| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| //#define LOG_NDEBUG 0 |
| #define LOG_TAG "audioflinger_resampler_tests" |
| |
| #include <unistd.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <fcntl.h> |
| #include <string.h> |
| #include <sys/mman.h> |
| #include <sys/stat.h> |
| #include <errno.h> |
| #include <time.h> |
| #include <math.h> |
| #include <vector> |
| #include <utility> |
| #include <cutils/log.h> |
| #include <gtest/gtest.h> |
| #include <media/AudioBufferProvider.h> |
| #include "AudioResampler.h" |
| |
| #define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0])) |
| |
| template<typename T, typename U> |
| struct is_same |
| { |
| static const bool value = false; |
| }; |
| |
| template<typename T> |
| struct is_same<T, T> // partial specialization |
| { |
| static const bool value = true; |
| }; |
| |
| template<typename T> |
| static inline T convertValue(double val) |
| { |
| if (is_same<T, int16_t>::value) { |
| return floor(val * 32767.0 + 0.5); |
| } else if (is_same<T, int32_t>::value) { |
| return floor(val * (1UL<<31) + 0.5); |
| } |
| return val; // assume float or double |
| } |
| |
| /* Creates a type-independent audio buffer provider from |
| * a buffer base address, size, framesize, and input increment array. |
| * |
| * No allocation or deallocation of the provided buffer is done. |
| */ |
| class TestProvider : public android::AudioBufferProvider { |
| public: |
| TestProvider(const void* addr, size_t frames, size_t frameSize, |
| const std::vector<size_t>& inputIncr) |
| : mAddr(addr), |
| mNumFrames(frames), |
| mFrameSize(frameSize), |
| mNextFrame(0), mUnrel(0), mInputIncr(inputIncr), mNextIdx(0) |
| { |
| } |
| |
| virtual android::status_t getNextBuffer(Buffer* buffer, int64_t pts __unused = kInvalidPTS ) |
| { |
| size_t requestedFrames = buffer->frameCount; |
| if (requestedFrames > mNumFrames - mNextFrame) { |
| buffer->frameCount = mNumFrames - mNextFrame; |
| } |
| if (!mInputIncr.empty()) { |
| size_t provided = mInputIncr[mNextIdx++]; |
| ALOGV("getNextBuffer() mValue[%d]=%u not %u", |
| mNextIdx-1, provided, buffer->frameCount); |
| if (provided < buffer->frameCount) { |
| buffer->frameCount = provided; |
| } |
| if (mNextIdx >= mInputIncr.size()) { |
| mNextIdx = 0; |
| } |
| } |
| ALOGV("getNextBuffer() requested %u frames out of %u frames available" |
| " and returned %u frames\n", |
| requestedFrames, mNumFrames - mNextFrame, buffer->frameCount); |
| mUnrel = buffer->frameCount; |
| if (buffer->frameCount > 0) { |
| buffer->raw = (char *)mAddr + mFrameSize * mNextFrame; |
| return android::NO_ERROR; |
| } else { |
| buffer->raw = NULL; |
| return android::NOT_ENOUGH_DATA; |
| } |
| } |
| |
| virtual void releaseBuffer(Buffer* buffer) |
| { |
| if (buffer->frameCount > mUnrel) { |
| ALOGE("releaseBuffer() released %u frames but only %u available " |
| "to release\n", buffer->frameCount, mUnrel); |
| mNextFrame += mUnrel; |
| mUnrel = 0; |
| } else { |
| |
| ALOGV("releaseBuffer() released %u frames out of %u frames available " |
| "to release\n", buffer->frameCount, mUnrel); |
| mNextFrame += buffer->frameCount; |
| mUnrel -= buffer->frameCount; |
| } |
| buffer->frameCount = 0; |
| buffer->raw = NULL; |
| } |
| |
| void reset() |
| { |
| mNextFrame = 0; |
| } |
| |
| size_t getNumFrames() |
| { |
| return mNumFrames; |
| } |
| |
| void setIncr(const std::vector<size_t> inputIncr) |
| { |
| mNextIdx = 0; |
| mInputIncr = inputIncr; |
| } |
| |
| protected: |
| const void* mAddr; // base address |
| size_t mNumFrames; // total frames |
| int mFrameSize; // frame size (# channels * bytes per sample) |
| size_t mNextFrame; // index of next frame to provide |
| size_t mUnrel; // number of frames not yet released |
| std::vector<size_t> mInputIncr; // number of frames provided per call |
