blob: 3181504b70d6e63d72825f8f53494e80bd1e307d [file] [log] [blame]
Eric Laurent135ad072010-05-21 06:05:13 -07001/*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "EffectReverb"
18//
19#define LOG_NDEBUG 0
20#include <cutils/log.h>
21
22#include <stdbool.h>
23#include "EffectReverb.h"
24#include "EffectsMath.h"
25
26static int gEffectIndex;
27
28// effect_interface_t interface implementation for reverb effect
29const struct effect_interface_s gReverbInterface = {
30 Reverb_Process,
31 Reverb_Command
32};
33
34// Google auxiliary environmental reverb UUID: 1f0ae2e0-4ef7-11df-bc09-0002a5d5c51b
35static const effect_descriptor_t gAuxEnvReverbDescriptor = {
36 {0xc2e5d5f0, 0x94bd, 0x4763, 0x9cac, {0x4e, 0x23, 0x4d, 0x06, 0x83, 0x9e}},
37 {0x1f0ae2e0, 0x4ef7, 0x11df, 0xbc09, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
38 EFFECT_API_VERSION,
39 EFFECT_FLAG_TYPE_AUXILIARY,
40 "Aux Environmental Reverb",
41 "Google Inc."
42};
43
44// Google insert environmental reverb UUID: aa476040-6342-11df-91a4-0002a5d5c51b
45static const effect_descriptor_t gInsertEnvReverbDescriptor = {
46 {0xc2e5d5f0, 0x94bd, 0x4763, 0x9cac, {0x4e, 0x23, 0x4d, 0x06, 0x83, 0x9e}},
47 {0xaa476040, 0x6342, 0x11df, 0x91a4, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
48 EFFECT_API_VERSION,
49 EFFECT_FLAG_TYPE_INSERT | EFFECT_FLAG_INSERT_FIRST,
50 "Insert Environmental reverb",
51 "Google Inc."
52};
53
54// Google auxiliary preset reverb UUID: 63909320-53a6-11df-bdbd-0002a5d5c51b
55static const effect_descriptor_t gAuxPresetReverbDescriptor = {
56 {0x47382d60, 0xddd8, 0x4763, 0x11db, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
57 {0x63909320, 0x53a6, 0x11df, 0xbdbd, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
58 EFFECT_API_VERSION,
59 EFFECT_FLAG_TYPE_AUXILIARY,
60 "Aux Preset Reverb",
61 "Google Inc."
62};
63
64// Google insert preset reverb UUID: d93dc6a0-6342-11df-b128-0002a5d5c51b
65static const effect_descriptor_t gInsertPresetReverbDescriptor = {
66 {0x47382d60, 0xddd8, 0x4763, 0x11db, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
67 {0xd93dc6a0, 0x6342, 0x11df, 0xb128, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
68 EFFECT_API_VERSION,
69 EFFECT_FLAG_TYPE_INSERT | EFFECT_FLAG_INSERT_FIRST,
70 "Insert Preset Reverb",
71 "Google Inc."
72};
73
74// gDescriptors contains pointers to all defined effect descriptor in this library
75static const effect_descriptor_t * const gDescriptors[] = {
76 &gAuxEnvReverbDescriptor,
77 &gInsertEnvReverbDescriptor,
78 &gAuxPresetReverbDescriptor,
79 &gInsertPresetReverbDescriptor,
80 NULL
81};
82
83/*----------------------------------------------------------------------------
84 * Effect API implementation
85 *--------------------------------------------------------------------------*/
86
87/*--- Effect Library Interface Implementation ---*/
88
89int EffectQueryNumberEffects(int *pNumEffects) {
90 *pNumEffects = sizeof(gDescriptors) / sizeof(const effect_descriptor_t *)
91 - 1;
92 gEffectIndex = 0;
93 return 0;
94}
95
96int EffectQueryNext(effect_descriptor_t *pDescriptor) {
97 if (pDescriptor == NULL) {
98 return -EINVAL;
99 }
100 if (gDescriptors[gEffectIndex] == NULL) {
101 return -ENOENT;
102 }
103 memcpy(pDescriptor, gDescriptors[gEffectIndex++],
104 sizeof(effect_descriptor_t));
105 return 0;
106}
107
108int EffectCreate(effect_uuid_t *uuid,
109 effect_interface_t *pInterface) {
110 int ret;
111 int i;
112 reverb_module_t *module;
113 const effect_descriptor_t *desc;
114 int aux = 0;
115 int preset = 0;
116
117 LOGV("EffectLibCreateEffect start");
118
119 if (pInterface == NULL || uuid == NULL) {
120 return -EINVAL;
121 }
122
123 for (i = 0; gDescriptors[i] != NULL; i++) {
124 desc = gDescriptors[i];
125 if (memcmp(uuid, &desc->uuid, sizeof(effect_uuid_t))
126 == 0) {
127 break;
128 }
129 }
130
131 if (gDescriptors[i] == NULL) {
132 return -ENOENT;
133 }
134
135 module = malloc(sizeof(reverb_module_t));
136
137 module->itfe = &gReverbInterface;
138
139 if (memcmp(&desc->type, SL_IID_PRESETREVERB, sizeof(effect_uuid_t)) == 0) {
140 preset = 1;
141 }
142 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
143 aux = 1;
144 }
145 ret = Reverb_Init(module, aux, preset);
146 if (ret < 0) {
147 LOGW("EffectLibCreateEffect() init failed");
148 free(module);
149 return ret;
150 }
151
152 *pInterface = (effect_interface_t) module;
153
154 LOGV("EffectLibCreateEffect %p", module);
155
156 return 0;
157}
158
159int EffectRelease(effect_interface_t interface) {
160 reverb_module_t *pRvbModule = (reverb_module_t *)interface;
161
162 LOGV("EffectLibReleaseEffect %p", interface);
163 if (interface == NULL) {
164 return -EINVAL;
165 }
166
167 free(pRvbModule);
168 return 0;
169}
170
171
172/*--- Effect Control Interface Implementation ---*/
173
174static int Reverb_Process(effect_interface_t self, audio_buffer_t *inBuffer, audio_buffer_t *outBuffer) {
175 reverb_object_t *pReverb;
176 int16_t *pSrc, *pDst;
177 reverb_module_t *pRvbModule = (reverb_module_t *)self;
178
179 if (pRvbModule == NULL) {
180 return -EINVAL;
181 }
182
183 if (inBuffer == NULL || inBuffer->raw == NULL ||
184 outBuffer == NULL || outBuffer->raw == NULL ||
185 inBuffer->frameCount != outBuffer->frameCount) {
186 return -EINVAL;
187 }
188
189 pReverb = (reverb_object_t*) &pRvbModule->context;
190
191 //if bypassed or the preset forces the signal to be completely dry
192 if (pReverb->m_bBypass) {
193 if (inBuffer->raw != outBuffer->raw && !pReverb->m_Aux) {
194 memcpy(outBuffer->raw, inBuffer->raw, outBuffer->frameCount * NUM_OUTPUT_CHANNELS * sizeof(int16_t));
195 }
196 return 0;
197 }
198
199 if (pReverb->m_nNextRoom != pReverb->m_nCurrentRoom) {
200 ReverbUpdateRoom(pReverb, true);
201 }
202
203 pSrc = inBuffer->s16;
204 pDst = outBuffer->s16;
205 size_t numSamples = outBuffer->frameCount;
206 while (numSamples) {
207 uint32_t processedSamples;
208 if (numSamples > (uint32_t) pReverb->m_nUpdatePeriodInSamples) {
209 processedSamples = (uint32_t) pReverb->m_nUpdatePeriodInSamples;
210 } else {
211 processedSamples = numSamples;
212 }
213
214 /* increment update counter */
215 pReverb->m_nUpdateCounter += (int16_t) processedSamples;
216 /* check if update counter needs to be reset */
217 if (pReverb->m_nUpdateCounter >= pReverb->m_nUpdatePeriodInSamples) {
218 /* update interval has elapsed, so reset counter */
219 pReverb->m_nUpdateCounter -= pReverb->m_nUpdatePeriodInSamples;
220 ReverbUpdateXfade(pReverb, pReverb->m_nUpdatePeriodInSamples);
221
222 } /* end if m_nUpdateCounter >= update interval */
223
224 Reverb(pReverb, processedSamples, pDst, pSrc);
225
226 numSamples -= processedSamples;
227 if (pReverb->m_Aux) {
228 pDst += processedSamples;
229 } else {
230 pSrc += processedSamples * NUM_OUTPUT_CHANNELS;
231 }
232 }
233
234 return 0;
235}
236
237static int Reverb_Command(effect_interface_t self, int cmdCode, int cmdSize,
238 void *pCmdData, int *replySize, void *pReplyData) {
239 reverb_module_t *pRvbModule = (reverb_module_t *) self;
240 reverb_object_t *pReverb;
241 int retsize;
242
243 if (pRvbModule == NULL) {
244 return -EINVAL;
245 }
246
247 pReverb = (reverb_object_t*) &pRvbModule->context;
248
249 LOGV("Reverb_Command command %d cmdSize %d",cmdCode, cmdSize);
250
251 switch (cmdCode) {
252 case EFFECT_CMD_INIT:
253 if (pReplyData == NULL || *replySize != sizeof(int)) {
254 return -EINVAL;
255 }
256 *(int *) pReplyData = Reverb_Init(pRvbModule, pReverb->m_Aux, pReverb->m_Preset);
257 break;
258 case EFFECT_CMD_CONFIGURE:
259 if (pCmdData == NULL || cmdSize != sizeof(effect_config_t)
260 || pReplyData == NULL || *replySize != sizeof(int)) {
261 return -EINVAL;
262 }
263 *(int *) pReplyData = Reverb_Configure(pRvbModule,
264 (effect_config_t *)pCmdData, false);
265 break;
266 case EFFECT_CMD_RESET:
267 Reverb_Reset(pReverb, false);
268 break;
269 case EFFECT_CMD_GET_PARAM:
270 LOGV("Reverb_Command EFFECT_CMD_GET_PARAM pCmdData %p, *replySize %d, pReplyData: %p",pCmdData, *replySize, pReplyData);
