Audio resampler update to add S16 filters

This does not affect the existing resamplers.
New resampler accessed through additional quality settings:

DYN_LOW_QUALITY = 5
DYN_MED_QUALITY = 6
DYN_HIGH_QUALITY = 7

Change-Id: Iebbd31871e808a4a6dee3f3abfd7e9dcf77c48e1
Signed-off-by: Andy Hung <hunga@google.com>
diff --git a/services/audioflinger/AudioResamplerFirGen.h b/services/audioflinger/AudioResamplerFirGen.h
new file mode 100644
index 0000000..fa6ee3e
--- /dev/null
+++ b/services/audioflinger/AudioResamplerFirGen.h
@@ -0,0 +1,307 @@
+/*
+ * Copyright (C) 2013 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ANDROID_AUDIO_RESAMPLER_FIR_GEN_H
+#define ANDROID_AUDIO_RESAMPLER_FIR_GEN_H
+
+namespace android {
+
+/*
+ * Sinc function is the traditional variant.
+ *
+ * TODO: Investigate optimizations (regular sampling grid, NEON vector accelerations)
+ * TODO: Remove comparison at 0 and trap at a higher level.
+ *
+ */
+
+static inline double sinc(double x) {
+    if (fabs(x) < FLT_MIN) {
+        return 1.;
+    }
+    return sin(x) / x;
+}
+
+static inline double sqr(double x) {
+    return x * x;
+}
+
+/*
+ * rounds a double to the nearest integer for FIR coefficients.
+ *
+ * One variant uses noise shaping, which must keep error history
+ * to work (the err parameter, initialized to 0).
+ * The other variant is a non-noise shaped version for
+ * S32 coefficients (noise shaping doesn't gain much).
+ *
+ * Caution: No bounds saturation is applied, but isn't needed in
+ * this case.
+ *
+ * @param x is the value to round.
+ *
+ * @param maxval is the maximum integer scale factor expressed as an int64 (for headroom).
+ * Typically this may be the maximum positive integer+1 (using the fact that double precision
+ * FIR coefficients generated here are never that close to 1.0 to pose an overflow condition).
+ *
+ * @param err is the previous error (actual - rounded) for the previous rounding op.
+ *
+ */
+
+static inline int64_t toint(double x, int64_t maxval, double& err) {
+    double val = x * maxval;
+    double ival = floor(val + 0.5 + err*0.17);
+    err = val - ival;
+    return static_cast<int64_t>(ival);
+}
+
+static inline int64_t toint(double x, int64_t maxval) {
+    return static_cast<int64_t>(floor(x * maxval + 0.5));
+}
+
+/*
+ * Modified Bessel function of the first kind
+ * http://en.wikipedia.org/wiki/Bessel_function
+ *
+ * The formulas are taken from Abramowitz and Stegun:
+ *
+ * http://people.math.sfu.ca/~cbm/aands/page_375.htm
+ * http://people.math.sfu.ca/~cbm/aands/page_378.htm
+ *
+ * http://dlmf.nist.gov/10.25
+ * http://dlmf.nist.gov/10.40
+ *
+ * Note we assume x is nonnegative (the function is symmetric,
+ * pass in the absolute value as needed).
+ *
+ * Constants are compile time derived with templates I0Term<> and
+ * I0ATerm<> to the precision of the compiler.  The series can be expanded
+ * to any precision needed, but currently set around 24b precision.
+ *
+ * We use a bit of template math here, constexpr would probably be
+ * more appropriate for a C++11 compiler.
+ *
+ */
+
+template <int N>
+struct I0Term {
+    static const double value = I0Term<N-1>::value/ (4. * N * N);
+};
+
+template <>
+struct I0Term<0> {
+    static const double value = 1.;
+};
+
+template <int N>
+struct I0ATerm {
+    static const double value = I0ATerm<N-1>::value * (2.*N-1.) * (2.*N-1.) / (8. * N);
+};
+
+template <>
+struct I0ATerm<0> { // 1/sqrt(2*PI);
+    static const double value = 0.398942280401432677939946059934381868475858631164934657665925;
+};
+
+static inline double I0(double x) {
+    if (x < 3.75) { // TODO: Estrin's method instead of Horner's method?
