| /* |
| * Copyright (C) 2018 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define LOG_TAG "DPFrequency" |
| //#define LOG_NDEBUG 0 |
| |
| #include <log/log.h> |
| #include "DPFrequency.h" |
| #include <algorithm> |
| |
| namespace dp_fx { |
| |
| using Eigen::MatrixXd; |
| #define MAX_BLOCKSIZE 16384 //For this implementation |
| #define MIN_BLOCKSIZE 8 |
| |
| #define CIRCULAR_BUFFER_UPSAMPLE 4 //4 times buffer size |
| |
| static constexpr float MIN_ENVELOPE = 0.000001f; |
| //helper functionS |
| static inline bool isPowerOf2(unsigned long n) { |
| return (n & (n - 1)) == 0; |
| } |
| static constexpr float EPSILON = 0.0000001f; |
| |
| static inline bool isZero(float f) { |
| return fabs(f) <= EPSILON; |
| } |
| |
| template <class T> |
| bool compareEquality(T a, T b) { |
| return (a == b); |
| } |
| |
| template <> bool compareEquality<float>(float a, float b) { |
| return isZero(a - b); |
| } |
| |
| //TODO: avoid using macro for estimating change and assignment. |
| #define IS_CHANGED(c, a, b) { c |= !compareEquality(a,b); \ |
| (a) = (b); } |
| |
| float dBtoLinear(float valueDb) { |
| return pow (10, valueDb / 20.0); |
| } |
| |
| float linearToDb(float value) { |
| return 20 * log10(value); |
| } |
| |
| //ChannelBuffers helper |
| void ChannelBuffer::initBuffers(unsigned int blockSize, unsigned int overlapSize, |
| unsigned int halfFftSize, unsigned int samplingRate, DPBase &dpBase) { |
| ALOGV("ChannelBuffer::initBuffers blockSize %d, overlap %d, halfFft %d", |
| blockSize, overlapSize, halfFftSize); |
| |
| mSamplingRate = samplingRate; |
| mBlockSize = blockSize; |
| |
| cBInput.resize(mBlockSize * CIRCULAR_BUFFER_UPSAMPLE); |
| cBOutput.resize(mBlockSize * CIRCULAR_BUFFER_UPSAMPLE); |
| |
| //fill input with half block size... |
| for (unsigned int k = 0; k < mBlockSize/2; k++) { |
| cBInput.write(0); |
| } |
| |
| //temp vectors |
| input.resize(mBlockSize); |
| output.resize(mBlockSize); |
| outTail.resize(overlapSize); |
| |
| //module vectors |
| mPreEqFactorVector.resize(halfFftSize, 1.0); |
| mPostEqFactorVector.resize(halfFftSize, 1.0); |
| |
| mPreEqBands.resize(dpBase.getPreEqBandCount()); |
| mMbcBands.resize(dpBase.getMbcBandCount()); |
| mPostEqBands.resize(dpBase.getPostEqBandCount()); |
| ALOGV("mPreEqBands %zu, mMbcBands %zu, mPostEqBands %zu",mPreEqBands.size(), |
| mMbcBands.size(), mPostEqBands.size()); |
| |
| DPChannel *pChannel = dpBase.getChannel(0); |
| if (pChannel != NULL) { |
| mPreEqInUse = pChannel->getPreEq()->isInUse(); |
| mMbcInUse = pChannel->getMbc()->isInUse(); |
| mPostEqInUse = pChannel->getPostEq()->isInUse(); |
| mLimiterInUse = pChannel->getLimiter()->isInUse(); |
| } |
| } |
| |
| void ChannelBuffer::computeBinStartStop(BandParams &bp, size_t binStart) { |
| |
| bp.binStart = binStart; |
| bp.binStop = (int)(0.5 + bp.freqCutoffHz * mBlockSize / mSamplingRate); |
| } |
| |
| //== DPFrequency |
| |
| void DPFrequency::reset() { |
| } |
| |
| size_t DPFrequency::getMinBockSize() { |
| return MIN_BLOCKSIZE; |
| } |
| |
| size_t DPFrequency::getMaxBockSize() { |
| return MAX_BLOCKSIZE; |
| } |
| |
