| /* |
| * Copyright (C) 2017 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| |
| #define LOG_TAG "PerformanceAnalysis" |
| // #define LOG_NDEBUG 0 |
| |
| #include <algorithm> |
| #include <climits> |
| #include <deque> |
| #include <fstream> |
| #include <iostream> |
| #include <math.h> |
| #include <numeric> |
| #include <vector> |
| #include <stdarg.h> |
| #include <stdint.h> |
| #include <stdio.h> |
| #include <string.h> |
| #include <sys/prctl.h> |
| #include <time.h> |
| #include <new> |
| #include <audio_utils/roundup.h> |
| #include <media/nbaio/NBLog.h> |
| #include <media/nbaio/PerformanceAnalysis.h> |
| // #include <utils/CallStack.h> // used to print callstack |
| #include <utils/Log.h> |
| #include <utils/String8.h> |
| |
| #include <queue> |
| #include <utility> |
| |
| namespace android { |
| |
| PerformanceAnalysis::PerformanceAnalysis() { |
| // These variables will be (FIXME) learned from the data |
| kPeriodMs = 4; // typical buffer period (mode) |
| // average number of Ms spent processing buffer |
| kPeriodMsCPU = static_cast<int>(kPeriodMs * kRatio); |
| } |
| |
| // converts a time series into a map. key: buffer period length. value: count |
| static std::map<int, int> buildBuckets(const std::vector<int64_t> &samples) { |
| // TODO allow buckets of variable resolution |
| std::map<int, int> buckets; |
| for (size_t i = 1; i < samples.size(); ++i) { |
| ++buckets[deltaMs(samples[i - 1], samples[i])]; |
| } |
| return buckets; |
| } |
| |
| static int widthOf(int x) { |
| int width = 0; |
| while (x > 0) { |
| ++width; |
| x /= 10; |
| } |
| return width; |
| } |
| |
| // Given a series of audio processing wakeup timestamps, |
| // buckets the time intervals into a histogram, searches for |
| // outliers, analyzes the outlier series for unexpectedly |
| // small or large values and stores these as peaks, and flushes |
| // the timestamp series from memory. |
| void PerformanceAnalysis::processAndFlushTimeStampSeries(int author) { |
| // 1) analyze the series to store all outliers and their exact timestamps: |
| storeOutlierData(mTimeStampSeries[author]); |
| |
| // 2) detect peaks in the outlier series |
| detectPeaks(); |
| |
| // 3) compute its histogram, append this to mRecentHists and erase the time series |
| // FIXME: need to store the timestamp of the beginning of each histogram |
| // FIXME: Restore LOG_HIST_FLUSH to separate histograms at every end-of-stream event |
| // A histogram should not span data between audio off/on timespans |
| mRecentHists.emplace_back(author, buildBuckets(mTimeStampSeries[author])); |
| // do not let mRecentHists exceed capacity |
| // ALOGD("mRecentHists size: %d", static_cast<int>(mRecentHists.size())); |
| if (mRecentHists.size() >= kRecentHistsCapacity) { |
| // ALOGD("popped back mRecentHists"); |
| mRecentHists.pop_front(); |
| } |
| mTimeStampSeries[author].clear(); |
| } |
| |
| // forces short-term histogram storage to avoid adding idle audio time interval |
| // to buffer period data |
| void PerformanceAnalysis::handleStateChange(int author) { |
| ALOGD("handleStateChange"); |
| processAndFlushTimeStampSeries(author); |
| return; |
| } |
| |
| // Takes a single buffer period timestamp entry with author information and stores it |
| // in a temporary series of timestamps. Once the series is full, the data is analyzed, |
| // stored, and emptied. |
| // TODO: decide whether author or file location information is more important to store |
| // for now, only stores author (thread) |
| void PerformanceAnalysis::logTsEntry(int author, int64_t ts) { |
| // TODO might want to filter excessively high outliers, which are usually caused |
| // by the thread being inactive. |
| // Store time series data for each reader in order to bucket it once there |
| // is enough data. Then, write to recentHists as a histogram. |
| mTimeStampSeries[author].push_back(ts); |
| // if length of the time series has reached kShortHistSize samples, |
| // analyze the data and flush the timestamp series from memory |
| if (mTimeStampSeries[author].size() >= kShortHistSize) { |
| processAndFlushTimeStampSeries(author); |
| } |
| } |
| |
| // Given a series of outlier intervals (mOutlier data), |
| // looks for changes in distribution (peaks), which can be either positive or negative. |
| // The function sets the mean to the starting value and sigma to 0, and updates |
| // them as long as no peak is detected. When a value is more than 'threshold' |
| // standard deviations from the mean, a peak is detected and the mean and sigma |