271
272 if (pCmdData == NULL || cmdSize < (int)(sizeof(effect_param_t) + sizeof(int32_t)) ||
273 pReplyData == NULL || *replySize < (int) sizeof(effect_param_t)) {
274 return -EINVAL;
275 }
276 effect_param_t *rep = (effect_param_t *) pReplyData;
277 memcpy(pReplyData, pCmdData, sizeof(effect_param_t) + sizeof(int32_t));
278 LOGV("Reverb_Command EFFECT_CMD_GET_PARAM param %d, replySize %d",*(int32_t *)rep->data, rep->vsize);
279 rep->status = Reverb_getParameter(pReverb, *(int32_t *)rep->data, &rep->vsize,
280 rep->data + sizeof(int32_t));
281 *replySize = sizeof(effect_param_t) + sizeof(int32_t) + rep->vsize;
282 break;
283 case EFFECT_CMD_SET_PARAM:
284 LOGV("Reverb_Command EFFECT_CMD_SET_PARAM cmdSize %d pCmdData %p, *replySize %d, pReplyData %p",
285 cmdSize, pCmdData, *replySize, pReplyData);
286 if (pCmdData == NULL || (cmdSize < (int)(sizeof(effect_param_t) + sizeof(int32_t)))
287 || pReplyData == NULL || *replySize != (int)sizeof(int32_t)) {
288 return -EINVAL;
289 }
290 effect_param_t *cmd = (effect_param_t *) pCmdData;
291 *(int *)pReplyData = Reverb_setParameter(pReverb, *(int32_t *)cmd->data,
292 cmd->vsize, cmd->data + sizeof(int32_t));
293 break;
294 default:
295 LOGW("Reverb_Command invalid command %d",cmdCode);
296 return -EINVAL;
297 }
298
299 return 0;
300}
301
302
303/*----------------------------------------------------------------------------
304 * Reverb internal functions
305 *--------------------------------------------------------------------------*/
306
307/*----------------------------------------------------------------------------
308 * Reverb_Init()
309 *----------------------------------------------------------------------------
310 * Purpose:
311 * Initialize reverb context and apply default parameters
312 *
313 * Inputs:
314 * pRvbModule - pointer to reverb effect module
315 * aux - indicates if the reverb is used as auxiliary (1) or insert (0)
316 * preset - indicates if the reverb is used in preset (1) or environmental (0) mode
317 *
318 * Outputs:
319 *
320 * Side Effects:
321 *
322 *----------------------------------------------------------------------------
323 */
324
325int Reverb_Init(reverb_module_t *pRvbModule, int aux, int preset) {
326 int ret;
327
328 LOGV("Reverb_Init module %p, aux: %d, preset: %d", pRvbModule,aux, preset);
329
330 memset(&pRvbModule->context, 0, sizeof(reverb_object_t));
331
332 pRvbModule->context.m_Aux = (uint16_t)aux;
333 pRvbModule->context.m_Preset = (uint16_t)preset;
334
335 pRvbModule->config.inputCfg.samplingRate = 44100;
336 if (aux) {
337 pRvbModule->config.inputCfg.channels = CHANNEL_MONO;
338 } else {
339 pRvbModule->config.inputCfg.channels = CHANNEL_STEREO;
340 }
341 pRvbModule->config.inputCfg.format = PCM_FORMAT_S15;
342 pRvbModule->config.inputCfg.bufferProvider.getBuffer = NULL;
343 pRvbModule->config.inputCfg.bufferProvider.releaseBuffer = NULL;
344 pRvbModule->config.inputCfg.bufferProvider.cookie = NULL;
345 pRvbModule->config.inputCfg.accessMode = EFFECT_BUFFER_ACCESS_READ;
346 pRvbModule->config.inputCfg.mask = EFFECT_CONFIG_ALL;
347 pRvbModule->config.outputCfg.samplingRate = 44100;
348 pRvbModule->config.outputCfg.channels = CHANNEL_STEREO;
349 pRvbModule->config.outputCfg.format = PCM_FORMAT_S15;
350 pRvbModule->config.outputCfg.bufferProvider.getBuffer = NULL;
351 pRvbModule->config.outputCfg.bufferProvider.releaseBuffer = NULL;
352 pRvbModule->config.outputCfg.bufferProvider.cookie = NULL;
353 pRvbModule->config.outputCfg.accessMode = EFFECT_BUFFER_ACCESS_ACCUMULATE;
354 pRvbModule->config.outputCfg.mask = EFFECT_CONFIG_ALL;
355
356 ret = Reverb_Configure(pRvbModule, &pRvbModule->config, true);
357 if (ret < 0) {
358 LOGV("Reverb_Init error %d on module %p", ret, pRvbModule);
359 }
360
361 return ret;
362}
363
364/*----------------------------------------------------------------------------
365 * Reverb_Init()
366 *----------------------------------------------------------------------------
367 * Purpose:
368 * Set input and output audio configuration.
369 *
370 * Inputs:
371 * pRvbModule - pointer to reverb effect module
372 * pConfig - pointer to effect_config_t structure containing input
373 * and output audio parameters configuration
374 * init - true if called from init function
375 * Outputs:
376 *
377 * Side Effects:
378 *
379 *----------------------------------------------------------------------------
380 */
381
382int Reverb_Configure(reverb_module_t *pRvbModule, effect_config_t *pConfig,
383 bool init) {
384 reverb_object_t *pReverb = &pRvbModule->context;
385 int bufferSizeInSamples;
386 int updatePeriodInSamples;
387 int xfadePeriodInSamples;
388
389 // Check configuration compatibility with build options
390 if (pConfig->inputCfg.samplingRate
391 != pConfig->outputCfg.samplingRate
392 || pConfig->outputCfg.channels != OUTPUT_CHANNELS
393 || pConfig->inputCfg.format != PCM_FORMAT_S15
394 || pConfig->outputCfg.format != PCM_FORMAT_S15) {
395 LOGV("Reverb_Configure invalid config");
396 return -EINVAL;
397 }
398 if ((pReverb->m_Aux && (pConfig->inputCfg.channels != CHANNEL_MONO)) ||
399 (!pReverb->m_Aux && (pConfig->inputCfg.channels != CHANNEL_STEREO))) {
400 LOGV("Reverb_Configure invalid config");
401 return -EINVAL;
402 }
403
404 memcpy(&pRvbModule->config, pConfig, sizeof(effect_config_t));
405
406 pReverb->m_nSamplingRate = pRvbModule->config.outputCfg.samplingRate;
407
408 switch (pReverb->m_nSamplingRate) {
409 case 8000:
410 pReverb->m_nUpdatePeriodInBits = 5;
411 bufferSizeInSamples = 4096;
412 pReverb->m_nCosWT_5KHz = -23170;
413 break;
414 case 16000:
415 pReverb->m_nUpdatePeriodInBits = 6;
416 bufferSizeInSamples = 8192;
417 pReverb->m_nCosWT_5KHz = -12540;
418 break;
419 case 22050:
420 pReverb->m_nUpdatePeriodInBits = 7;
421 bufferSizeInSamples = 8192;
422 pReverb->m_nCosWT_5KHz = 4768;
423 break;
424 case 32000:
425 pReverb->m_nUpdatePeriodInBits = 7;
426 bufferSizeInSamples = 16384;
427 pReverb->m_nCosWT_5KHz = 18205;
428 break;
429 case 44100:
430 pReverb->m_nUpdatePeriodInBits = 8;
431 bufferSizeInSamples = 16384;
432 pReverb->m_nCosWT_5KHz = 24799;
433 break;
434 case 48000:
435 pReverb->m_nUpdatePeriodInBits = 8;
436 bufferSizeInSamples = 16384;
437 pReverb->m_nCosWT_5KHz = 25997;
438 break;
439 default:
440 LOGV("Reverb_Configure invalid sampling rate %d", pReverb->m_nSamplingRate);
441 return -EINVAL;
442 }
443
444 // Define a mask for circular addressing, so that array index
445 // can wraparound and stay in array boundary of 0, 1, ..., (buffer size -1)
446 // The buffer size MUST be a power of two
447 pReverb->m_nBufferMask = (int32_t) (bufferSizeInSamples - 1);
448 /* reverb parameters are updated every 2^(pReverb->m_nUpdatePeriodInBits) samples */
449 updatePeriodInSamples = (int32_t) (0x1L << pReverb->m_nUpdatePeriodInBits);
450 /*
451 calculate the update counter by bitwise ANDING with this value to
452 generate a 2^n modulo value
453 */
454 pReverb->m_nUpdatePeriodInSamples = (int32_t) updatePeriodInSamples;
455
456 xfadePeriodInSamples = (int32_t) (REVERB_XFADE_PERIOD_IN_SECONDS
457 * (double) pReverb->m_nSamplingRate);
458
459 // set xfade parameters
460 pReverb->m_nPhaseIncrement
461 = (int16_t) (65536 / ((int16_t) xfadePeriodInSamples
462 / (int16_t) updatePeriodInSamples));
463
464 if (init) {
465 ReverbReadInPresets(pReverb);
466
467 // for debugging purposes, allow noise generator
468 pReverb->m_bUseNoise = true;
469
470 // for debugging purposes, allow bypass
471 pReverb->m_bBypass = false;
472
473 pReverb->m_nNextRoom = 1;
474
475 pReverb->m_nNoise = (int16_t) 0xABCD;
476 }
477
478 Reverb_Reset(pReverb, init);
479
480 return 0;
481}
482
483/*----------------------------------------------------------------------------
484 * Reverb_Reset()
485 *----------------------------------------------------------------------------
486 * Purpose:
487 * Reset internal states and clear delay lines.