| void DPFrequency::configure(size_t blockSize, size_t overlapSize, |
| size_t samplingRate) { |
| ALOGV("configure"); |
| mBlockSize = blockSize; |
| if (mBlockSize > MAX_BLOCKSIZE) { |
| mBlockSize = MAX_BLOCKSIZE; |
| } else if (mBlockSize < MIN_BLOCKSIZE) { |
| mBlockSize = MIN_BLOCKSIZE; |
| } else { |
| if (!isPowerOf2(blockSize)) { |
| //find next highest power of 2. |
| mBlockSize = 1 << (32 - __builtin_clz(blockSize)); |
| } |
| } |
| |
| mHalfFFTSize = 1 + mBlockSize / 2; //including Nyquist bin |
| mOverlapSize = std::min(overlapSize, mBlockSize/2); |
| |
| int channelcount = getChannelCount(); |
| mSamplingRate = samplingRate; |
| mChannelBuffers.resize(channelcount); |
| for (int ch = 0; ch < channelcount; ch++) { |
| mChannelBuffers[ch].initBuffers(mBlockSize, mOverlapSize, mHalfFFTSize, |
| mSamplingRate, *this); |
| } |
| |
| //dsp |
| fill_window(mVWindow, RDSP_WINDOW_HANNING_FLAT_TOP, mBlockSize, mOverlapSize); |
| } |
| |
| void DPFrequency::updateParameters(ChannelBuffer &cb, int channelIndex) { |
| DPChannel *pChannel = getChannel(channelIndex); |
| |
| if (pChannel == NULL) { |
| ALOGE("Error: updateParameters null DPChannel %d", channelIndex); |
| return; |
| } |
| |
| //===Input Gain and preEq |
| { |
| bool changed = false; |
| IS_CHANGED(changed, cb.inputGainDb, pChannel->getInputGain()); |
| //===EqPre |
| if (cb.mPreEqInUse) { |
| DPEq *pPreEq = pChannel->getPreEq(); |
| if (pPreEq == NULL) { |
| ALOGE("Error: updateParameters null PreEq for channel: %d", channelIndex); |
| return; |
| } |
| IS_CHANGED(changed, cb.mPreEqEnabled, pPreEq->isEnabled()); |
| if (cb.mPreEqEnabled) { |
| for (unsigned int b = 0; b < getPreEqBandCount(); b++) { |
| DPEqBand *pEqBand = pPreEq->getBand(b); |
| if (pEqBand == NULL) { |
| ALOGE("Error: updateParameters null PreEqBand for band %d", b); |
| return; //failed. |
| } |
| ChannelBuffer::EqBandParams *pEqBandParams = &cb.mPreEqBands[b]; |
| IS_CHANGED(changed, pEqBandParams->enabled, pEqBand->isEnabled()); |
| IS_CHANGED(changed, pEqBandParams->freqCutoffHz, |
| pEqBand->getCutoffFrequency()); |
| IS_CHANGED(changed, pEqBandParams->gainDb, pEqBand->getGain()); |
| } |
| } |
| } |
| |
| if (changed) { |
| float inputGainFactor = dBtoLinear(cb.inputGainDb); |
| if (cb.mPreEqInUse && cb.mPreEqEnabled) { |
| ALOGV("preEq changed, recomputing! channel %d", channelIndex); |
| size_t binNext = 0; |
| for (unsigned int b = 0; b < getPreEqBandCount(); b++) { |
| ChannelBuffer::EqBandParams *pEqBandParams = &cb.mPreEqBands[b]; |
| |
| //frequency translation |
| cb.computeBinStartStop(*pEqBandParams, binNext); |
| binNext = pEqBandParams->binStop + 1; |
| float factor = dBtoLinear(pEqBandParams->gainDb); |
| if (!pEqBandParams->enabled) { |
| factor = inputGainFactor; |
| } |
| for (size_t k = pEqBandParams->binStart; |
| k <= pEqBandParams->binStop && k < mHalfFFTSize; k++) { |
| cb.mPreEqFactorVector[k] = factor * inputGainFactor; |
| } |
| } |
| } else { |
| ALOGV("only input gain changed, recomputing!"); |
| //populate PreEq factor with input gain factor. |
| for (size_t k = 0; k < mHalfFFTSize; k++) { |
| cb.mPreEqFactorVector[k] = inputGainFactor; |
| } |
| } |
| } |
