mediaplayer: smooth out videoplayback based on framerate
Bug: 14659809
Change-Id: I73f6c7224c51ac06487475f9ed395379111ad71f
diff --git a/media/libmediaplayerservice/VideoFrameScheduler.cpp b/media/libmediaplayerservice/VideoFrameScheduler.cpp
index dd38d5d..4251c4e 100644
--- a/media/libmediaplayerservice/VideoFrameScheduler.cpp
+++ b/media/libmediaplayerservice/VideoFrameScheduler.cpp
@@ -34,6 +34,305 @@
static const nsecs_t kNanosIn1s = 1000000000;
+template<class T>
+inline static const T divRound(const T &nom, const T &den) {
+ if ((nom >= 0) ^ (den >= 0)) {
+ return (nom - den / 2) / den;
+ } else {
+ return (nom + den / 2) / den;
+ }
+}
+
+template<class T>
+inline static T abs(const T &a) {
+ return a < 0 ? -a : a;
+}
+
+template<class T>
+inline static const T &min(const T &a, const T &b) {
+ return a < b ? a : b;
+}
+
+template<class T>
+inline static const T &max(const T &a, const T &b) {
+ return a > b ? a : b;
+}
+
+template<class T>
+inline static T periodicError(const T &val, const T &period) {
+ T err = abs(val) % period;
+ return (err < (period / 2)) ? err : (period - err);
+}
+
+template<class T>
+static int compare(const T *lhs, const T *rhs) {
+ if (*lhs < *rhs) {
+ return -1;
+ } else if (*lhs > *rhs) {
+ return 1;
+ } else {
+ return 0;
+ }
+}
+
+/* ======================================================================= */
+/* PLL */
+/* ======================================================================= */
+
+static const size_t kMinSamplesToStartPrime = 3;
+static const size_t kMinSamplesToStopPrime = VideoFrameScheduler::kHistorySize;
+static const size_t kMinSamplesToEstimatePeriod = 3;
+static const size_t kMaxSamplesToEstimatePeriod = VideoFrameScheduler::kHistorySize;
+
+static const size_t kPrecision = 12;
+static const size_t kErrorThreshold = (1 << (kPrecision * 2)) / 10;
+static const int64_t kMultiplesThresholdDiv = 4; // 25%
+static const int64_t kReFitThresholdDiv = 100; // 1%
+static const nsecs_t kMaxAllowedFrameSkip = kNanosIn1s; // 1 sec
+static const nsecs_t kMinPeriod = kNanosIn1s / 120; // 120Hz
+static const nsecs_t kRefitRefreshPeriod = 10 * kNanosIn1s; // 10 sec
+
+VideoFrameScheduler::PLL::PLL()
+ : mPeriod(-1),
+ mPhase(0),
+ mPrimed(false),
+ mSamplesUsedForPriming(0),
+ mLastTime(-1),
+ mNumSamples(0) {
+}
+
+void VideoFrameScheduler::PLL::reset(float fps) {
+ //test();
+
+ mSamplesUsedForPriming = 0;
+ mLastTime = -1;
+
+ // set up or reset video PLL
+ if (fps <= 0.f) {
+ mPeriod = -1;
+ mPrimed = false;
+ } else {
+ ALOGV("reset at %.1f fps", fps);
+ mPeriod = (nsecs_t)(1e9 / fps + 0.5);
+ mPrimed = true;
+ }
+
+ restart();
+}
+
+// reset PLL but keep previous period estimate
+void VideoFrameScheduler::PLL::restart() {
+ mNumSamples = 0;
+ mPhase = -1;
+}
+
+#if 0
+
+void VideoFrameScheduler::PLL::test() {
+ nsecs_t period = kNanosIn1s / 60;
+ mTimes[0] = 0;
+ mTimes[1] = period;
+ mTimes[2] = period * 3;
+ mTimes[3] = period * 4;
+ mTimes[4] = period * 7;
+ mTimes[5] = period * 8;
+ mTimes[6] = period * 10;
+ mTimes[7] = period * 12;
+ mNumSamples = 8;
+ int64_t a, b, err;
+ fit(0, period * 12 / 7, 8, &a, &b, &err);
+ // a = 0.8(5)+
+ // b = -0.14097(2)+
+ // err = 0.2750578(703)+
+ ALOGD("a=%lld (%.6f), b=%lld (%.6f), err=%lld (%.6f)",