488 *
489 * Inputs:
490 * pReverb - pointer to reverb context
491 * init - true if called from init function
492 *
493 * Outputs:
494 *
495 * Side Effects:
496 *
497 *----------------------------------------------------------------------------
498 */
499
500void Reverb_Reset(reverb_object_t *pReverb, bool init) {
501 int bufferSizeInSamples = (int32_t) (pReverb->m_nBufferMask + 1);
502 int maxApSamples;
503 int maxDelaySamples;
504 int maxEarlySamples;
505 int ap1In;
506 int delay0In;
507 int delay1In;
508 int32_t i;
509 uint16_t nOffset;
510
511 maxApSamples = ((int32_t) (MAX_AP_TIME * pReverb->m_nSamplingRate) >> 16);
512 maxDelaySamples = ((int32_t) (MAX_DELAY_TIME * pReverb->m_nSamplingRate)
513 >> 16);
514 maxEarlySamples = ((int32_t) (MAX_EARLY_TIME * pReverb->m_nSamplingRate)
515 >> 16);
516
517 ap1In = (AP0_IN + maxApSamples + GUARD);
518 delay0In = (ap1In + maxApSamples + GUARD);
519 delay1In = (delay0In + maxDelaySamples + GUARD);
520 // Define the max offsets for the end points of each section
521 // i.e., we don't expect a given section's taps to go beyond
522 // the following limits
523
524 pReverb->m_nEarly0in = (delay1In + maxDelaySamples + GUARD);
525 pReverb->m_nEarly1in = (pReverb->m_nEarly0in + maxEarlySamples + GUARD);
526
527 pReverb->m_sAp0.m_zApIn = AP0_IN;
528
529 pReverb->m_zD0In = delay0In;
530
531 pReverb->m_sAp1.m_zApIn = ap1In;
532
533 pReverb->m_zD1In = delay1In;
534
535 pReverb->m_zOutLpfL = 0;
536 pReverb->m_zOutLpfR = 0;
537
538 pReverb->m_nRevFbkR = 0;
539 pReverb->m_nRevFbkL = 0;
540
541 // set base index into circular buffer
542 pReverb->m_nBaseIndex = 0;
543
544 // clear the reverb delay line
545 for (i = 0; i < bufferSizeInSamples; i++) {
546 pReverb->m_nDelayLine[i] = 0;
547 }
548
549 ReverbUpdateRoom(pReverb, init);
550
551 pReverb->m_nUpdateCounter = 0;
552
553 pReverb->m_nPhase = -32768;
554
555 pReverb->m_nSin = 0;
556 pReverb->m_nCos = 0;
557 pReverb->m_nSinIncrement = 0;
558 pReverb->m_nCosIncrement = 0;
559
560 // set delay tap lengths
561 nOffset = ReverbCalculateNoise(pReverb);
562
563 pReverb->m_zD1Cross = pReverb->m_nDelay1Out - pReverb->m_nMaxExcursion
564 + nOffset;
565
566 nOffset = ReverbCalculateNoise(pReverb);
567
568 pReverb->m_zD0Cross = pReverb->m_nDelay0Out - pReverb->m_nMaxExcursion
569 - nOffset;
570
571 nOffset = ReverbCalculateNoise(pReverb);
572
573 pReverb->m_zD0Self = pReverb->m_nDelay0Out - pReverb->m_nMaxExcursion
574 - nOffset;
575
576 nOffset = ReverbCalculateNoise(pReverb);
577
578 pReverb->m_zD1Self = pReverb->m_nDelay1Out - pReverb->m_nMaxExcursion
579 + nOffset;
580}
581
582/*----------------------------------------------------------------------------
583 * Reverb_getParameter()
584 *----------------------------------------------------------------------------
585 * Purpose:
586 * Get a Reverb parameter
587 *
588 * Inputs:
589 * pReverb - handle to instance data
590 * param - parameter
591 * pValue - pointer to variable to hold retrieved value
592 * pSize - pointer to value size: maximum size as input
593 *
594 * Outputs:
595 * *pValue updated with parameter value
596 * *pSize updated with actual value size
597 *
598 *
599 * Side Effects:
600 *
601 *----------------------------------------------------------------------------
602 */
603int Reverb_getParameter(reverb_object_t *pReverb, int32_t param, size_t *pSize,
604 void *pValue) {
605 int32_t *pValue32;
606 int16_t *pValue16;
607 t_reverb_properties *pProperties;
608 int32_t i;
609 int32_t temp;
610 int32_t temp2;
611 size_t size;
612
613 if (pReverb->m_Preset && param != REVERB_PARAM_PRESET) {
614 return -EINVAL;
615 }
616 if (!pReverb->m_Preset && param == REVERB_PARAM_PRESET) {
617 return -EINVAL;
618 }
619
620 switch (param) {
621 case REVERB_PARAM_ROOM_LEVEL:
622 case REVERB_PARAM_ROOM_HF_LEVEL:
623 case REVERB_PARAM_DECAY_HF_RATIO:
624 case REVERB_PARAM_REFLECTIONS_LEVEL:
625 case REVERB_PARAM_REVERB_LEVEL:
626 case REVERB_PARAM_DIFFUSION:
627 case REVERB_PARAM_DENSITY:
628 size = sizeof(int16_t);
629 break;
630
631 case REVERB_PARAM_BYPASS:
632 case REVERB_PARAM_PRESET:
633 case REVERB_PARAM_DECAY_TIME:
634 case REVERB_PARAM_REFLECTIONS_DELAY:
635 case REVERB_PARAM_REVERB_DELAY:
636 size = sizeof(int32_t);
637 break;
638
639 case REVERB_PARAM_PROPERTIES:
640 size = sizeof(t_reverb_properties);
641 break;
642
643 default:
644 return -EINVAL;
645 }
646
647 if (*pSize < size) {
648 return -EINVAL;
649 }
650 *pSize = size;
651 pValue32 = (int32_t *) pValue;
652 pValue16 = (int16_t *) pValue;
653 pProperties = (t_reverb_properties *) pValue;
654
655 switch (param) {
656 case REVERB_PARAM_BYPASS:
657 *(int32_t *) pValue = (int32_t) pReverb->m_bBypass;
658 break;
659 case REVERB_PARAM_PRESET:
660 *(int32_t *) pValue = (int8_t) pReverb->m_nCurrentRoom;
661 break;
662
663 case REVERB_PARAM_PROPERTIES:
664 pValue16 = &pProperties->roomLevel;
665 /* FALL THROUGH */
666
667 case REVERB_PARAM_ROOM_LEVEL:
668 // Convert m_nRoomLpfFwd to millibels
669 temp = (pReverb->m_nRoomLpfFwd << 15)
670 / (32767 - pReverb->m_nRoomLpfFbk);
671 *pValue16 = Effects_Linear16ToMillibels(temp);
672
673 LOGV("get REVERB_PARAM_ROOM_LEVEL %d, gain %d, m_nRoomLpfFwd %d, m_nRoomLpfFbk %d", *pValue16, temp, pReverb->m_nRoomLpfFwd, pReverb->m_nRoomLpfFbk);
674
675 if (param == REVERB_PARAM_ROOM_LEVEL) {
676 break;
677 }
678 pValue16 = &pProperties->roomHFLevel;
679 /* FALL THROUGH */
680
681 case REVERB_PARAM_ROOM_HF_LEVEL:
682 // The ratio between linear gain at 0Hz and at 5000Hz for the room low pass is:
683 // (1 + a1) / sqrt(a1^2 + 2*C*a1 + 1) where:
684 // - a1 is minus the LP feedback gain: -pReverb->m_nRoomLpfFbk
685 // - C is cos(2piWT) @ 5000Hz: pReverb->m_nCosWT_5KHz
686
687 temp = MULT_EG1_EG1(pReverb->m_nRoomLpfFbk, pReverb->m_nRoomLpfFbk);
688 LOGV("get REVERB_PARAM_ROOM_HF_LEVEL, a1^2 %d", temp);
689 temp2 = MULT_EG1_EG1(pReverb->m_nRoomLpfFbk, pReverb->m_nCosWT_5KHz)
690 << 1;
691 LOGV("get REVERB_PARAM_ROOM_HF_LEVEL, 2 Cos a1 %d", temp2);
692 temp = 32767 + temp - temp2;
693 LOGV("get REVERB_PARAM_ROOM_HF_LEVEL, a1^2 + 2 Cos a1 + 1 %d", temp);
694 temp = Effects_Sqrt(temp) * 181;
695 LOGV("get REVERB_PARAM_ROOM_HF_LEVEL, SQRT(a1^2 + 2 Cos a1 + 1) %d", temp);
696 temp = ((32767 - pReverb->m_nRoomLpfFbk) << 15) / temp;
697
698 LOGV("get REVERB_PARAM_ROOM_HF_LEVEL, gain %d, m_nRoomLpfFwd %d, m_nRoomLpfFbk %d", temp, pReverb->m_nRoomLpfFwd, pReverb->m_nRoomLpfFbk);
699
700 *pValue16 = Effects_Linear16ToMillibels(temp);
701
702 if (param == REVERB_PARAM_ROOM_HF_LEVEL) {
703 break;
704 }
705 pValue32 = &pProperties->decayTime;
706 /* FALL THROUGH */
707
708 case REVERB_PARAM_DECAY_TIME:
709 // Calculate reverb feedback path gain
710 temp = (pReverb->m_nRvbLpfFwd << 15) / (32767 - pReverb->m_nRvbLpfFbk);
711 temp = Effects_Linear16ToMillibels(temp);
712
713 // Calculate decay time: g = -6000 d/DT , g gain in millibels, d reverb delay, DT decay time
714 temp = (-6000 * pReverb->m_nLateDelay) / temp;
715
716 // Convert samples to ms
717 *pValue32 = (temp * 1000) / pReverb->m_nSamplingRate;
718