+        x *= x;
+        return I0Term<0>::value + x*(
+                I0Term<1>::value + x*(
+                I0Term<2>::value + x*(
+                I0Term<3>::value + x*(
+                I0Term<4>::value + x*(
+                I0Term<5>::value + x*(
+                I0Term<6>::value)))))); // e < 1.6e-7
+    }
+    // a bit ugly here - perhaps we expand the top series
+    // to permit computation to x < 20 (a reasonable range)
+    double y = 1./x;
+    return exp(x) * sqrt(y) * (
+            // note: reciprocal squareroot may be easier!
+            // http://en.wikipedia.org/wiki/Fast_inverse_square_root
+            I0ATerm<0>::value + y*(
+            I0ATerm<1>::value + y*(
+            I0ATerm<2>::value + y*(
+            I0ATerm<3>::value + y*(
+            I0ATerm<4>::value + y*(
+            I0ATerm<5>::value + y*(
+            I0ATerm<6>::value + y*(
+            I0ATerm<7>::value + y*(
+            I0ATerm<8>::value))))))))); // (... e) < 1.9e-7
+}
+
+/*
+ * calculates the transition bandwidth for a Kaiser filter
+ *
+ * Formula 3.2.8, Multirate Systems and Filter Banks, PP Vaidyanathan, pg. 48
+ *
+ * @param halfNumCoef is half the number of coefficients per filter phase.
+ * @param stopBandAtten is the stop band attenuation desired.
+ * @return the transition bandwidth in normalized frequency (0 <= f <= 0.5)
+ */
+static inline double firKaiserTbw(int halfNumCoef, double stopBandAtten) {
+    return (stopBandAtten - 7.95)/(2.*14.36*halfNumCoef);
+}
+
+/*
+ * calculates the fir transfer response.
+ *
+ * calculates the transfer coefficient H(w) for 0 <= w <= PI.
+ * Be careful be careful to consider the fact that this is an interpolated filter
+ * of length L, so normalizing H(w)/L is probably what you expect.
+ */
+template <typename T>
+static inline double firTransfer(const T* coef, int L, int halfNumCoef, double w) {
+    double accum = static_cast<double>(coef[0])*0.5;
+    coef += halfNumCoef;    // skip first row.
+    for (int i=1 ; i<=L ; ++i) {
+        for (int j=0, ix=i ; j<halfNumCoef ; ++j, ix+=L) {
+            accum += cos(ix*w)*static_cast<double>(*coef++);
+        }
+    }
+    return accum*2.;
+}
+
+/*
+ * returns the minimum and maximum |H(f)| bounds
+ *
+ * @param coef is the designed polyphase filter banks
+ *
+ * @param L is the number of phases (for interpolation)
+ *
+ * @param halfNumCoef should be half the number of coefficients for a single
+ * polyphase.
+ *
+ * @param fstart is the normalized frequency start.
+ *
+ * @param fend is the normalized frequency end.
+ *
+ * @param steps is the number of steps to take (sampling) between frequency start and end
+ *
+ * @param firMin returns the minimum transfer |H(f)| found
+ *
+ * @param firMax returns the maximum transfer |H(f)| found
+ *
+ * 0 <= f <= 0.5.
+ * This is used to test passband and stopband performance.
+ */
+template <typename T>
+static void testFir(const T* coef, int L, int halfNumCoef,
+        double fstart, double fend, int steps, double &firMin, double &firMax) {
+    double wstart = fstart*(2.*M_PI);
+    double wend = fend*(2.*M_PI);
+    double wstep = (wend - wstart)/steps;
+    double fmax, fmin;
+    double trf = firTransfer(coef, L, halfNumCoef, wstart);
+    if (trf<0) {
+        trf = -trf;
+    }
+    fmin = fmax = trf;
+    wstart += wstep;
+    for (int i=1; i<steps; ++i) {
+        trf = firTransfer(coef, L, halfNumCoef, wstart);
+        if (trf<0) {
+            trf = -trf;
+        }
+        if (trf>fmax) {
+            fmax = trf;
+        }
+        else if (trf<fmin) {
+            fmin = trf;
+        }
+        wstart += wstep;
+    }
+    // renormalize - this is only needed for integer filter types
+    double norm = 1./((1ULL<<(sizeof(T)*8-1))*L);
+
+    firMin = fmin * norm;
+    firMax = fmax * norm;
+}
+
+/*
+ * Calculates the polyphase filter banks based on a windowed sinc function.