| size_t mNextIdx; // index of next entry in mInputIncr to use |
| }; |
| |
| /* Creates a buffer filled with a sine wave. |
| * |
| * Returns a pair consisting of the sine signal buffer and the number of frames. |
| * The caller must delete[] the buffer when no longer needed (no shared_ptr<>). |
| */ |
| template<typename T> |
| static std::pair<T*, size_t> createSine(size_t channels, |
| double freq, double samplingRate, double time) |
| { |
| double tscale = 1. / samplingRate; |
| size_t frames = static_cast<size_t>(samplingRate * time); |
| T* buffer = new T[frames * channels]; |
| for (size_t i = 0; i < frames; ++i) { |
| double t = i * tscale; |
| double y = sin(2. * M_PI * freq * t); |
| T yt = convertValue<T>(y); |
| |
| for (size_t j = 0; j < channels; ++j) { |
| buffer[i*channels + j] = yt / (j + 1); |
| } |
| } |
| return std::make_pair(buffer, frames); |
| } |
| |
| /* Creates a buffer filled with a chirp signal (a sine wave sweep). |
| * |
| * Returns a pair consisting of the chirp signal buffer and the number of frames. |
| * The caller must delete[] the buffer when no longer needed (no shared_ptr<>). |
| * |
| * When creating the Chirp, note that the frequency is the true sinusoidal |
| * frequency not the sampling rate. |
| * |
| * http://en.wikipedia.org/wiki/Chirp |
| */ |
| template<typename T> |
| static std::pair<T*, size_t> createChirp(size_t channels, |
| double minfreq, double maxfreq, double samplingRate, double time) |
| { |
| double tscale = 1. / samplingRate; |
| size_t frames = static_cast<size_t>(samplingRate * time); |
| T *buffer = new T[frames * channels]; |
| // note the chirp constant k has a divide-by-two. |
| double k = (maxfreq - minfreq) / (2. * time); |
| for (size_t i = 0; i < frames; ++i) { |
| double t = i * tscale; |
| double y = sin(2. * M_PI * (k * t + minfreq) * t); |
| T yt = convertValue<T>(y); |
| |
| for (size_t j = 0; j < channels; ++j) { |
| buffer[i*channels + j] = yt / (j + 1); |
| } |
| } |
| return std::make_pair(buffer, frames); |
| } |
| |
| /* This derived class creates a buffer provider of datatype T, |
| * consisting of an input signal, e.g. from createChirp(). |
| * The number of frames can be obtained from the base class |
| * TestProvider::getNumFrames(). |
| */ |
| template <typename T> |
| class SignalProvider : public TestProvider { |
| public: |
| SignalProvider(const std::pair<T*, size_t>& bufferInfo, size_t channels, |
| const std::vector<size_t>& values) |
| : TestProvider(bufferInfo.first, bufferInfo.second, channels * sizeof(T), values), |
| mManagedPtr(bufferInfo.first) |
| { |
| } |
| |
| virtual ~SignalProvider() |
| { |
| delete[] mManagedPtr; |
| } |
| |
| protected: |
| T* mManagedPtr; |
| }; |
| |
| void resample(void *output, size_t outputFrames, const std::vector<size_t> &outputIncr, |
| android::AudioBufferProvider *provider, android::AudioResampler *resampler) |
| { |
| for (size_t i = 0, j = 0; i < outputFrames; ) { |
| size_t thisFrames = outputIncr[j++]; |
| if (j >= outputIncr.size()) { |
| j = 0; |
| } |
| if (thisFrames == 0 || thisFrames > outputFrames - i) { |
| thisFrames = outputFrames - i; |
| } |
| resampler->resample((int32_t*) output + 2*i, thisFrames, provider); |
| i += thisFrames; |
| } |
| } |
| |
| void buffercmp(const void *reference, const void *test, |
| size_t outputFrameSize, size_t outputFrames) |
| { |
| for (size_t i = 0; i < outputFrames; ++i) { |
| int check = memcmp((const char*)reference + i * outputFrameSize, |
| (const char*)test + i * outputFrameSize, outputFrameSize); |
| if (check) { |
| ALOGE("Failure at frame %d", i); |
| ASSERT_EQ(check, 0); /* fails */ |
| } |
| } |
| } |
| |
| void testBufferIncrement(size_t channels, unsigned inputFreq, unsigned outputFreq, |
| enum android::AudioResampler::src_quality quality) |
| { |
| // create the provider |
| std::vector<size_t> inputIncr; |
