VolumeShaper: Initial implementation

The VolumeShaper is used to apply a volume
envelope to an AudioTrack or a MediaPlayer.

Test: CTS
Bug: 30920125
Bug: 31015569
Change-Id: I42e2f13bd6879299dc780e60d143c2d465483a44
diff --git a/include/media/Interpolator.h b/include/media/Interpolator.h
new file mode 100644
index 0000000..1b26b87
--- /dev/null
+++ b/include/media/Interpolator.h
@@ -0,0 +1,331 @@
+/*
+ * Copyright 2017 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ANDROID_INTERPOLATOR_H
+#define ANDROID_INTERPOLATOR_H
+
+#include <map>
+#include <sstream>
+#include <unordered_map>
+
+#include <binder/Parcel.h>
+#include <utils/RefBase.h>
+
+#pragma push_macro("LOG_TAG")
+#undef LOG_TAG
+#define LOG_TAG "Interpolator"
+
+namespace android {
+
+/*
+ * A general purpose spline interpolator class which takes a set of points
+ * and performs interpolation.  This is used for the VolumeShaper class.
+ */
+
+template <typename S, typename T>
+class Interpolator : public std::map<S, T> {
+public:
+    // Polynomial spline interpolators
+    // Extend only at the end of enum, as this must match order in VolumeShapers.java.
+    enum InterpolatorType : int32_t {
+        INTERPOLATOR_TYPE_STEP,   // Not continuous
+        INTERPOLATOR_TYPE_LINEAR, // C0
+        INTERPOLATOR_TYPE_CUBIC,  // C1
+        INTERPOLATOR_TYPE_CUBIC_MONOTONIC, // C1 (to provide locally monotonic curves)
+        // INTERPOLATOR_TYPE_CUBIC_C2, // TODO - requires global computation / cache
+    };
+
+    explicit Interpolator(
+            InterpolatorType interpolatorType = INTERPOLATOR_TYPE_LINEAR,
+            bool cache = true)
+        : mCache(cache)
+        , mFirstSlope(0)
+        , mLastSlope(0) {
+        setInterpolatorType(interpolatorType);
+    }
+
+    std::pair<S, T> first() const {
+        return *this->begin();
+    }
+
+    std::pair<S, T> last() const {
+        return *this->rbegin();
+    }
+
+    // find the corresponding Y point from a X point.
+    T findY(S x) { // logically const, but modifies cache
+        auto high = this->lower_bound(x);
+        // greater than last point
+        if (high == this->end()) {
+            return this->rbegin()->second;
+        }
+        // at or before first point
+        if (high == this->begin()) {
+            return high->second;
+        }
+        // go lower.
+        auto low = high;
+        --low;
+
+        // now that we have two adjacent points:
+        switch (mInterpolatorType) {
+        case INTERPOLATOR_TYPE_STEP:
+            return high->first == x ? high->second : low->second;
+        case INTERPOLATOR_TYPE_LINEAR:
+            return ((high->first - x) * low->second + (x - low->first) * high->second)
+                    / (high->first - low->first);
+        case INTERPOLATOR_TYPE_CUBIC:
+        case INTERPOLATOR_TYPE_CUBIC_MONOTONIC:
+        default: {
+            // See https://en.wikipedia.org/wiki/Cubic_Hermite_spline
+
+            const S interval =  high->first - low->first;
+
+            // check to see if we've cached the polynomial coefficients
+            if (mMemo.count(low->first) != 0) {
+                const S t = (x - low->first) / interval;
+                const S t2 = t * t;
+                const auto &memo = mMemo[low->first];
+                return low->second + std::get<0>(memo) * t
+                        + (std::get<1>(memo) + std::get<2>(memo) * t) * t2;
+            }
+
+            // find the neighboring points (low2 < low < high < high2)
+            auto low2 = this->end();
+            if (low != this->begin()) {
+                low2 = low;
+                --low2; // decrementing this->begin() is undefined
+            }
+            auto high2 = high;
+            ++high2;
+
+            // you could have catmullRom with monotonic or
+            // non catmullRom (finite difference) with regular cubic;
+            // the choices here minimize computation.