| } //inputGain and preEq |
| |
| //===EqPost |
| if (cb.mPostEqInUse) { |
| bool changed = false; |
| |
| DPEq *pPostEq = pChannel->getPostEq(); |
| if (pPostEq == NULL) { |
| ALOGE("Error: updateParameters null postEq for channel: %d", channelIndex); |
| return; //failed. |
| } |
| IS_CHANGED(changed, cb.mPostEqEnabled, pPostEq->isEnabled()); |
| if (cb.mPostEqEnabled) { |
| for (unsigned int b = 0; b < getPostEqBandCount(); b++) { |
| DPEqBand *pEqBand = pPostEq->getBand(b); |
| if (pEqBand == NULL) { |
| ALOGE("Error: updateParameters PostEqBand NULL for band %d", b); |
| return; //failed. |
| } |
| ChannelBuffer::EqBandParams *pEqBandParams = &cb.mPostEqBands[b]; |
| IS_CHANGED(changed, pEqBandParams->enabled, pEqBand->isEnabled()); |
| IS_CHANGED(changed, pEqBandParams->freqCutoffHz, |
| pEqBand->getCutoffFrequency()); |
| IS_CHANGED(changed, pEqBandParams->gainDb, pEqBand->getGain()); |
| } |
| if (changed) { |
| ALOGV("postEq changed, recomputing! channel %d", channelIndex); |
| size_t binNext = 0; |
| for (unsigned int b = 0; b < getPostEqBandCount(); b++) { |
| ChannelBuffer::EqBandParams *pEqBandParams = &cb.mPostEqBands[b]; |
| |
| //frequency translation |
| cb.computeBinStartStop(*pEqBandParams, binNext); |
| binNext = pEqBandParams->binStop + 1; |
| float factor = dBtoLinear(pEqBandParams->gainDb); |
| if (!pEqBandParams->enabled) { |
| factor = 1.0; |
| } |
| for (size_t k = pEqBandParams->binStart; |
| k <= pEqBandParams->binStop && k < mHalfFFTSize; k++) { |
| cb.mPostEqFactorVector[k] = factor; |
| } |
| } |
| } |
| } //enabled |
| } |
| |
| //===MBC |
| if (cb.mMbcInUse) { |
| DPMbc *pMbc = pChannel->getMbc(); |
| if (pMbc == NULL) { |
| ALOGE("Error: updateParameters Mbc NULL for channel: %d", channelIndex); |
| return; |
| } |
| cb.mMbcEnabled = pMbc->isEnabled(); |
| if (cb.mMbcEnabled) { |
| bool changed = false; |
| for (unsigned int b = 0; b < getMbcBandCount(); b++) { |
| DPMbcBand *pMbcBand = pMbc->getBand(b); |
| if (pMbcBand == NULL) { |
| ALOGE("Error: updateParameters MbcBand NULL for band %d", b); |
| return; //failed. |
| } |
| ChannelBuffer::MbcBandParams *pMbcBandParams = &cb.mMbcBands[b]; |
| pMbcBandParams->enabled = pMbcBand->isEnabled(); |
| IS_CHANGED(changed, pMbcBandParams->freqCutoffHz, |
| pMbcBand->getCutoffFrequency()); |
| |
| pMbcBandParams->gainPreDb = pMbcBand->getPreGain(); |
| pMbcBandParams->gainPostDb = pMbcBand->getPostGain(); |
| pMbcBandParams->attackTimeMs = pMbcBand->getAttackTime(); |
| pMbcBandParams->releaseTimeMs = pMbcBand->getReleaseTime(); |
| pMbcBandParams->ratio = pMbcBand->getRatio(); |
| pMbcBandParams->thresholdDb = pMbcBand->getThreshold(); |
| pMbcBandParams->kneeWidthDb = pMbcBand->getKneeWidth(); |
| pMbcBandParams->noiseGateThresholdDb = pMbcBand->getNoiseGateThreshold(); |
| pMbcBandParams->expanderRatio = pMbcBand->getExpanderRatio(); |
| |
| } |
| |
| if (changed) { |
| ALOGV("mbc changed, recomputing! channel %d", channelIndex); |
| size_t binNext= 0; |
| for (unsigned int b = 0; b < getMbcBandCount(); b++) { |
| ChannelBuffer::MbcBandParams *pMbcBandParams = &cb.mMbcBands[b]; |
| |
| pMbcBandParams->previousEnvelope = 0; |