| SignalProvider<int16_t> provider(createChirp<int16_t>(channels, |
| 0., outputFreq/2., outputFreq, outputFreq/2000.), |
| channels, inputIncr); |
| |
| // calculate the output size |
| size_t outputFrames = ((int64_t) provider.getNumFrames() * outputFreq) / inputFreq; |
| size_t outputFrameSize = 2 * sizeof(int32_t); |
| size_t outputSize = outputFrameSize * outputFrames; |
| outputSize &= ~7; |
| |
| // create the resampler |
| const int volumePrecision = 12; /* typical unity gain */ |
| android::AudioResampler* resampler; |
| |
| resampler = android::AudioResampler::create(16, channels, outputFreq, quality); |
| resampler->setSampleRate(inputFreq); |
| resampler->setVolume(1 << volumePrecision, 1 << volumePrecision); |
| |
| // set up the reference run |
| std::vector<size_t> refIncr; |
| refIncr.push_back(outputFrames); |
| void* reference = malloc(outputSize); |
| resample(reference, outputFrames, refIncr, &provider, resampler); |
| |
| provider.reset(); |
| |
| #if 0 |
| /* this test will fail - API interface issue: reset() does not clear internal buffers */ |
| resampler->reset(); |
| #else |
| delete resampler; |
| resampler = android::AudioResampler::create(16, channels, outputFreq, quality); |
| resampler->setSampleRate(inputFreq); |
| resampler->setVolume(1 << volumePrecision, 1 << volumePrecision); |
| #endif |
| |
| // set up the test run |
| std::vector<size_t> outIncr; |
| outIncr.push_back(1); |
| outIncr.push_back(2); |
| outIncr.push_back(3); |
| void* test = malloc(outputSize); |
| resample(test, outputFrames, outIncr, &provider, resampler); |
| |
| // check |
| buffercmp(reference, test, outputFrameSize, outputFrames); |
| |
| free(reference); |
| free(test); |
| delete resampler; |
| } |
| |
| template <typename T> |
| inline double sqr(T v) |
| { |
| double dv = static_cast<double>(v); |
| return dv * dv; |
| } |
| |
| template <typename T> |
| double signalEnergy(T *start, T *end, unsigned stride) |
| { |
| double accum = 0; |
| |
| for (T *p = start; p < end; p += stride) { |
| accum += sqr(*p); |
| } |
| unsigned count = (end - start + stride - 1) / stride; |
| return accum / count; |
| } |
| |
| void testStopbandDownconversion(size_t channels, |
| unsigned inputFreq, unsigned outputFreq, |
| unsigned passband, unsigned stopband, |
| enum android::AudioResampler::src_quality quality) |
| { |
| // create the provider |
| std::vector<size_t> inputIncr; |
| SignalProvider<int16_t> provider(createChirp<int16_t>(channels, |
| 0., inputFreq/2., inputFreq, inputFreq/2000.), |
| channels, inputIncr); |
| |
| // calculate the output size |
| size_t outputFrames = ((int64_t) provider.getNumFrames() * outputFreq) / inputFreq; |
| size_t outputFrameSize = 2 * sizeof(int32_t); |
| size_t outputSize = outputFrameSize * outputFrames; |
| outputSize &= ~7; |
| |
| // create the resampler |
| const int volumePrecision = 12; /* typical unity gain */ |
| android::AudioResampler* resampler; |
| |
| resampler = android::AudioResampler::create(16, channels, outputFreq, quality); |
| resampler->setSampleRate(inputFreq); |
| resampler->setVolume(1 << volumePrecision, 1 << volumePrecision); |
| |
| // set up the reference run |
| std::vector<size_t> refIncr; |
| refIncr.push_back(outputFrames); |
| void* reference = malloc(outputSize); |
| resample(reference, outputFrames, refIncr, &provider, resampler); |
| |
| int32_t *out = reinterpret_cast<int32_t *>(reference); |
| |
| // check signal energy in passband |
| const unsigned passbandFrame = passband * outputFreq / 1000.; |
| const unsigned stopbandFrame = stopband * outputFreq / 1000.; |
| |
| // check each channel separately |
| for (size_t i = 0; i < channels; ++i) { |
| double passbandEnergy = signalEnergy(out, out + passbandFrame * channels, channels); |
| double stopbandEnergy = signalEnergy(out + stopbandFrame * channels, |