+            bool monotonic, catmullRom;
+            if (mInterpolatorType == INTERPOLATOR_TYPE_CUBIC_MONOTONIC) {
+                monotonic = true;
+                catmullRom = false;
+            } else {
+                monotonic = false;
+                catmullRom = true;
+            }
+
+            // secants are only needed for finite difference splines or
+            // monotonic computation.
+            // we use lazy computation here - if we precompute in
+            // a single pass, duplicate secant computations may be avoided.
+            S sec, sec0, sec1;
+            if (!catmullRom || monotonic) {
+                sec = (high->second - low->second) / interval;
+                sec0 = low2 != this->end()
+                        ? (low->second - low2->second) / (low->first - low2->first)
+                        : mFirstSlope;
+                sec1 = high2 != this->end()
+                        ? (high2->second - high->second) / (high2->first - high->first)
+                        : mLastSlope;
+            }
+
+            // compute the tangent slopes at the control points
+            S m0, m1;
+            if (catmullRom) {
+                // Catmull-Rom spline
+                m0 = low2 != this->end()
+                        ? (high->second - low2->second) / (high->first - low2->first)
+                        : mFirstSlope;
+
+                m1 = high2 != this->end()
+                        ? (high2->second - low->second) / (high2->first - low->first)
+                        : mLastSlope;
+            } else {
+                // finite difference spline
+                m0 = (sec0 + sec) * 0.5;
+                m1 = (sec1 + sec) * 0.5;
+            }
+
+            if (monotonic) {
+                // https://en.wikipedia.org/wiki/Monotone_cubic_interpolation
+                // A sufficient condition for Fritsch–Carlson monotonicity is constraining
+                // (1) the normalized slopes to be within the circle of radius 3, or
+                // (2) the normalized slopes to be within the square of radius 3.
+                // Condition (2) is more generous and easier to compute.
+                const S maxSlope = 3 * sec;
+                m0 = constrainSlope(m0, maxSlope);
+                m1 = constrainSlope(m1, maxSlope);
+
+                m0 = constrainSlope(m0, 3 * sec0);
+                m1 = constrainSlope(m1, 3 * sec1);
+            }
+
+            const S t = (x - low->first) / interval;
+            const S t2 = t * t;
+            if (mCache) {
+                // convert to cubic polynomial coefficients and compute
+                m0 *= interval;
+                m1 *= interval;
+                const T dy = high->second - low->second;
+                const S c0 = low->second;
+                const S c1 = m0;
+                const S c2 = 3 * dy - 2 * m0 - m1;
+                const S c3 = m0 + m1 - 2 * dy;
+                mMemo[low->first] = std::make_tuple(c1, c2, c3);
+                return c0 + c1 * t + (c2 + c3 * t) * t2;
+            } else {
+                // classic Hermite interpolation
+                const S t3 = t2 * t;
+                const S h00 =  2 * t3 - 3 * t2     + 1;
+                const S h10 =      t3 - 2 * t2 + t    ;
+                const S h01 = -2 * t3 + 3 * t2        ;
+                const S h11 =      t3     - t2        ;
+                return h00 * low->second + (h10 * m0 + h11 * m1) * interval + h01 * high->second;
+            }
+        } // default
+        }
+    }
+
+    InterpolatorType getInterpolatorType() const {
+        return mInterpolatorType;
+    }
+
+    status_t setInterpolatorType(InterpolatorType interpolatorType) {
+        switch (interpolatorType) {
+        case INTERPOLATOR_TYPE_STEP:   // Not continuous
+        case INTERPOLATOR_TYPE_LINEAR: // C0
+        case INTERPOLATOR_TYPE_CUBIC:  // C1
