Eric Laurent | 135ad07 | 2010-05-21 06:05:13 -0700 | [diff] [blame^] | 1 | /* //device/include/server/AudioFlinger/AudioCoefInterpolator.h |
| 2 | ** |
| 3 | ** Copyright 2007, The Android Open Source Project |
| 4 | ** |
| 5 | ** Licensed under the Apache License, Version 2.0 (the "License"); |
| 6 | ** you may not use this file except in compliance with the License. |
| 7 | ** You may obtain a copy of the License at |
| 8 | ** |
| 9 | ** http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | ** |
| 11 | ** Unless required by applicable law or agreed to in writing, software |
| 12 | ** distributed under the License is distributed on an "AS IS" BASIS, |
| 13 | ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 14 | ** See the License for the specific language governing permissions and |
| 15 | ** limitations under the License. |
| 16 | */ |
| 17 | |
| 18 | #ifndef ANDROID_AUDIO_COEF_INTERPOLATOR_H |
| 19 | #define ANDROID_AUDIO_COEF_INTERPOLATOR_H |
| 20 | |
| 21 | #include "AudioCommon.h" |
| 22 | |
| 23 | namespace android { |
| 24 | |
| 25 | // A helper class for linear interpolation of N-D -> M-D coefficient tables. |
| 26 | // This class provides support for out-of-range indexes. |
| 27 | // Details: |
| 28 | // The purpose is efficient approximation of a N-dimensional vector to |
| 29 | // M-dimensional function. The approximation is based on a table of output |
| 30 | // values on a uniform grid of the input values. Values not on the grid are |
| 31 | // linearly interpolated. |
| 32 | // Access to values are done by specifying input values in table index units, |
| 33 | // having an integer and a fractional part, e.g. retrieving a value from index |
| 34 | // 1.4 will result in linear interpolation between index 1 and index 2. |
| 35 | class AudioCoefInterpolator { |
| 36 | public: |
| 37 | // Constructor. |
| 38 | // nInDims Number of input dimensions (limited to MAX_IN_DIMS). |
| 39 | // inDims An array of size nInDims with the size of the table on each |
| 40 | // respective dimension. |
| 41 | // nOutDims Number of output dimensions (limited to MAX_OUT_DIMS). |
| 42 | // table The coefficient table. Should be of size: |
| 43 | // inDims[0]*inDims[1]*...*inDims[nInDims-1]*nOutDims, where |
| 44 | // func([i,j,k]) = table(i,j,k,:) |
| 45 | AudioCoefInterpolator(size_t nInDims, const size_t inDims[], |
| 46 | size_t nOutDims, const audio_coef_t * table); |
| 47 | |
| 48 | // Get the value of the approximated function at a given point. |
| 49 | // intCoord The integer part of the input value. Should be an array of |
| 50 | // size nInDims. |
| 51 | // fracCoord The fractional part of the input value. Should be an array |
| 52 | // of size nInDims. This value is in 32-bit precision. |
| 53 | // out An array for the output value. Should be of size nOutDims. |
| 54 | void getCoef(const int intCoord[], uint32_t fracCoord[], audio_coef_t out[]); |
| 55 | |
| 56 | private: |
| 57 | // Maximum allowed number of input dimensions. |
| 58 | static const size_t MAX_IN_DIMS = 8; |
| 59 | // Maximum allowed number of output dimensions. |
| 60 | static const size_t MAX_OUT_DIMS = 8; |
| 61 | |
| 62 | // Number of input dimensions. |
| 63 | size_t mNumInDims; |
| 64 | // Number of input dimensions. |
| 65 | size_t mInDims[MAX_IN_DIMS]; |
| 66 | // The offset between two consecutive indexes of each dimension. This is in |
| 67 | // fact a cumulative product of mInDims (done in reverse). |
| 68 | size_t mInDimOffsets[MAX_IN_DIMS]; |
| 69 | // Number of output dimensions. |
| 70 | size_t mNumOutDims; |
| 71 | // The coefficient table. |
| 72 | const audio_coef_t * mTable; |
| 73 | |
| 74 | // A recursive function for getting an interpolated coefficient value. |
| 75 | // The recursion depth is the number of input dimensions. |
| 76 | // At each step, we fetch two interpolated values of the current dimension, |
| 77 | // by two recursive calls to this method for the next dimensions. We then |
| 78 | // linearly interpolate these values over the current dimension. |
| 79 | // index The linear integer index of the value we need to interpolate. |
| 80 | // fracCoord A vector of fractional coordinates for each of the input |
| 81 | // dimensions. |
| 82 | // out Where the output should be written. Needs to be of size |
| 83 | // mNumOutDims. |
| 84 | // dim The input dimensions we are currently interpolating. This |
| 85 | // value will be increased on recursive calls. |
| 86 | void getCoefRecurse(size_t index, const uint32_t fracCoord[], |
| 87 | audio_coef_t out[], size_t dim); |
| 88 | |
| 89 | // Scalar interpolation of two data points. |
| 90 | // lo The first data point. |
| 91 | // hi The second data point. |
| 92 | // frac A 32-bit fraction designating the weight of the second point. |
| 93 | static audio_coef_t interp(audio_coef_t lo, audio_coef_t hi, uint32_t frac); |
| 94 | }; |
| 95 | |
| 96 | } |
| 97 | |
| 98 | #endif // ANDROID_AUDIO_COEF_INTERPOLATOR_H |