| out + outputFrames * channels, channels); |
| double dbAtten = -10. * log10(stopbandEnergy / passbandEnergy); |
| ASSERT_GT(dbAtten, 60.); |
| |
| #if 0 |
| // internal verification |
| printf("if:%d of:%d pbf:%d sbf:%d sbe: %f pbe: %f db: %.2f\n", |
| provider.getNumFrames(), outputFrames, |
| passbandFrame, stopbandFrame, stopbandEnergy, passbandEnergy, dbAtten); |
| for (size_t i = 0; i < 10; ++i) { |
| printf("%d\n", out[i+passbandFrame*channels]); |
| } |
| for (size_t i = 0; i < 10; ++i) { |
| printf("%d\n", out[i+stopbandFrame*channels]); |
| } |
| #endif |
| } |
| |
| free(reference); |
| delete resampler; |
| } |
| |
| /* Buffer increment test |
| * |
| * We compare a reference output, where we consume and process the entire |
| * buffer at a time, and a test output, where we provide small chunks of input |
| * data and process small chunks of output (which may not be equivalent in size). |
| * |
| * Two subtests - fixed phase (3:2 down) and interpolated phase (147:320 up) |
| */ |
| TEST(audioflinger_resampler, bufferincrement_fixedphase) { |
| // all of these work |
| static const enum android::AudioResampler::src_quality kQualityArray[] = { |
| android::AudioResampler::LOW_QUALITY, |
| android::AudioResampler::MED_QUALITY, |
| android::AudioResampler::HIGH_QUALITY, |
| android::AudioResampler::VERY_HIGH_QUALITY, |
| android::AudioResampler::DYN_LOW_QUALITY, |
| android::AudioResampler::DYN_MED_QUALITY, |
| android::AudioResampler::DYN_HIGH_QUALITY, |
| }; |
| |
| for (size_t i = 0; i < ARRAY_SIZE(kQualityArray); ++i) { |
| testBufferIncrement(2, 48000, 32000, kQualityArray[i]); |
| } |
| } |
| |
| TEST(audioflinger_resampler, bufferincrement_interpolatedphase) { |
| // all of these work except low quality |
| static const enum android::AudioResampler::src_quality kQualityArray[] = { |
| // android::AudioResampler::LOW_QUALITY, |
| android::AudioResampler::MED_QUALITY, |
| android::AudioResampler::HIGH_QUALITY, |
| android::AudioResampler::VERY_HIGH_QUALITY, |
| android::AudioResampler::DYN_LOW_QUALITY, |
| android::AudioResampler::DYN_MED_QUALITY, |
| android::AudioResampler::DYN_HIGH_QUALITY, |
| }; |
| |
| for (size_t i = 0; i < ARRAY_SIZE(kQualityArray); ++i) { |
| testBufferIncrement(2, 22050, 48000, kQualityArray[i]); |
| } |
| } |
| |
| /* Simple aliasing test |
| * |
| * This checks stopband response of the chirp signal to make sure frequencies |
| * are properly suppressed. It uses downsampling because the stopband can be |
| * clearly isolated by input frequencies exceeding the output sample rate (nyquist). |
| */ |
| TEST(audioflinger_resampler, stopbandresponse) { |
| // not all of these may work (old resamplers fail on downsampling) |
| static const enum android::AudioResampler::src_quality kQualityArray[] = { |
| //android::AudioResampler::LOW_QUALITY, |
| //android::AudioResampler::MED_QUALITY, |
| //android::AudioResampler::HIGH_QUALITY, |
| //android::AudioResampler::VERY_HIGH_QUALITY, |
| android::AudioResampler::DYN_LOW_QUALITY, |
| android::AudioResampler::DYN_MED_QUALITY, |
| android::AudioResampler::DYN_HIGH_QUALITY, |
| }; |
| |
| // in this test we assume a maximum transition band between 12kHz and 20kHz. |
| // there must be at least 60dB relative attenuation between stopband and passband. |
| for (size_t i = 0; i < ARRAY_SIZE(kQualityArray); ++i) { |
| testStopbandDownconversion(2, 48000, 32000, 12000, 20000, kQualityArray[i]); |
| } |
| |
| // in this test we assume a maximum transition band between 7kHz and 15kHz. |
| // there must be at least 60dB relative attenuation between stopband and passband. |
| // (the weird ratio triggers interpolative resampling) |
| for (size_t i = 0; i < ARRAY_SIZE(kQualityArray); ++i) { |
| testStopbandDownconversion(2, 48000, 22101, 7000, 15000, kQualityArray[i]); |
| } |
| } |