| // are set to the peak value and 0. |
| void PerformanceAnalysis::detectPeaks() { |
| if (mOutlierData.empty()) { |
| ALOGD("peak detector called on empty array"); |
| return; |
| } |
| |
| // compute mean of the distribution. Used to check whether a value is large |
| const double kTypicalDiff = std::accumulate( |
| mOutlierData.begin(), mOutlierData.end(), 0, |
| [](auto &a, auto &b){return a + b.first;}) / mOutlierData.size(); |
| // ALOGD("typicalDiff %f", kTypicalDiff); |
| |
| // iterator at the beginning of a sequence, or updated to the most recent peak |
| std::deque<std::pair<uint64_t, uint64_t>>::iterator start = mOutlierData.begin(); |
| // the mean and standard deviation are updated every time a peak is detected |
| // initialize first time. The mean from the previous sequence is stored |
| // for the next sequence. Here, they are initialized for the first time. |
| if (mPeakDetectorMean < 0) { |
| mPeakDetectorMean = static_cast<double>(start->first); |
| mPeakDetectorSd = 0; |
| } |
| auto sqr = [](auto x){ return x * x; }; |
| for (auto it = mOutlierData.begin(); it != mOutlierData.end(); ++it) { |
| // no surprise occurred: |
| // the new element is a small number of standard deviations from the mean |
| if ((fabs(it->first - mPeakDetectorMean) < kStddevThreshold * mPeakDetectorSd) || |
| // or: right after peak has been detected, the delta is smaller than average |
| (mPeakDetectorSd == 0 && fabs(it->first - mPeakDetectorMean) < kTypicalDiff)) { |
| // update the mean and sd: |
| // count number of elements (distance between start interator and current) |
| const int kN = std::distance(start, it) + 1; |
| // usual formulas for mean and sd |
| mPeakDetectorMean = std::accumulate(start, it + 1, 0.0, |
| [](auto &a, auto &b){return a + b.first;}) / kN; |
| mPeakDetectorSd = sqrt(std::accumulate(start, it + 1, 0.0, |
| [=](auto &a, auto &b){ return a + sqr(b.first - mPeakDetectorMean);})) / |
| ((kN > 1)? kN - 1 : kN); // kN - 1: mean is correlated with variance |
| // ALOGD("value, mean, sd: %f, %f, %f", static_cast<double>(it->first), mean, sd); |
| } |
| // surprising value: store peak timestamp and reset mean, sd, and start iterator |
| else { |
| mPeakTimestamps.emplace_back(it->second); |
| // TODO: remove pop_front once a circular buffer is in place |
| if (mPeakTimestamps.size() >= kShortHistSize) { |
| ALOGD("popped back mPeakTimestamps"); |
| mPeakTimestamps.pop_front(); |
| } |
| mPeakDetectorMean = static_cast<double>(it->first); |
| mPeakDetectorSd = 0; |
| start = it; |
| } |
| } |
| //for (const auto &it : mPeakTimestamps) { |
| // ALOGE("mPeakTimestamps %f", static_cast<double>(it)); |
| //} |
| return; |
| } |
| |
| // Called by LogTsEntry. The input is a vector of timestamps. |
| // Finds outliers and writes to mOutlierdata. |
| // Each value in mOutlierdata consists of: <outlier timestamp, time elapsed since previous outlier>. |
| // e.g. timestamps (ms) 1, 4, 5, 16, 18, 28 will produce pairs (4, 5), (13, 18). |
| // This function is applied to the time series before it is converted into a histogram. |
| void PerformanceAnalysis::storeOutlierData(const std::vector<int64_t> ×tamps) { |
| if (timestamps.size() < 1) { |
| ALOGE("storeOutlierData called on empty vector"); |
| return; |
| } |
| // first pass: need to initialize |
| if (mElapsed == 0) { |
| mPrevNs = timestamps[0]; |
| } |
| for (const auto &ts: timestamps) { |
| const uint64_t diffMs = static_cast<uint64_t>(deltaMs(mPrevNs, ts)); |
| if (diffMs >= static_cast<uint64_t>(kOutlierMs)) { |
| mOutlierData.emplace_back(mElapsed, static_cast<uint64_t>(mPrevNs)); |
| // Remove oldest value if the vector is full |
| // TODO: remove pop_front once circular buffer is in place |
| // FIXME: change kShortHistSize to some other constant. Make sure it is large |
| // enough that data will never be lost before being written to a long-term FIFO |
| if (mOutlierData.size() >= kShortHistSize) { |
| ALOGD("popped back mOutlierData"); |
| mOutlierData.pop_front(); |
| } |
| mElapsed = 0; |
| } |
| mElapsed += diffMs; |
| mPrevNs = ts; |
| } |
| } |
| |
| |
| // FIXME: delete this temporary test code, recycled for various new functions |
| void PerformanceAnalysis::testFunction() { |
| // produces values (4: 5000000), (13: 18000000) |
| // ns timestamps of buffer periods |
| const std::vector<int64_t>kTempTestData = {1000000, 4000000, 5000000, |
| 16000000, 18000000, 28000000}; |
| PerformanceAnalysis::storeOutlierData(kTempTestData); |
| for (const auto &outlier: mOutlierData) { |