+ (long long)a, (a / (float)(1 << kPrecision)),
+ (long long)b, (b / (float)(1 << kPrecision)),
+ (long long)err, (err / (float)(1 << (kPrecision * 2))));
+}
+
+#endif
+
+void VideoFrameScheduler::PLL::fit(
+ nsecs_t phase, nsecs_t period, size_t numSamplesToUse,
+ int64_t *a, int64_t *b, int64_t *err) {
+ if (numSamplesToUse > mNumSamples) {
+ numSamplesToUse = mNumSamples;
+ }
+
+ int64_t sumX = 0;
+ int64_t sumXX = 0;
+ int64_t sumXY = 0;
+ int64_t sumYY = 0;
+ int64_t sumY = 0;
+
+ int64_t x = 0; // x usually is in [0..numSamplesToUse)
+ nsecs_t lastTime;
+ for (size_t i = 0; i < numSamplesToUse; i++) {
+ size_t ix = (mNumSamples - numSamplesToUse + i) % kHistorySize;
+ nsecs_t time = mTimes[ix];
+ if (i > 0) {
+ x += divRound(time - lastTime, period);
+ }
+ // y is usually in [-numSamplesToUse..numSamplesToUse+kRefitRefreshPeriod/kMinPeriod) << kPrecision
+ // ideally in [0..numSamplesToUse), but shifted by -numSamplesToUse during
+ // priming, and possibly shifted by up to kRefitRefreshPeriod/kMinPeriod
+ // while we are not refitting.
+ int64_t y = divRound(time - phase, period >> kPrecision);
+ sumX += x;
+ sumY += y;
+ sumXX += x * x;
+ sumXY += x * y;
+ sumYY += y * y;
+ lastTime = time;
+ }
+
+ int64_t div = numSamplesToUse * sumXX - sumX * sumX;
+ int64_t a_nom = numSamplesToUse * sumXY - sumX * sumY;
+ int64_t b_nom = sumXX * sumY - sumX * sumXY;
+ *a = divRound(a_nom, div);
+ *b = divRound(b_nom, div);
+ // don't use a and b directly as the rounding error is significant
+ *err = sumYY - divRound(a_nom * sumXY + b_nom * sumY, div);
+ ALOGV("fitting[%zu] a=%lld (%.6f), b=%lld (%.6f), err=%lld (%.6f)",
+ numSamplesToUse,
+ (long long)*a, (*a / (float)(1 << kPrecision)),
+ (long long)*b, (*b / (float)(1 << kPrecision)),
+ (long long)*err, (*err / (float)(1 << (kPrecision * 2))));
+}
+
+void VideoFrameScheduler::PLL::prime(size_t numSamplesToUse) {
+ if (numSamplesToUse > mNumSamples) {
+ numSamplesToUse = mNumSamples;
+ }
+ CHECK(numSamplesToUse >= 3); // must have at least 3 samples
+
+ // estimate video framerate from deltas between timestamps, and
+ // 2nd order deltas
+ Vector<nsecs_t> deltas;
+ nsecs_t lastTime, firstTime;
+ for (size_t i = 0; i < numSamplesToUse; ++i) {
+ size_t index = (mNumSamples - numSamplesToUse + i) % kHistorySize;
+ nsecs_t time = mTimes[index];
+ if (i > 0) {
+ if (time - lastTime > kMinPeriod) {
+ //ALOGV("delta: %lld", (long long)(time - lastTime));
+ deltas.push(time - lastTime);
+ }
+ } else {
+ firstTime = time;
+ }
+ lastTime = time;
+ }
+ deltas.sort(compare<nsecs_t>);
+ size_t numDeltas = deltas.size();
+ if (numDeltas > 1) {
+ nsecs_t deltaMinLimit = min(deltas[0] / kMultiplesThresholdDiv, kMinPeriod);
+ nsecs_t deltaMaxLimit = deltas[numDeltas / 2] * kMultiplesThresholdDiv;
+ for (size_t i = numDeltas / 2 + 1; i < numDeltas; ++i) {
+ if (deltas[i] > deltaMaxLimit) {
+ deltas.resize(i);
+ numDeltas = i;
+ break;
+ }
+ }
+ for (size_t i = 1; i < numDeltas; ++i) {
+ nsecs_t delta2nd = deltas[i] - deltas[i - 1];
+ if (delta2nd >= deltaMinLimit) {
+ //ALOGV("delta2: %lld", (long long)(delta2nd));
+ deltas.push(delta2nd);
+ }
+ }
+ }
+
+ // use the one that yields the best match
+ int64_t bestScore;