+ *
+ * The windowed sinc is an odd length symmetric filter of exactly L*halfNumCoef*2+1
+ * taps for the entire kernel.  This is then decomposed into L+1 polyphase filterbanks.
+ * The last filterbank is used for interpolation purposes (and is mostly composed
+ * of the first bank shifted by one sample), and is unnecessary if one does
+ * not do interpolation.
+ *
+ * @param coef is the caller allocated space for coefficients.  This should be
+ * exactly (L+1)*halfNumCoef in size.
+ *
+ * @param L is the number of phases (for interpolation)
+ *
+ * @param halfNumCoef should be half the number of coefficients for a single
+ * polyphase.
+ *
+ * @param stopBandAtten is the stopband value, should be >50dB.
+ *
+ * @param fcr is cutoff frequency/sampling rate (<0.5).  At this point, the energy
+ * should be 6dB less. (fcr is where the amplitude drops by half).  Use the
+ * firKaiserTbw() to calculate the transition bandwidth.  fcr is the midpoint
+ * between the stop band and the pass band (fstop+fpass)/2.
+ *
+ * @param atten is the attenuation (generally slightly less than 1).
+ */
+
+template <typename T>
+static inline void firKaiserGen(T* coef, int L, int halfNumCoef,
+        double stopBandAtten, double fcr, double atten) {
+    //
+    // Formula 3.2.5, 3.2.7, Multirate Systems and Filter Banks, PP Vaidyanathan, pg. 48
+    //
+    // See also: http://melodi.ee.washington.edu/courses/ee518/notes/lec17.pdf
+    //
+    // Kaiser window and beta parameter
+    //
+    //         | 0.1102*(A - 8.7)                         A > 50
+    //  beta = | 0.5842*(A - 21)^0.4 + 0.07886*(A - 21)   21 <= A <= 50
+    //         | 0.                                       A < 21
+    //
+    // with A is the desired stop-band attenuation in dBFS
+    //
+    //    30 dB    2.210
+    //    40 dB    3.384
+    //    50 dB    4.538
+    //    60 dB    5.658
+    //    70 dB    6.764
+    //    80 dB    7.865
+    //    90 dB    8.960
+    //   100 dB   10.056
+
+    const int N = L * halfNumCoef; // non-negative half
+    const double beta = 0.1102 * (stopBandAtten - 8.7); // >= 50dB always
+    const double yscale = 2. * atten * fcr / I0(beta);
+    const double xstep = 2. * M_PI * fcr / L;
+    const double xfrac = 1. / N;
+    double err = 0; // for noise shaping on int16_t coefficients
+    for (int i=0 ; i<=L ; ++i) { // generate an extra set of coefs for interpolation
+        for (int j=0, ix=i ; j<halfNumCoef ; ++j, ix+=L) {
+            double y = I0(beta * sqrt(1.0 - sqr(ix * xfrac))) * sinc(ix * xstep) * yscale;
+
+            // (caution!) float version does not need rounding
+            if (is_same<T, int16_t>::value) { // int16_t needs noise shaping
+                *coef++ = static_cast<T>(toint(y, 1ULL<<(sizeof(T)*8-1), err));
+            } else {
+                *coef++ = static_cast<T>(toint(y, 1ULL<<(sizeof(T)*8-1)));
+            }
+        }
+    }
+}
+
+}; // namespace android
+
+#endif /*ANDROID_AUDIO_RESAMPLER_FIR_GEN_H*/