719 LOGV("get REVERB_PARAM_DECAY_TIME, samples %d, ms %d", temp, *pValue32);
720
721 if (param == REVERB_PARAM_DECAY_TIME) {
722 break;
723 }
724 pValue16 = &pProperties->decayHFRatio;
725 /* FALL THROUGH */
726
727 case REVERB_PARAM_DECAY_HF_RATIO:
728 // If r is the decay HF ratio (r = REVERB_PARAM_DECAY_HF_RATIO/1000) we have:
729 // DT_5000Hz = DT_0Hz * r
730 // and G_5000Hz = -6000 * d / DT_5000Hz and G_0Hz = -6000 * d / DT_0Hz in millibels so :
731 // r = G_0Hz/G_5000Hz in millibels
732 // The linear gain at 5000Hz is b0 / sqrt(a1^2 + 2*C*a1 + 1) where:
733 // - a1 is minus the LP feedback gain: -pReverb->m_nRvbLpfFbk
734 // - b0 is the LP forward gain: pReverb->m_nRvbLpfFwd
735 // - C is cos(2piWT) @ 5000Hz: pReverb->m_nCosWT_5KHz
736 if (pReverb->m_nRvbLpfFbk == 0) {
737 *pValue16 = 1000;
738 LOGV("get REVERB_PARAM_DECAY_HF_RATIO, pReverb->m_nRvbLpfFbk == 0, ratio %d", *pValue16);
739 } else {
740 temp = MULT_EG1_EG1(pReverb->m_nRvbLpfFbk, pReverb->m_nRvbLpfFbk);
741 temp2 = MULT_EG1_EG1(pReverb->m_nRvbLpfFbk, pReverb->m_nCosWT_5KHz)
742 << 1;
743 temp = 32767 + temp - temp2;
744 temp = Effects_Sqrt(temp) * 181;
745 temp = (pReverb->m_nRvbLpfFwd << 15) / temp;
746 // The linear gain at 0Hz is b0 / (a1 + 1)
747 temp2 = (pReverb->m_nRvbLpfFwd << 15) / (32767
748 - pReverb->m_nRvbLpfFbk);
749
750 temp = Effects_Linear16ToMillibels(temp);
751 temp2 = Effects_Linear16ToMillibels(temp2);
752 LOGV("get REVERB_PARAM_DECAY_HF_RATIO, gain 5KHz %d mB, gain DC %d mB", temp, temp2);
753
754 if (temp == 0)
755 temp = 1;
756 temp = (int16_t) ((1000 * temp2) / temp);
757 if (temp > 1000)
758 temp = 1000;
759
760 *pValue16 = temp;
761 LOGV("get REVERB_PARAM_DECAY_HF_RATIO, ratio %d", *pValue16);
762 }
763
764 if (param == REVERB_PARAM_DECAY_HF_RATIO) {
765 break;
766 }
767 pValue16 = &pProperties->reflectionsLevel;
768 /* FALL THROUGH */
769
770 case REVERB_PARAM_REFLECTIONS_LEVEL:
771 *pValue16 = Effects_Linear16ToMillibels(pReverb->m_nEarlyGain);
772
773 LOGV("get REVERB_PARAM_REFLECTIONS_LEVEL, %d", *pValue16);
774 if (param == REVERB_PARAM_REFLECTIONS_LEVEL) {
775 break;
776 }
777 pValue32 = &pProperties->reflectionsDelay;
778 /* FALL THROUGH */
779
780 case REVERB_PARAM_REFLECTIONS_DELAY:
781 // convert samples to ms
782 *pValue32 = (pReverb->m_nEarlyDelay * 1000) / pReverb->m_nSamplingRate;
783
784 LOGV("get REVERB_PARAM_REFLECTIONS_DELAY, samples %d, ms %d", pReverb->m_nEarlyDelay, *pValue32);
785
786 if (param == REVERB_PARAM_REFLECTIONS_DELAY) {
787 break;
788 }
789 pValue16 = &pProperties->reverbLevel;
790 /* FALL THROUGH */
791
792 case REVERB_PARAM_REVERB_LEVEL:
793 // Convert linear gain to millibels
794 *pValue16 = Effects_Linear16ToMillibels(pReverb->m_nLateGain << 2);
795
796 LOGV("get REVERB_PARAM_REVERB_LEVEL %d", *pValue16);
797
798 if (param == REVERB_PARAM_REVERB_LEVEL) {
799 break;
800 }
801 pValue32 = &pProperties->reverbDelay;
802 /* FALL THROUGH */
803
804 case REVERB_PARAM_REVERB_DELAY:
805 // convert samples to ms
806 *pValue32 = (pReverb->m_nLateDelay * 1000) / pReverb->m_nSamplingRate;
807
808 LOGV("get REVERB_PARAM_REVERB_DELAY, samples %d, ms %d", pReverb->m_nLateDelay, *pValue32);
809
810 if (param == REVERB_PARAM_REVERB_DELAY) {
811 break;
812 }
813 pValue16 = &pProperties->diffusion;
814 /* FALL THROUGH */
815
816 case REVERB_PARAM_DIFFUSION:
817 temp = (int16_t) ((1000 * (pReverb->m_sAp0.m_nApGain - AP0_GAIN_BASE))
818 / AP0_GAIN_RANGE);
819
820 if (temp < 0)
821 temp = 0;
822 if (temp > 1000)
823 temp = 1000;
824
825 *pValue16 = temp;
826 LOGV("get REVERB_PARAM_DIFFUSION, %d, AP0 gain %d", *pValue16, pReverb->m_sAp0.m_nApGain);
827
828 if (param == REVERB_PARAM_DIFFUSION) {
829 break;
830 }
831 pValue16 = &pProperties->density;
832 /* FALL THROUGH */
833
834 case REVERB_PARAM_DENSITY:
835 // Calculate AP delay in time units
836 temp = ((pReverb->m_sAp0.m_zApOut - pReverb->m_sAp0.m_zApIn) << 16)
837 / pReverb->m_nSamplingRate;
838
839 temp = (int16_t) ((1000 * (temp - AP0_TIME_BASE)) / AP0_TIME_RANGE);
840
841 if (temp < 0)
842 temp = 0;
843 if (temp > 1000)
844 temp = 1000;
845
846 *pValue16 = temp;
847
848 LOGV("get REVERB_PARAM_DENSITY, %d, AP0 delay smps %d", *pValue16, pReverb->m_sAp0.m_zApOut - pReverb->m_sAp0.m_zApIn);
849 break;
850
851 default:
852 break;
853 }
854
855 LOGV("Reverb_getParameter, context %p, param %d, value %d",
856 pReverb, param, *(int *)pValue);
857
858 return 0;
859} /* end Reverb_getParameter */
860
861/*----------------------------------------------------------------------------
862 * Reverb_setParameter()
863 *----------------------------------------------------------------------------
864 * Purpose:
865 * Set a Reverb parameter
866 *
867 * Inputs:
868 * pReverb - handle to instance data
869 * param - parameter
870 * pValue - pointer to parameter value
871 * size - value size
872 *
873 * Outputs:
874 *
875 *
876 * Side Effects:
877 *
878 *----------------------------------------------------------------------------
879 */
880int Reverb_setParameter(reverb_object_t *pReverb, int32_t param, size_t size,
881 void *pValue) {
882 int32_t value32;
883 int16_t value16;
884 t_reverb_properties *pProperties;
885 int32_t i;
886 int32_t temp;
887 int32_t temp2;
888 reverb_preset_t *pPreset;
889 int maxSamples;
890 int32_t averageDelay;
891 size_t paramSize;
892
893 LOGV("Reverb_setParameter, context %p, param %d, value16 %d, value32 %d",
894 pReverb, param, *(int16_t *)pValue, *(int32_t *)pValue);
895
896 if (pReverb->m_Preset && param != REVERB_PARAM_PRESET) {
897 return -EINVAL;
898 }
899 if (!pReverb->m_Preset && param == REVERB_PARAM_PRESET) {
900 return -EINVAL;
901 }
902
903 switch (param) {
904 case REVERB_PARAM_ROOM_LEVEL:
905 case REVERB_PARAM_ROOM_HF_LEVEL:
906 case REVERB_PARAM_DECAY_HF_RATIO:
907 case REVERB_PARAM_REFLECTIONS_LEVEL:
908 case REVERB_PARAM_REVERB_LEVEL:
909 case REVERB_PARAM_DIFFUSION:
910 case REVERB_PARAM_DENSITY:
911 paramSize = sizeof(int16_t);
912 break;
913
914 case REVERB_PARAM_BYPASS:
915 case REVERB_PARAM_PRESET:
916 case REVERB_PARAM_DECAY_TIME:
917 case REVERB_PARAM_REFLECTIONS_DELAY:
918 case REVERB_PARAM_REVERB_DELAY:
919 paramSize = sizeof(int32_t);
920 break;
921
922 case REVERB_PARAM_PROPERTIES:
923 paramSize = sizeof(t_reverb_properties);
924 break;
925
926 default:
927 return -EINVAL;
928 }
929
930 if (size != paramSize) {
931 return -EINVAL;
932 }
933
934 if (paramSize == sizeof(int16_t)) {
935 value16 = *(int16_t *) pValue;
936 } else if (paramSize == sizeof(int32_t)) {
937 value32 = *(int32_t *) pValue;
938 } else {
939 pProperties = (t_reverb_properties *) pValue;
940 }
941
942 pPreset = &pReverb->m_sPreset.m_sPreset[pReverb->m_nCurrentRoom];
943
944 switch (param) {
945 case REVERB_PARAM_BYPASS:
946 pReverb->m_bBypass = (uint16_t)value32;
947 break;
948 case REVERB_PARAM_PRESET:
949 if (value32 != REVERB_PRESET_LARGE_HALL && value32
950 != REVERB_PRESET_HALL && value32 != REVERB_PRESET_CHAMBER
951 && value32 != REVERB_PRESET_ROOM)
952 return -EINVAL;
953 pReverb->m_nNextRoom = (int16_t) value32;
954 break;
955
956 case REVERB_PARAM_PROPERTIES:
957 value16 = pProperties->roomLevel;