| |
| //frequency translation |
| cb.computeBinStartStop(*pMbcBandParams, binNext); |
| binNext = pMbcBandParams->binStop + 1; |
| } |
| |
| } |
| |
| } |
| } |
| } |
| |
| size_t DPFrequency::processSamples(const float *in, float *out, size_t samples) { |
| const float *pIn = in; |
| float *pOut = out; |
| |
| int channelCount = mChannelBuffers.size(); |
| if (channelCount < 1) { |
| ALOGW("warning: no Channels ready for processing"); |
| return 0; |
| } |
| |
| //**Check if parameters have changed and update |
| for (int ch = 0; ch < channelCount; ch++) { |
| updateParameters(mChannelBuffers[ch], ch); |
| } |
| |
| //**separate into channels |
| for (size_t k = 0; k < samples; k += channelCount) { |
| for (int ch = 0; ch < channelCount; ch++) { |
| mChannelBuffers[ch].cBInput.write(*pIn++); |
| } |
| } |
| |
| //TODO: lookahead limiters |
| //TODO: apply linked limiters to all channels. |
| //**Process each Channel |
| for (int ch = 0; ch < channelCount; ch++) { |
| processMono(mChannelBuffers[ch]); |
| } |
| |
| //** estimate how much data is available in ALL channels |
| size_t available = mChannelBuffers[0].cBOutput.availableToRead(); |
| for (int ch = 1; ch < channelCount; ch++) { |
| available = std::min(available, mChannelBuffers[ch].cBOutput.availableToRead()); |
| } |
| |
| //** make sure to output just what the buffer can handle |
| if (available > samples/channelCount) { |
| available = samples/channelCount; |
| } |
| |
| //**Prepend zeroes if necessary |
| size_t fill = samples - (channelCount * available); |
| for (size_t k = 0; k < fill; k++) { |
| *pOut++ = 0; |
| } |
| |
| //**interleave channels |
| for (size_t k = 0; k < available; k++) { |
| for (int ch = 0; ch < channelCount; ch++) { |
| *pOut++ = mChannelBuffers[ch].cBOutput.read(); |
| } |
| } |
| |
| return samples; |
| } |
| |
| size_t DPFrequency::processMono(ChannelBuffer &cb) { |
| |
| size_t processedSamples = 0; |
| |
| size_t available = cb.cBInput.availableToRead(); |
| while (available >= mBlockSize - mOverlapSize) { |
| |
| //move tail of previous |
| for (unsigned int k = 0; k < mOverlapSize; ++k) { |
| cb.input[k] = cb.input[mBlockSize - mOverlapSize + k]; |
| } |
| |
| //read new available data |
| for (unsigned int k = 0; k < mBlockSize - mOverlapSize; k++) { |
| cb.input[mOverlapSize + k] = cb.cBInput.read(); |
| } |
| |
| //## Actual process |
| processOneVector(cb.output, cb.input, cb); |
| //##End of Process |
| |
| //mix tail (and capture new tail |
| for (unsigned int k = 0; k < mOverlapSize; k++) { |
| cb.output[k] += cb.outTail[k]; |
| cb.outTail[k] = cb.output[mBlockSize - mOverlapSize + k]; //new tail |
| } |
| |
| //output data |
| for (unsigned int k = 0; k < mBlockSize - mOverlapSize; k++) { |
| cb.cBOutput.write(cb.output[k]); |
| } |
| |
| available = cb.cBInput.availableToRead(); |
| } |
| |
| return processedSamples; |
| } |
| |
| size_t DPFrequency::processOneVector(FloatVec & output, FloatVec & input, |
| ChannelBuffer &cb) { |
| |
| //##apply window |
| Eigen::Map<Eigen::VectorXf> eWindow(&mVWindow[0], mVWindow.size()); |
| Eigen::Map<Eigen::VectorXf> eInput(&input[0], input.size()); |