| ALOGE("PerformanceAnalysis test %lld: %lld", |
| static_cast<long long>(outlier.first), static_cast<long long>(outlier.second)); |
| } |
| detectPeaks(); |
| } |
| |
| // TODO Make it return a std::string instead of modifying body --> is this still relevant? |
| // FIXME: as can be seen when printing the values, the outlier timestamps typically occur |
| // in the first histogram 35 to 38 indices from the end (most often 35). |
| // TODO consider changing all ints to uint32_t or uint64_t |
| void PerformanceAnalysis::reportPerformance(String8 *body, int maxHeight) { |
| if (mRecentHists.size() < 1) { |
| ALOGD("reportPerformance: mRecentHists is empty"); |
| return; |
| } |
| ALOGD("reportPerformance: hists size %d", static_cast<int>(mRecentHists.size())); |
| // TODO: more elaborate data analysis |
| std::map<int, int> buckets; |
| for (const auto &shortHist: mRecentHists) { |
| for (const auto &countPair : shortHist.second) { |
| buckets[countPair.first] += countPair.second; |
| } |
| } |
| |
| // underscores and spaces length corresponds to maximum width of histogram |
| static const int kLen = 40; |
| std::string underscores(kLen, '_'); |
| std::string spaces(kLen, ' '); |
| |
| auto it = buckets.begin(); |
| int maxDelta = it->first; |
| int maxCount = it->second; |
| // Compute maximum values |
| while (++it != buckets.end()) { |
| if (it->first > maxDelta) { |
| maxDelta = it->first; |
| } |
| if (it->second > maxCount) { |
| maxCount = it->second; |
| } |
| } |
| int height = log2(maxCount) + 1; // maxCount > 0, safe to call log2 |
| const int leftPadding = widthOf(1 << height); |
| const int colWidth = std::max(std::max(widthOf(maxDelta) + 1, 3), leftPadding + 2); |
| int scalingFactor = 1; |
| // scale data if it exceeds maximum height |
| if (height > maxHeight) { |
| scalingFactor = (height + maxHeight) / maxHeight; |
| height /= scalingFactor; |
| } |
| body->appendFormat("\n%*s", leftPadding + 11, "Occurrences"); |
| // write histogram label line with bucket values |
| body->appendFormat("\n%s", " "); |
| body->appendFormat("%*s", leftPadding, " "); |
| for (auto const &x : buckets) { |
| body->appendFormat("%*d", colWidth, x.second); |
| } |
| // write histogram ascii art |
| body->appendFormat("\n%s", " "); |
| for (int row = height * scalingFactor; row >= 0; row -= scalingFactor) { |
| const int value = 1 << row; |
| body->appendFormat("%.*s", leftPadding, spaces.c_str()); |
| for (auto const &x : buckets) { |
| body->appendFormat("%.*s%s", colWidth - 1, spaces.c_str(), x.second < value ? " " : "|"); |
| } |
| body->appendFormat("\n%s", " "); |
| } |
| // print x-axis |
| const int columns = static_cast<int>(buckets.size()); |
| body->appendFormat("%*c", leftPadding, ' '); |
| body->appendFormat("%.*s", (columns + 1) * colWidth, underscores.c_str()); |
| body->appendFormat("\n%s", " "); |
| |
| // write footer with bucket labels |
| body->appendFormat("%*s", leftPadding, " "); |
| for (auto const &x : buckets) { |
| body->appendFormat("%*d", colWidth, x.first); |
| } |
| body->appendFormat("%.*s%s", colWidth, spaces.c_str(), "ms\n"); |
| |
| // Now report glitches |
| body->appendFormat("\ntime elapsed between glitches and glitch timestamps\n"); |
| for (const auto &outlier: mOutlierData) { |
| body->appendFormat("%lld: %lld\n", static_cast<long long>(outlier.first), |
| static_cast<long long>(outlier.second)); |
| } |
| |
| } |
| |
| |
| // Produces a log warning if the timing of recent buffer periods caused a glitch |
| // Computes sum of running window of three buffer periods |
| // Checks whether the buffer periods leave enough CPU time for the next one |
| // e.g. if a buffer period is expected to be 4 ms and a buffer requires 3 ms of CPU time, |
| // here are some glitch cases: |
| // 4 + 4 + 6 ; 5 + 4 + 5; 2 + 2 + 10 |
| // TODO: develop this code to track changes in histogram distribution in addition |
| // to / instead of glitches. |
| void PerformanceAnalysis::alertIfGlitch(const std::vector<int64_t> &samples) { |
| std::deque<int> periods(kNumBuff, kPeriodMs); |
| for (size_t i = 2; i < samples.size(); ++i) { // skip first time entry |
| periods.push_front(deltaMs(samples[i - 1], samples[i])); |
| periods.pop_back(); |
| // TODO: check that all glitch cases are covered |
| if (std::accumulate(periods.begin(), periods.end(), 0) > kNumBuff * kPeriodMs + |
| kPeriodMs - kPeriodMsCPU) { |
| ALOGW("A glitch occurred"); |
| periods.assign(kNumBuff, kPeriodMs); |
| } |
| } |
| return; |
| } |
| |
| } // namespace android |