958 /* FALL THROUGH */
959
960 case REVERB_PARAM_ROOM_LEVEL:
961 // Convert millibels to linear 16 bit signed => m_nRoomLpfFwd
962 if (value16 > 0)
963 return -EINVAL;
964
965 temp = Effects_MillibelsToLinear16(value16);
966
967 pReverb->m_nRoomLpfFwd
968 = MULT_EG1_EG1(temp, (32767 - pReverb->m_nRoomLpfFbk));
969
970 LOGV("REVERB_PARAM_ROOM_LEVEL, gain %d, new m_nRoomLpfFwd %d, m_nRoomLpfFbk %d", temp, pReverb->m_nRoomLpfFwd, pReverb->m_nRoomLpfFbk);
971 if (param == REVERB_PARAM_ROOM_LEVEL)
972 break;
973 value16 = pProperties->roomHFLevel;
974 /* FALL THROUGH */
975
976 case REVERB_PARAM_ROOM_HF_LEVEL:
977
978 // Limit to 0 , -40dB range because of low pass implementation
979 if (value16 > 0 || value16 < -4000)
980 return -EINVAL;
981 // Convert attenuation @ 5000H expressed in millibels to => m_nRoomLpfFbk
982 // m_nRoomLpfFbk is -a1 where a1 is the solution of:
983 // a1^2 + 2*(C-dG^2)/(1-dG^2)*a1 + 1 = 0 where:
984 // - C is cos(2*pi*5000/Fs) (pReverb->m_nCosWT_5KHz)
985 // - dG is G0/Gf (G0 is the linear gain at DC and Gf is the wanted gain at 5000Hz)
986
987 // Save current DC gain m_nRoomLpfFwd / (32767 - m_nRoomLpfFbk) to keep it unchanged
988 // while changing HF level
989 temp2 = (pReverb->m_nRoomLpfFwd << 15) / (32767
990 - pReverb->m_nRoomLpfFbk);
991 if (value16 == 0) {
992 pReverb->m_nRoomLpfFbk = 0;
993 } else {
994 int32_t dG2, b, delta;
995
996 // dG^2
997 temp = Effects_MillibelsToLinear16(value16);
998 LOGV("REVERB_PARAM_ROOM_HF_LEVEL, HF gain %d", temp);
999 temp = (1 << 30) / temp;
1000 LOGV("REVERB_PARAM_ROOM_HF_LEVEL, 1/ HF gain %d", temp);
1001 dG2 = (int32_t) (((int64_t) temp * (int64_t) temp) >> 15);
1002 LOGV("REVERB_PARAM_ROOM_HF_LEVEL, 1/ HF gain ^ 2 %d", dG2);
1003 // b = 2*(C-dG^2)/(1-dG^2)
1004 b = (int32_t) ((((int64_t) 1 << (15 + 1))
1005 * ((int64_t) pReverb->m_nCosWT_5KHz - (int64_t) dG2))
1006 / ((int64_t) 32767 - (int64_t) dG2));
1007
1008 // delta = b^2 - 4
1009 delta = (int32_t) ((((int64_t) b * (int64_t) b) >> 15) - (1 << (15
1010 + 2)));
1011
1012 LOGV_IF(delta > (1<<30), " delta overflow %d", delta);
1013
1014 LOGV("REVERB_PARAM_ROOM_HF_LEVEL, dG2 %d, b %d, delta %d, m_nCosWT_5KHz %d", dG2, b, delta, pReverb->m_nCosWT_5KHz);
1015 // m_nRoomLpfFbk = -a1 = - (- b + sqrt(delta)) / 2
1016 pReverb->m_nRoomLpfFbk = (b - Effects_Sqrt(delta) * 181) >> 1;
1017 }
1018 LOGV("REVERB_PARAM_ROOM_HF_LEVEL, olg DC gain %d new m_nRoomLpfFbk %d, old m_nRoomLpfFwd %d",
1019 temp2, pReverb->m_nRoomLpfFbk, pReverb->m_nRoomLpfFwd);
1020
1021 pReverb->m_nRoomLpfFwd
1022 = MULT_EG1_EG1(temp2, (32767 - pReverb->m_nRoomLpfFbk));
1023 LOGV("REVERB_PARAM_ROOM_HF_LEVEL, new m_nRoomLpfFwd %d", pReverb->m_nRoomLpfFwd);
1024
1025 if (param == REVERB_PARAM_ROOM_HF_LEVEL)
1026 break;
1027 value32 = pProperties->decayTime;
1028 /* FALL THROUGH */
1029
1030 case REVERB_PARAM_DECAY_TIME:
1031
1032 // Convert milliseconds to => m_nRvbLpfFwd (function of m_nRvbLpfFbk)
1033 // convert ms to samples
1034 value32 = (value32 * pReverb->m_nSamplingRate) / 1000;
1035 // calculate valid decay time range as a function of current reverb delay and
1036 // max feed back gain. Min value <=> -40dB in one pass, Max value <=> feedback gain = -1 dB
1037 // Calculate attenuation for each round in late reverb given a total attenuation of -6000 millibels.
1038 // g = -6000 d/DT , g gain in millibels, d reverb delay, DT decay time
1039 averageDelay = pReverb->m_nLateDelay - pReverb->m_nMaxExcursion;
1040 averageDelay += ((pReverb->m_sAp0.m_zApOut - pReverb->m_sAp0.m_zApIn)
1041 + (pReverb->m_sAp1.m_zApOut - pReverb->m_sAp1.m_zApIn)) >> 1;
1042
1043 temp = (-6000 * averageDelay) / value32;
1044 LOGV("REVERB_PARAM_DECAY_TIME, delay smps %d, DT smps %d, gain mB %d",averageDelay, value32, temp);
1045 if (temp < -4000 || temp > -100)
1046 return -EINVAL;
1047
1048 // calculate low pass gain by adding reverb input attenuation (pReverb->m_nLateGain) and substrating output
1049 // xfade and sum gain (max +9dB)
1050 temp -= Effects_Linear16ToMillibels(pReverb->m_nLateGain) + 900;
1051 temp = Effects_MillibelsToLinear16(temp);
1052
1053 // DC gain (temp) = b0 / (1 + a1) = pReverb->m_nRvbLpfFwd / (32767 - pReverb->m_nRvbLpfFbk)
1054 pReverb->m_nRvbLpfFwd
1055 = MULT_EG1_EG1(temp, (32767 - pReverb->m_nRvbLpfFbk));
1056
1057 LOGV("REVERB_PARAM_DECAY_TIME, gain %d, new m_nRvbLpfFwd %d, old m_nRvbLpfFbk %d, reverb gain %d", temp, pReverb->m_nRvbLpfFwd, pReverb->m_nRvbLpfFbk, Effects_Linear16ToMillibels(pReverb->m_nLateGain));
1058
1059 if (param == REVERB_PARAM_DECAY_TIME)
1060 break;
1061 value16 = pProperties->decayHFRatio;
1062 /* FALL THROUGH */
1063
1064 case REVERB_PARAM_DECAY_HF_RATIO:
1065
1066 // We limit max value to 1000 because reverb filter is lowpass only
1067 if (value16 < 100 || value16 > 1000)
1068 return -EINVAL;
1069 // Convert per mille to => m_nLpfFwd, m_nLpfFbk
1070
1071 // Save current DC gain m_nRoomLpfFwd / (32767 - m_nRoomLpfFbk) to keep it unchanged
1072 // while changing HF level
1073 temp2 = (pReverb->m_nRvbLpfFwd << 15) / (32767 - pReverb->m_nRvbLpfFbk);
1074
1075 if (value16 == 1000) {
1076 pReverb->m_nRvbLpfFbk = 0;
1077 } else {
1078 int32_t dG2, b, delta;
1079
1080 temp = Effects_Linear16ToMillibels(temp2);
1081 // G_5000Hz = G_DC * (1000/REVERB_PARAM_DECAY_HF_RATIO) in millibels
1082
1083 value32 = ((int32_t) 1000 << 15) / (int32_t) value16;
1084 LOGV("REVERB_PARAM_DECAY_HF_RATIO, DC gain %d, DC gain mB %d, 1000/R %d", temp2, temp, value32);
1085
1086 temp = (int32_t) (((int64_t) temp * (int64_t) value32) >> 15);
1087
1088 if (temp < -4000) {
1089 LOGV("REVERB_PARAM_DECAY_HF_RATIO HF gain overflow %d mB", temp);
1090 temp = -4000;
1091 }
1092
1093 temp = Effects_MillibelsToLinear16(temp);
1094 LOGV("REVERB_PARAM_DECAY_HF_RATIO, HF gain %d", temp);
1095 // dG^2
1096 temp = (temp2 << 15) / temp;
1097 dG2 = (int32_t) (((int64_t) temp * (int64_t) temp) >> 15);
1098
1099 // b = 2*(C-dG^2)/(1-dG^2)
1100 b = (int32_t) ((((int64_t) 1 << (15 + 1))
1101 * ((int64_t) pReverb->m_nCosWT_5KHz - (int64_t) dG2))
1102 / ((int64_t) 32767 - (int64_t) dG2));
1103
1104 // delta = b^2 - 4
1105 delta = (int32_t) ((((int64_t) b * (int64_t) b) >> 15) - (1 << (15
1106 + 2)));
1107
1108 // m_nRoomLpfFbk = -a1 = - (- b + sqrt(delta)) / 2
1109 pReverb->m_nRvbLpfFbk = (b - Effects_Sqrt(delta) * 181) >> 1;
1110
1111 LOGV("REVERB_PARAM_DECAY_HF_RATIO, dG2 %d, b %d, delta %d", dG2, b, delta);
1112
1113 }
1114
1115 LOGV("REVERB_PARAM_DECAY_HF_RATIO, gain %d, m_nRvbLpfFbk %d, m_nRvbLpfFwd %d", temp2, pReverb->m_nRvbLpfFbk, pReverb->m_nRvbLpfFwd);
1116
1117 pReverb->m_nRvbLpfFwd
1118 = MULT_EG1_EG1(temp2, (32767 - pReverb->m_nRvbLpfFbk));
1119
1120 if (param == REVERB_PARAM_DECAY_HF_RATIO)
1121 break;
1122 value16 = pProperties->reflectionsLevel;
1123 /* FALL THROUGH */
1124
1125 case REVERB_PARAM_REFLECTIONS_LEVEL:
1126 // We limit max value to 0 because gain is limited to 0dB
1127 if (value16 > 0 || value16 < -6000)
1128 return -EINVAL;
1129
1130 // Convert millibels to linear 16 bit signed and recompute m_sEarlyL.m_nGain[i] and m_sEarlyR.m_nGain[i].