+ for (size_t i = 0; i < deltas.size(); ++i) {
+ nsecs_t delta = deltas[i];
+ int64_t score = 0;
+#if 1
+ // simplest score: number of deltas that are near multiples
+ size_t matches = 0;
+ for (size_t j = 0; j < deltas.size(); ++j) {
+ nsecs_t err = periodicError(deltas[j], delta);
+ if (err < delta / kMultiplesThresholdDiv) {
+ ++matches;
+ }
+ }
+ score = matches;
+#if 0
+ // could be weighed by the (1 - normalized error)
+ if (numSamplesToUse >= kMinSamplesToEstimatePeriod) {
+ int64_t a, b, err;
+ fit(firstTime, delta, numSamplesToUse, &a, &b, &err);
+ err = (1 << (2 * kPrecision)) - err;
+ score *= max(0, err);
+ }
+#endif
+#else
+ // or use the error as a negative score
+ if (numSamplesToUse >= kMinSamplesToEstimatePeriod) {
+ int64_t a, b, err;
+ fit(firstTime, delta, numSamplesToUse, &a, &b, &err);
+ score = -delta * err;
+ }
+#endif
+ if (i == 0 || score > bestScore) {
+ bestScore = score;
+ mPeriod = delta;
+ mPhase = firstTime;
+ }
+ }
+ ALOGV("priming[%zu] phase:%lld period:%lld", numSamplesToUse, mPhase, mPeriod);
+}
+
+nsecs_t VideoFrameScheduler::PLL::addSample(nsecs_t time) {
+ if (mLastTime >= 0
+ // if time goes backward, or we skipped rendering
+ && (time > mLastTime + kMaxAllowedFrameSkip || time < mLastTime)) {
+ restart();
+ }
+
+ mLastTime = time;
+ mTimes[mNumSamples % kHistorySize] = time;
+ ++mNumSamples;
+
+ bool doFit = time > mRefitAt;
+ if ((mPeriod <= 0 || !mPrimed) && mNumSamples >= kMinSamplesToStartPrime) {
+ prime(kMinSamplesToStopPrime);
+ ++mSamplesUsedForPriming;
+ doFit = true;
+ }
+ if (mPeriod > 0 && mNumSamples >= kMinSamplesToEstimatePeriod) {
+ if (mPhase < 0) {
+ // initialize phase to the current render time
+ mPhase = time;
+ doFit = true;
+ } else if (!doFit) {
+ int64_t err = periodicError(time - mPhase, mPeriod);
+ doFit = err > mPeriod / kReFitThresholdDiv;
+ }
+
+ if (doFit) {
+ int64_t a, b, err;
+ mRefitAt = time + kRefitRefreshPeriod;
+ fit(mPhase, mPeriod, kMaxSamplesToEstimatePeriod, &a, &b, &err);
+ mPhase += (mPeriod * b) >> kPrecision;
+ mPeriod = (mPeriod * a) >> kPrecision;
+ ALOGV("new phase:%lld period:%lld", (long long)mPhase, (long long)mPeriod);
+
+ if (err < kErrorThreshold) {
+ if (!mPrimed && mSamplesUsedForPriming >= kMinSamplesToStopPrime) {
+ mPrimed = true;
+ }
+ } else {
+ mPrimed = false;
+ mSamplesUsedForPriming = 0;
+ }
+ }
+ }
+ return mPeriod;
+}
+
/* ======================================================================= */
/* Frame Scheduler */
/* ======================================================================= */
@@ -44,7 +343,9 @@
VideoFrameScheduler::VideoFrameScheduler()
: mVsyncTime(0),
mVsyncPeriod(0),
- mVsyncRefreshAt(0) {
+ mVsyncRefreshAt(0),
+ mLastVsyncTime(-1),
+ mTimeCorrection(0) {
}
void VideoFrameScheduler::updateVsync() {
@@ -75,8 +376,20 @@
}
}
-void VideoFrameScheduler::init() {
+void VideoFrameScheduler::init(float videoFps) {
updateVsync();
+
+ mLastVsyncTime = -1;
+ mTimeCorrection = 0;
+
+ mPll.reset(videoFps);
+}
+
+void VideoFrameScheduler::restart() {
+ mLastVsyncTime = -1;
+ mTimeCorrection = 0;
+
+ mPll.restart();
}
nsecs_t VideoFrameScheduler::getVsyncPeriod() {
@@ -110,6 +423,62 @@
// so this effectively becomes a rounding operation (to the _closest_ VSYNC.)
