
| // http://www.dsptutor.freeuk.com/KaiserFilterDesign/KaiserFilterDesign.html |
| // http://www.csee.umbc.edu/help/sound/AFsp-V2R1/html/audio/ResampAudio.html |
| |
| |