1131 value16 = Effects_MillibelsToLinear16(value16);
1132 for (i = 0; i < REVERB_MAX_NUM_REFLECTIONS; i++) {
1133 pReverb->m_sEarlyL.m_nGain[i]
1134 = MULT_EG1_EG1(pPreset->m_sEarlyL.m_nGain[i],value16);
1135 pReverb->m_sEarlyR.m_nGain[i]
1136 = MULT_EG1_EG1(pPreset->m_sEarlyR.m_nGain[i],value16);
1137 }
1138 pReverb->m_nEarlyGain = value16;
1139 LOGV("REVERB_PARAM_REFLECTIONS_LEVEL, m_nEarlyGain %d", pReverb->m_nEarlyGain);
1140
1141 if (param == REVERB_PARAM_REFLECTIONS_LEVEL)
1142 break;
1143 value32 = pProperties->reflectionsDelay;
1144 /* FALL THROUGH */
1145
1146 case REVERB_PARAM_REFLECTIONS_DELAY:
1147 // We limit max value MAX_EARLY_TIME
1148 // convert ms to time units
1149 temp = (value32 * 65536) / 1000;
1150 if (temp < 0 || temp > MAX_EARLY_TIME)
1151 return -EINVAL;
1152
1153 maxSamples = (int32_t) (MAX_EARLY_TIME * pReverb->m_nSamplingRate)
1154 >> 16;
1155 temp = (temp * pReverb->m_nSamplingRate) >> 16;
1156 for (i = 0; i < REVERB_MAX_NUM_REFLECTIONS; i++) {
1157 temp2 = temp + (((int32_t) pPreset->m_sEarlyL.m_zDelay[i]
1158 * pReverb->m_nSamplingRate) >> 16);
1159 if (temp2 > maxSamples)
1160 temp2 = maxSamples;
1161 pReverb->m_sEarlyL.m_zDelay[i] = pReverb->m_nEarly0in + temp2;
1162 temp2 = temp + (((int32_t) pPreset->m_sEarlyR.m_zDelay[i]
1163 * pReverb->m_nSamplingRate) >> 16);
1164 if (temp2 > maxSamples)
1165 temp2 = maxSamples;
1166 pReverb->m_sEarlyR.m_zDelay[i] = pReverb->m_nEarly1in + temp2;
1167 }
1168 pReverb->m_nEarlyDelay = temp;
1169
1170 LOGV("REVERB_PARAM_REFLECTIONS_DELAY, m_nEarlyDelay smps %d max smp delay %d", pReverb->m_nEarlyDelay, maxSamples);
1171
1172 // Convert milliseconds to sample count => m_nEarlyDelay
1173 if (param == REVERB_PARAM_REFLECTIONS_DELAY)
1174 break;
1175 value16 = pProperties->reverbLevel;
1176 /* FALL THROUGH */
1177
1178 case REVERB_PARAM_REVERB_LEVEL:
1179 // We limit max value to 0 because gain is limited to 0dB
1180 if (value16 > 0 || value16 < -6000)
1181 return -EINVAL;
1182 // Convert millibels to linear 16 bits (gange 0 - 8191) => m_nLateGain.
1183 pReverb->m_nLateGain = Effects_MillibelsToLinear16(value16) >> 2;
1184
1185 LOGV("REVERB_PARAM_REVERB_LEVEL, m_nLateGain %d", pReverb->m_nLateGain);
1186
1187 if (param == REVERB_PARAM_REVERB_LEVEL)
1188 break;
1189 value32 = pProperties->reverbDelay;
1190 /* FALL THROUGH */
1191
1192 case REVERB_PARAM_REVERB_DELAY:
1193 // We limit max value to MAX_DELAY_TIME
1194 // convert ms to time units
1195 temp = (value32 * 65536) / 1000;
1196 if (temp < 0 || temp > MAX_DELAY_TIME)
1197 return -EINVAL;
1198
1199 maxSamples = (int32_t) (MAX_DELAY_TIME * pReverb->m_nSamplingRate)
1200 >> 16;
1201 temp = (temp * pReverb->m_nSamplingRate) >> 16;
1202 if ((temp + pReverb->m_nMaxExcursion) > maxSamples) {
1203 temp = maxSamples - pReverb->m_nMaxExcursion;
1204 }
1205 if (temp < pReverb->m_nMaxExcursion) {
1206 temp = pReverb->m_nMaxExcursion;
1207 }
1208
1209 temp -= pReverb->m_nLateDelay;
1210 pReverb->m_nDelay0Out += temp;
1211 pReverb->m_nDelay1Out += temp;
1212 pReverb->m_nLateDelay += temp;
1213
1214 LOGV("REVERB_PARAM_REVERB_DELAY, m_nLateDelay smps %d max smp delay %d", pReverb->m_nLateDelay, maxSamples);
1215
1216 // Convert milliseconds to sample count => m_nDelay1Out + m_nMaxExcursion
1217 if (param == REVERB_PARAM_REVERB_DELAY)
1218 break;
1219
1220 value16 = pProperties->diffusion;
1221 /* FALL THROUGH */
1222
1223 case REVERB_PARAM_DIFFUSION:
1224 if (value16 < 0 || value16 > 1000)
1225 return -EINVAL;
1226
1227 // Convert per mille to m_sAp0.m_nApGain, m_sAp1.m_nApGain
1228 pReverb->m_sAp0.m_nApGain = AP0_GAIN_BASE + ((int32_t) value16
1229 * AP0_GAIN_RANGE) / 1000;
1230 pReverb->m_sAp1.m_nApGain = AP1_GAIN_BASE + ((int32_t) value16
1231 * AP1_GAIN_RANGE) / 1000;
1232
1233 LOGV("REVERB_PARAM_DIFFUSION, m_sAp0.m_nApGain %d m_sAp1.m_nApGain %d", pReverb->m_sAp0.m_nApGain, pReverb->m_sAp1.m_nApGain);
1234
1235 if (param == REVERB_PARAM_DIFFUSION)
1236 break;
1237
1238 value16 = pProperties->density;
1239 /* FALL THROUGH */
1240
1241 case REVERB_PARAM_DENSITY:
1242 if (value16 < 0 || value16 > 1000)
1243 return -EINVAL;
1244
1245 // Convert per mille to m_sAp0.m_zApOut, m_sAp1.m_zApOut
1246 maxSamples = (int32_t) (MAX_AP_TIME * pReverb->m_nSamplingRate) >> 16;
1247
1248 temp = AP0_TIME_BASE + ((int32_t) value16 * AP0_TIME_RANGE) / 1000;
1249 /*lint -e{702} shift for performance */
1250 temp = (temp * pReverb->m_nSamplingRate) >> 16;
1251 if (temp > maxSamples)
1252 temp = maxSamples;
1253 pReverb->m_sAp0.m_zApOut = (uint16_t) (pReverb->m_sAp0.m_zApIn + temp);
1254
1255 LOGV("REVERB_PARAM_DENSITY, Ap0 delay smps %d", temp);
1256
1257 temp = AP1_TIME_BASE + ((int32_t) value16 * AP1_TIME_RANGE) / 1000;
1258 /*lint -e{702} shift for performance */
1259 temp = (temp * pReverb->m_nSamplingRate) >> 16;
1260 if (temp > maxSamples)
1261 temp = maxSamples;
1262 pReverb->m_sAp1.m_zApOut = (uint16_t) (pReverb->m_sAp1.m_zApIn + temp);
1263
1264 LOGV("Ap1 delay smps %d", temp);
1265
1266 break;
1267
1268 default:
1269 break;
1270 }
1271 return 0;
1272} /* end Reverb_setParameter */
1273
1274/*----------------------------------------------------------------------------
1275 * ReverbUpdateXfade
1276 *----------------------------------------------------------------------------
1277 * Purpose:
1278 * Update the xfade parameters as required
1279 *
1280 * Inputs:
1281 * nNumSamplesToAdd - number of samples to write to buffer
1282 *
1283 * Outputs:
1284 *
1285 *
1286 * Side Effects:
1287 * - xfade parameters will be changed
1288 *
1289 *----------------------------------------------------------------------------
1290 */
1291static int ReverbUpdateXfade(reverb_object_t *pReverb, int nNumSamplesToAdd) {
1292 uint16_t nOffset;
1293 int16_t tempCos;
1294 int16_t tempSin;
1295
1296 if (pReverb->m_nXfadeCounter >= pReverb->m_nXfadeInterval) {
1297 /* update interval has elapsed, so reset counter */
1298 pReverb->m_nXfadeCounter = 0;
1299
1300 // Pin the sin,cos values to min / max values to ensure that the
1301 // modulated taps' coefs are zero (thus no clicks)
1302 if (pReverb->m_nPhaseIncrement > 0) {
1303 // if phase increment > 0, then sin -> 1, cos -> 0
1304 pReverb->m_nSin = 32767;
1305 pReverb->m_nCos = 0;
1306
1307 // reset the phase to match the sin, cos values
1308 pReverb->m_nPhase = 32767;
1309
1310 // modulate the cross taps because their tap coefs are zero
1311 nOffset = ReverbCalculateNoise(pReverb);
1312
1313 pReverb->m_zD1Cross = pReverb->m_nDelay1Out
1314 - pReverb->m_nMaxExcursion + nOffset;
1315
1316 nOffset = ReverbCalculateNoise(pReverb);
1317
1318 pReverb->m_zD0Cross = pReverb->m_nDelay0Out
1319 - pReverb->m_nMaxExcursion - nOffset;
1320 } else {
1321 // if phase increment < 0, then sin -> 0, cos -> 1
1322 pReverb->m_nSin = 0;
1323 pReverb->m_nCos = 32767;
1324
1325 // reset the phase to match the sin, cos values
1326 pReverb->m_nPhase = -32768;
1327
1328 // modulate the self taps because their tap coefs are zero
1329 nOffset = ReverbCalculateNoise(pReverb);
1330
1331 pReverb->m_zD0Self = pReverb->m_nDelay0Out
1332 - pReverb->m_nMaxExcursion - nOffset;
1333
1334 nOffset = ReverbCalculateNoise(pReverb);
1335
1336 pReverb->m_zD1Self = pReverb->m_nDelay1Out
1337 - pReverb->m_nMaxExcursion + nOffset;
1338
1339 } // end if-else (pReverb->m_nPhaseIncrement > 0)
1340
1341 // Reverse the direction of the sin,cos so that the