| |
| Eigen::VectorXf eWin = eInput.cwiseProduct(eWindow); //apply window |
| |
| //##fft //TODO: refactor frequency transformations away from other stages. |
| mFftServer.fwd(mComplexTemp, eWin); |
| |
| size_t cSize = mComplexTemp.size(); |
| size_t maxBin = std::min(cSize/2, mHalfFFTSize); |
| |
| //== EqPre (always runs) |
| for (size_t k = 0; k < maxBin; k++) { |
| mComplexTemp[k] *= cb.mPreEqFactorVector[k]; |
| } |
| |
| //== MBC |
| if (cb.mMbcInUse && cb.mMbcEnabled) { |
| for (size_t band = 0; band < cb.mMbcBands.size(); band++) { |
| ChannelBuffer::MbcBandParams *pMbcBandParams = &cb.mMbcBands[band]; |
| float fEnergySum = 0; |
| |
| //apply pre gain. |
| float preGainFactor = dBtoLinear(pMbcBandParams->gainPreDb); |
| float preGainSquared = preGainFactor * preGainFactor; |
| |
| for (size_t k = pMbcBandParams->binStart; k <= pMbcBandParams->binStop; k++) { |
| float fReal = mComplexTemp[k].real(); |
| float fImag = mComplexTemp[k].imag(); |
| float fSquare = (fReal * fReal + fImag * fImag) * preGainSquared; |
| |
| fEnergySum += fSquare; |
| } |
| |
| fEnergySum = sqrt(fEnergySum /2.0); |
| float fTheta = 0.0; |
| float fFAtt = pMbcBandParams->attackTimeMs; |
| float fFRel = pMbcBandParams->releaseTimeMs; |
| |
| float fUpdatesPerSecond = 10; //TODO: compute from framerate |
| |
| |
| if (fEnergySum > pMbcBandParams->previousEnvelope) { |
| fTheta = exp(-1.0 / (fFAtt * fUpdatesPerSecond)); |
| } else { |
| fTheta = exp(-1.0 / (fFRel * fUpdatesPerSecond)); |
| } |
| |
| float fEnv = (1.0 - fTheta) * fEnergySum + fTheta * pMbcBandParams->previousEnvelope; |
| |
| //preserve for next iteration |
| pMbcBandParams->previousEnvelope = fEnv; |
| |
| float fThreshold = dBtoLinear(pMbcBandParams->thresholdDb); |
| float fNoiseGateThreshold = dBtoLinear(pMbcBandParams->noiseGateThresholdDb); |
| |
| float fNewFactor = 1.0; |
| |
| if (fEnv > fThreshold) { |
| float fDbAbove = linearToDb(fThreshold / fEnv); |
| float fDbTarget = fDbAbove / pMbcBandParams->ratio; |
| float fDbChange = fDbAbove - fDbTarget; |
| fNewFactor = dBtoLinear(fDbChange); |
| } else if (fEnv < fNoiseGateThreshold) { |
| if (fEnv < MIN_ENVELOPE) { |
| fEnv = MIN_ENVELOPE; |
| } |
| float fDbBelow = linearToDb(fNoiseGateThreshold / fEnv); |
| float fDbTarget = fDbBelow / pMbcBandParams->expanderRatio; |
| float fDbChange = fDbBelow - fDbTarget; |
| fNewFactor = dBtoLinear(fDbChange); |
| } |
| |
| //apply post gain. |
| fNewFactor *= dBtoLinear(pMbcBandParams->gainPostDb); |
| |
| if (fNewFactor < 0) { |
| fNewFactor = 0; |
| } |
| |
| //apply to this band |
| for (size_t k = pMbcBandParams->binStart; k <= pMbcBandParams->binStop; k++) { |
| mComplexTemp[k] *= fNewFactor; |
| } |
| |
| } //end per band process |
| |
| } //end MBC |
| |
| //== EqPost |
| if (cb.mPostEqInUse && cb.mPostEqEnabled) { |
| for (size_t k = 0; k < maxBin; k++) { |
| mComplexTemp[k] *= cb.mPostEqFactorVector[k]; |
| } |
| } |
| |
| //##ifft directly to output. |
| Eigen::Map<Eigen::VectorXf> eOutput(&output[0], output.size()); |
| mFftServer.inv(eOutput, mComplexTemp); |
| |
| return mBlockSize; |
| } |
| |
| } //namespace dp_fx |