+        case INTERPOLATOR_TYPE_CUBIC_MONOTONIC: // C1 + other constraints
+        // case INTERPOLATOR_TYPE_CUBIC_C2:
+            mInterpolatorType = interpolatorType;
+            return NO_ERROR;
+        default:
+            ALOGE("invalid interpolatorType: %d", interpolatorType);
+            return BAD_VALUE;
+        }
+    }
+
+    T getFirstSlope() const {
+        return mFirstSlope;
+    }
+
+    void setFirstSlope(T slope) {
+        mFirstSlope = slope;
+    }
+
+    T getLastSlope() const {
+        return mLastSlope;
+    }
+
+    void setLastSlope(T slope) {
+        mLastSlope = slope;
+    }
+
+    void clearCache() {
+        mMemo.clear();
+    }
+
+    status_t writeToParcel(Parcel *parcel) const {
+        if (parcel == nullptr) {
+            return BAD_VALUE;
+        }
+        status_t res = parcel->writeInt32(mInterpolatorType)
+                ?: parcel->writeFloat(mFirstSlope)
+                ?: parcel->writeFloat(mLastSlope)
+                ?: parcel->writeUint32((uint32_t)this->size()); // silent truncation
+        if (res != NO_ERROR) {
+            return res;
+        }
+        for (const auto &pt : *this) {
+            res = parcel->writeFloat(pt.first)
+                    ?: parcel->writeFloat(pt.second);
+            if (res != NO_ERROR) {
+                return res;
+            }
+        }
+        return NO_ERROR;
+    }
+
+    status_t readFromParcel(const Parcel &parcel) {
+        this->clear();
+        int32_t type;
+        uint32_t size;
+        status_t res = parcel.readInt32(&type)
+                        ?: parcel.readFloat(&mFirstSlope)
+                        ?: parcel.readFloat(&mLastSlope)
+                        ?: parcel.readUint32(&size)
+                        ?: setInterpolatorType((InterpolatorType)type);
+        if (res != NO_ERROR) {
+            return res;
+        }
+        // Note: We don't need to check size is within some bounds as
+        // the Parcel read will fail if size is incorrectly specified too large.
+        float lastx;
+        for (uint32_t i = 0; i < size; ++i) {
+            float x, y;
+            res = parcel.readFloat(&x)
+                    ?: parcel.readFloat(&y);
+            if (res != NO_ERROR) {
+                return res;
+            }
+            if (i > 0 && !(x > lastx) /* handle nan */
+                    || y != y /* handle nan */) {
+                // This is a std::map object which imposes sorted order
+                // automatically on emplace.
+                // Nevertheless for reading from a Parcel,
+                // we require that the points be specified monotonic in x.
+                return BAD_VALUE;
+            }
+            this->emplace(x, y);
+            lastx = x;
+        }
+        return NO_ERROR;
+    }
+
+    std::string toString() const {
+        std::stringstream ss;
+        ss << "mInterpolatorType: " << mInterpolatorType << std::endl;
+        for (const auto &pt : *this) {
+            ss << pt.first << " " << pt.second << std::endl;
+        }
+        return ss.str();
+    }
+
+private:
+    static S constrainSlope(S slope, S maxSlope) {
+        if (maxSlope > 0) {
+            slope = std::min(slope, maxSlope);
+            slope = std::max(slope, S(0)); // not globally monotonic
+        } else {
+            slope = std::max(slope, maxSlope);
+            slope = std::min(slope, S(0)); // not globally monotonic
+        }
+        return slope;
+    }
+
+    InterpolatorType mInterpolatorType;
+    bool mCache; // whether we cache spline coefficient computation
+
+    // for cubic interpolation, the boundary conditions in slope.
+    S mFirstSlope;
+    S mLastSlope;
+
+    // spline cubic polynomial coefficient cache
+    std::unordered_map<S, std::tuple<S /* c1 */, S /* c2 */, S /* c3 */>> mMemo;
+};
+
+} // namespace android
+
+#pragma pop_macro("LOG_TAG")
+
+#endif // ANDROID_INTERPOLATOR_H