1342 // tap whose coef was previously increasing now decreases
1343 // and vice versa
1344 pReverb->m_nPhaseIncrement = -pReverb->m_nPhaseIncrement;
1345
1346 } // end if counter >= update interval
1347
1348 //compute what phase will be next time
1349 pReverb->m_nPhase += pReverb->m_nPhaseIncrement;
1350
1351 //calculate what the new sin and cos need to reach by the next update
1352 ReverbCalculateSinCos(pReverb->m_nPhase, &tempSin, &tempCos);
1353
1354 //calculate the per-sample increment required to get there by the next update
1355 /*lint -e{702} shift for performance */
1356 pReverb->m_nSinIncrement = (tempSin - pReverb->m_nSin)
1357 >> pReverb->m_nUpdatePeriodInBits;
1358
1359 /*lint -e{702} shift for performance */
1360 pReverb->m_nCosIncrement = (tempCos - pReverb->m_nCos)
1361 >> pReverb->m_nUpdatePeriodInBits;
1362
1363 /* increment update counter */
1364 pReverb->m_nXfadeCounter += (uint16_t) nNumSamplesToAdd;
1365
1366 return 0;
1367
1368} /* end ReverbUpdateXfade */
1369
1370/*----------------------------------------------------------------------------
1371 * ReverbCalculateNoise
1372 *----------------------------------------------------------------------------
1373 * Purpose:
1374 * Calculate a noise sample and limit its value
1375 *
1376 * Inputs:
1377 * nMaxExcursion - noise value is limited to this value
1378 * pnNoise - return new noise sample in this (not limited)
1379 *
1380 * Outputs:
1381 * new limited noise value
1382 *
1383 * Side Effects:
1384 * - *pnNoise noise value is updated
1385 *
1386 *----------------------------------------------------------------------------
1387 */
1388static uint16_t ReverbCalculateNoise(reverb_object_t *pReverb) {
1389 int16_t nNoise = pReverb->m_nNoise;
1390
1391 // calculate new noise value
1392 if (pReverb->m_bUseNoise) {
1393 nNoise = (int16_t) (nNoise * 5 + 1);
1394 } else {
1395 nNoise = 0;
1396 }
1397
1398 pReverb->m_nNoise = nNoise;
1399 // return the limited noise value
1400 return (pReverb->m_nMaxExcursion & nNoise);
1401
1402} /* end ReverbCalculateNoise */
1403
1404/*----------------------------------------------------------------------------
1405 * ReverbCalculateSinCos
1406 *----------------------------------------------------------------------------
1407 * Purpose:
1408 * Calculate a new sin and cosine value based on the given phase
1409 *
1410 * Inputs:
1411 * nPhase - phase angle
1412 * pnSin - input old value, output new value
1413 * pnCos - input old value, output new value
1414 *
1415 * Outputs:
1416 *
1417 * Side Effects:
1418 * - *pnSin, *pnCos are updated
1419 *
1420 *----------------------------------------------------------------------------
1421 */
1422static int ReverbCalculateSinCos(int16_t nPhase, int16_t *pnSin, int16_t *pnCos) {
1423 int32_t nTemp;
1424 int32_t nNetAngle;
1425
1426 // -1 <= nPhase < 1
1427 // However, for the calculation, we need a value
1428 // that ranges from -1/2 to +1/2, so divide the phase by 2
1429 /*lint -e{702} shift for performance */
1430 nNetAngle = nPhase >> 1;
1431
1432 /*
1433 Implement the following
1434 sin(x) = (2-4*c)*x^2 + c + x
1435 cos(x) = (2-4*c)*x^2 + c - x
1436
1437 where c = 1/sqrt(2)
1438 using the a0 + x*(a1 + x*a2) approach
1439 */
1440
1441 /* limit the input "angle" to be between -0.5 and +0.5 */
1442 if (nNetAngle > EG1_HALF) {
1443 nNetAngle = EG1_HALF;
1444 } else if (nNetAngle < EG1_MINUS_HALF) {
1445 nNetAngle = EG1_MINUS_HALF;
1446 }
1447
1448 /* calculate sin */
1449 nTemp = EG1_ONE + MULT_EG1_EG1(REVERB_PAN_G2, nNetAngle);
1450 nTemp = REVERB_PAN_G0 + MULT_EG1_EG1(nTemp, nNetAngle);
1451 *pnSin = (int16_t) SATURATE_EG1(nTemp);
1452
1453 /* calculate cos */
1454 nTemp = -EG1_ONE + MULT_EG1_EG1(REVERB_PAN_G2, nNetAngle);
1455 nTemp = REVERB_PAN_G0 + MULT_EG1_EG1(nTemp, nNetAngle);
1456 *pnCos = (int16_t) SATURATE_EG1(nTemp);
1457
1458 return 0;
1459} /* end ReverbCalculateSinCos */
1460
1461/*----------------------------------------------------------------------------
1462 * Reverb
1463 *----------------------------------------------------------------------------
1464 * Purpose:
1465 * apply reverb to the given signal
1466 *
1467 * Inputs:
1468 * nNu
1469 * pnSin - input old value, output new value
1470 * pnCos - input old value, output new value
1471 *
1472 * Outputs:
1473 * number of samples actually reverberated
1474 *
1475 * Side Effects:
1476 *
1477 *----------------------------------------------------------------------------
1478 */
1479static int Reverb(reverb_object_t *pReverb, int nNumSamplesToAdd,
1480 short *pOutputBuffer, short *pInputBuffer) {
1481 int32_t i;
1482 int32_t nDelayOut0;
1483 int32_t nDelayOut1;
1484 uint16_t nBase;
1485
1486 uint32_t nAddr;
1487 int32_t nTemp1;
1488 int32_t nTemp2;
1489 int32_t nApIn;
1490 int32_t nApOut;
1491
1492 int32_t j;
1493 int32_t nEarlyOut;
1494
1495 int32_t tempValue;
1496
1497 // get the base address
1498 nBase = pReverb->m_nBaseIndex;
1499
1500 for (i = 0; i < nNumSamplesToAdd; i++) {
1501 // ********** Left Allpass - start
1502 nApIn = *pInputBuffer;
1503 if (!pReverb->m_Aux) {
1504 pInputBuffer++;
1505 }
1506 // store to early delay line
1507 nAddr = CIRCULAR(nBase, pReverb->m_nEarly0in, pReverb->m_nBufferMask);
1508 pReverb->m_nDelayLine[nAddr] = (short) nApIn;
1509
1510 // left input = (left dry * m_nLateGain) + right feedback from previous period
1511
1512 nApIn = SATURATE(nApIn + pReverb->m_nRevFbkR);
1513 nApIn = MULT_EG1_EG1(nApIn, pReverb->m_nLateGain);
1514
1515 // fetch allpass delay line out
1516 //nAddr = CIRCULAR(nBase, psAp0->m_zApOut, pReverb->m_nBufferMask);
1517 nAddr
1518 = CIRCULAR(nBase, pReverb->m_sAp0.m_zApOut, pReverb->m_nBufferMask);
1519 nDelayOut0 = pReverb->m_nDelayLine[nAddr];
1520
1521 // calculate allpass feedforward; subtract the feedforward result
1522 nTemp1 = MULT_EG1_EG1(nApIn, pReverb->m_sAp0.m_nApGain);
1523 nApOut = SATURATE(nDelayOut0 - nTemp1); // allpass output
1524
1525 // calculate allpass feedback; add the feedback result
1526 nTemp1 = MULT_EG1_EG1(nApOut, pReverb->m_sAp0.m_nApGain);
1527 nTemp1 = SATURATE(nApIn + nTemp1);
1528
1529 // inject into allpass delay
1530 nAddr
1531 = CIRCULAR(nBase, pReverb->m_sAp0.m_zApIn, pReverb->m_nBufferMask);
1532 pReverb->m_nDelayLine[nAddr] = (short) nTemp1;
1533
1534 // inject allpass output into delay line
1535 nAddr = CIRCULAR(nBase, pReverb->m_zD0In, pReverb->m_nBufferMask);
1536 pReverb->m_nDelayLine[nAddr] = (short) nApOut;
1537
1538 // ********** Left Allpass - end
1539
1540 // ********** Right Allpass - start
1541 nApIn = (*pInputBuffer++);
1542 // store to early delay line
1543 nAddr = CIRCULAR(nBase, pReverb->m_nEarly1in, pReverb->m_nBufferMask);
1544 pReverb->m_nDelayLine[nAddr] = (short) nApIn;
1545
1546 // right input = (right dry * m_nLateGain) + left feedback from previous period
1547 /*lint -e{702} use shift for performance */
1548 nApIn = SATURATE(nApIn + pReverb->m_nRevFbkL);
1549 nApIn = MULT_EG1_EG1(nApIn, pReverb->m_nLateGain);
1550
1551 // fetch allpass delay line out
1552 nAddr
1553 = CIRCULAR(nBase, pReverb->m_sAp1.m_zApOut, pReverb->m_nBufferMask);
1554 nDelayOut1 = pReverb->m_nDelayLine[nAddr];
1555
1556 // calculate allpass feedforward; subtract the feedforward result
1557 nTemp1 = MULT_EG1_EG1(nApIn, pReverb->m_sAp1.m_nApGain);
1558 nApOut = SATURATE(nDelayOut1 - nTemp1); // allpass output