renderTime -= mVsyncPeriod / 2;
+ const nsecs_t videoPeriod = mPll.addSample(origRenderTime);
+ if (videoPeriod > 0) {
+ // Smooth out rendering
+ size_t N = 12;
+ nsecs_t fiveSixthDev =
+ abs(((videoPeriod * 5 + mVsyncPeriod) % (mVsyncPeriod * 6)) - mVsyncPeriod)
+ / (mVsyncPeriod / 100);
+ // use 20 samples if we are doing 5:6 ratio +- 1% (e.g. playing 50Hz on 60Hz)
+ if (fiveSixthDev < 12) { /* 12% / 6 = 2% */
+ N = 20;
+ }
+
+ nsecs_t offset = 0;
+ nsecs_t edgeRemainder = 0;
+ for (size_t i = 1; i <= N; i++) {
+ offset +=
+ (renderTime + mTimeCorrection + videoPeriod * i - mVsyncTime) % mVsyncPeriod;
+ edgeRemainder += (videoPeriod * i) % mVsyncPeriod;
+ }
+ mTimeCorrection += mVsyncPeriod / 2 - offset / N;
+ renderTime += mTimeCorrection;
+ nsecs_t correctionLimit = mVsyncPeriod * 3 / 5;
+ edgeRemainder = abs(edgeRemainder / N - mVsyncPeriod / 2);
+ if (edgeRemainder <= mVsyncPeriod / 3) {
+ correctionLimit /= 2;
+ }
+
+ // estimate how many VSYNCs a frame will spend on the display
+ nsecs_t nextVsyncTime =
+ renderTime + mVsyncPeriod - ((renderTime - mVsyncTime) % mVsyncPeriod);
+ if (mLastVsyncTime >= 0) {
+ size_t minVsyncsPerFrame = videoPeriod / mVsyncPeriod;
+ size_t vsyncsForLastFrame = divRound(nextVsyncTime - mLastVsyncTime, mVsyncPeriod);
+ bool vsyncsPerFrameAreNearlyConstant =
+ periodicError(videoPeriod, mVsyncPeriod) / (mVsyncPeriod / 20) == 0;
+
+ if (mTimeCorrection > correctionLimit &&
+ (vsyncsPerFrameAreNearlyConstant || vsyncsForLastFrame > minVsyncsPerFrame)) {
+ // remove a VSYNC
+ mTimeCorrection -= mVsyncPeriod / 2;
+ renderTime -= mVsyncPeriod / 2;
+ nextVsyncTime -= mVsyncPeriod;
+ --vsyncsForLastFrame;
+ } else if (mTimeCorrection < -correctionLimit &&
+ (vsyncsPerFrameAreNearlyConstant || vsyncsForLastFrame == minVsyncsPerFrame)) {
+ // add a VSYNC
+ mTimeCorrection += mVsyncPeriod / 2;
+ renderTime += mVsyncPeriod / 2;
+ nextVsyncTime += mVsyncPeriod;
+ ++vsyncsForLastFrame;
+ }
+ ATRACE_INT("FRAME_VSYNCS", vsyncsForLastFrame);
+ }
+ mLastVsyncTime = nextVsyncTime;
+ }
+
// align rendertime to the center between VSYNC edges
renderTime -= (renderTime - mVsyncTime) % mVsyncPeriod;
renderTime += mVsyncPeriod / 2;