1559
1560 // calculate allpass feedback; add the feedback result
1561 nTemp1 = MULT_EG1_EG1(nApOut, pReverb->m_sAp1.m_nApGain);
1562 nTemp1 = SATURATE(nApIn + nTemp1);
1563
1564 // inject into allpass delay
1565 nAddr
1566 = CIRCULAR(nBase, pReverb->m_sAp1.m_zApIn, pReverb->m_nBufferMask);
1567 pReverb->m_nDelayLine[nAddr] = (short) nTemp1;
1568
1569 // inject allpass output into delay line
1570 nAddr = CIRCULAR(nBase, pReverb->m_zD1In, pReverb->m_nBufferMask);
1571 pReverb->m_nDelayLine[nAddr] = (short) nApOut;
1572
1573 // ********** Right Allpass - end
1574
1575 // ********** D0 output - start
1576 // fetch delay line self out
1577 nAddr = CIRCULAR(nBase, pReverb->m_zD0Self, pReverb->m_nBufferMask);
1578 nDelayOut0 = pReverb->m_nDelayLine[nAddr];
1579
1580 // calculate delay line self out
1581 nTemp1 = MULT_EG1_EG1(nDelayOut0, pReverb->m_nSin);
1582
1583 // fetch delay line cross out
1584 nAddr = CIRCULAR(nBase, pReverb->m_zD1Cross, pReverb->m_nBufferMask);
1585 nDelayOut0 = pReverb->m_nDelayLine[nAddr];
1586
1587 // calculate delay line self out
1588 nTemp2 = MULT_EG1_EG1(nDelayOut0, pReverb->m_nCos);
1589
1590 // calculate unfiltered delay out
1591 nDelayOut0 = SATURATE(nTemp1 + nTemp2);
1592
1593 // ********** D0 output - end
1594
1595 // ********** D1 output - start
1596 // fetch delay line self out
1597 nAddr = CIRCULAR(nBase, pReverb->m_zD1Self, pReverb->m_nBufferMask);
1598 nDelayOut1 = pReverb->m_nDelayLine[nAddr];
1599
1600 // calculate delay line self out
1601 nTemp1 = MULT_EG1_EG1(nDelayOut1, pReverb->m_nSin);
1602
1603 // fetch delay line cross out
1604 nAddr = CIRCULAR(nBase, pReverb->m_zD0Cross, pReverb->m_nBufferMask);
1605 nDelayOut1 = pReverb->m_nDelayLine[nAddr];
1606
1607 // calculate delay line self out
1608 nTemp2 = MULT_EG1_EG1(nDelayOut1, pReverb->m_nCos);
1609
1610 // calculate unfiltered delay out
1611 nDelayOut1 = SATURATE(nTemp1 + nTemp2);
1612
1613 // ********** D1 output - end
1614
1615 // ********** mixer and feedback - start
1616 // sum is fedback to right input (R + L)
1617 nDelayOut0 = (short) SATURATE(nDelayOut0 + nDelayOut1);
1618
1619 // difference is feedback to left input (R - L)
1620 /*lint -e{685} lint complains that it can't saturate negative */
1621 nDelayOut1 = (short) SATURATE(nDelayOut1 - nDelayOut0);
1622
1623 // ********** mixer and feedback - end
1624
1625 // calculate lowpass filter (mixer scale factor included in LPF feedforward)
1626 nTemp1 = MULT_EG1_EG1(nDelayOut0, pReverb->m_nRvbLpfFwd);
1627
1628 nTemp2 = MULT_EG1_EG1(pReverb->m_nRevFbkL, pReverb->m_nRvbLpfFbk);
1629
1630 // calculate filtered delay out and simultaneously update LPF state variable
1631 // filtered delay output is stored in m_nRevFbkL
1632 pReverb->m_nRevFbkL = (short) SATURATE(nTemp1 + nTemp2);
1633
1634 // calculate lowpass filter (mixer scale factor included in LPF feedforward)
1635 nTemp1 = MULT_EG1_EG1(nDelayOut1, pReverb->m_nRvbLpfFwd);
1636
1637 nTemp2 = MULT_EG1_EG1(pReverb->m_nRevFbkR, pReverb->m_nRvbLpfFbk);
1638
1639 // calculate filtered delay out and simultaneously update LPF state variable
1640 // filtered delay output is stored in m_nRevFbkR
1641 pReverb->m_nRevFbkR = (short) SATURATE(nTemp1 + nTemp2);
1642
1643 // ********** start early reflection generator, left
1644 //psEarly = &(pReverb->m_sEarlyL);
1645
1646
1647 for (j = 0; j < REVERB_MAX_NUM_REFLECTIONS; j++) {
1648 // fetch delay line out
1649 //nAddr = CIRCULAR(nBase, psEarly->m_zDelay[j], pReverb->m_nBufferMask);
1650 nAddr
1651 = CIRCULAR(nBase, pReverb->m_sEarlyL.m_zDelay[j], pReverb->m_nBufferMask);
1652
1653 nTemp1 = pReverb->m_nDelayLine[nAddr];
1654
1655 // calculate reflection
1656 //nTemp1 = MULT_EG1_EG1(nDelayOut0, psEarly->m_nGain[j]);
1657 nTemp1 = MULT_EG1_EG1(nTemp1, pReverb->m_sEarlyL.m_nGain[j]);
1658
1659 nDelayOut0 = SATURATE(nDelayOut0 + nTemp1);
1660
1661 } // end for (j=0; j < REVERB_MAX_NUM_REFLECTIONS; j++)
1662
1663 // apply lowpass to early reflections and reverb output
1664 //nTemp1 = MULT_EG1_EG1(nEarlyOut, psEarly->m_nRvbLpfFwd);
1665 nTemp1 = MULT_EG1_EG1(nDelayOut0, pReverb->m_nRoomLpfFwd);
1666
1667 //nTemp2 = MULT_EG1_EG1(psEarly->m_zLpf, psEarly->m_nLpfFbk);
1668 nTemp2 = MULT_EG1_EG1(pReverb->m_zOutLpfL, pReverb->m_nRoomLpfFbk);
1669
1670 // calculate filtered out and simultaneously update LPF state variable
1671 // filtered output is stored in m_zOutLpfL
1672 pReverb->m_zOutLpfL = (short) SATURATE(nTemp1 + nTemp2);
1673
1674 //sum with output buffer
1675 tempValue = *pOutputBuffer;
1676 *pOutputBuffer++ = (short) SATURATE(tempValue+pReverb->m_zOutLpfL);
1677
1678 // ********** end early reflection generator, left
1679
1680 // ********** start early reflection generator, right
1681 //psEarly = &(pReverb->m_sEarlyR);
1682
1683 for (j = 0; j < REVERB_MAX_NUM_REFLECTIONS; j++) {
1684 // fetch delay line out
1685 nAddr
1686 = CIRCULAR(nBase, pReverb->m_sEarlyR.m_zDelay[j], pReverb->m_nBufferMask);
1687 nTemp1 = pReverb->m_nDelayLine[nAddr];
1688
1689 // calculate reflection
1690 nTemp1 = MULT_EG1_EG1(nTemp1, pReverb->m_sEarlyR.m_nGain[j]);
1691
1692 nDelayOut1 = SATURATE(nDelayOut1 + nTemp1);
1693
1694 } // end for (j=0; j < REVERB_MAX_NUM_REFLECTIONS; j++)
1695
1696 // apply lowpass to early reflections
1697 nTemp1 = MULT_EG1_EG1(nDelayOut1, pReverb->m_nRoomLpfFwd);
1698
1699 nTemp2 = MULT_EG1_EG1(pReverb->m_zOutLpfR, pReverb->m_nRoomLpfFbk);
1700
1701 // calculate filtered out and simultaneously update LPF state variable
1702 // filtered output is stored in m_zOutLpfR
1703 pReverb->m_zOutLpfR = (short) SATURATE(nTemp1 + nTemp2);
1704
1705 //sum with output buffer
1706 tempValue = *pOutputBuffer;
1707 *pOutputBuffer++ = (short) SATURATE(tempValue + pReverb->m_zOutLpfR);
1708
1709 // ********** end early reflection generator, right
1710
1711 // decrement base addr for next sample period
1712 nBase--;
1713
1714 pReverb->m_nSin += pReverb->m_nSinIncrement;
1715 pReverb->m_nCos += pReverb->m_nCosIncrement;
1716
1717 } // end for (i=0; i < nNumSamplesToAdd; i++)
1718
1719 // store the most up to date version
1720 pReverb->m_nBaseIndex = nBase;
1721
1722 return 0;
1723} /* end Reverb */
1724
1725/*----------------------------------------------------------------------------
1726 * ReverbUpdateRoom
1727 *----------------------------------------------------------------------------
1728 * Purpose:
1729 * Update the room's preset parameters as required
1730 *
1731 * Inputs:
1732 *
1733 * Outputs:
1734 *
1735 *
1736 * Side Effects:
1737 * - reverb paramters (fbk, fwd, etc) will be changed
1738 * - m_nCurrentRoom := m_nNextRoom
1739 *----------------------------------------------------------------------------
1740 */
1741static int ReverbUpdateRoom(reverb_object_t *pReverb, bool fullUpdate) {
1742 int temp;
1743 int i;
1744 int maxSamples;
1745 int earlyDelay;
1746 int earlyGain;
1747
1748 reverb_preset_t *pPreset =
1749 &pReverb->m_sPreset.m_sPreset[pReverb->m_nNextRoom];
1750
1751 if (fullUpdate) {
1752 pReverb->m_nRvbLpfFwd = pPreset->m_nRvbLpfFwd;
1753 pReverb->m_nRvbLpfFbk = pPreset->m_nRvbLpfFbk;
1754
1755 pReverb->m_nEarlyGain = pPreset->m_nEarlyGain;
1756 //stored as time based, convert to sample based
1757 pReverb->m_nLateGain = pPreset->m_nLateGain;
1758 pReverb->m_nRoomLpfFbk = pPreset->m_nRoomLpfFbk;
1759 pReverb->m_nRoomLpfFwd = pPreset->m_nRoomLpfFwd;
1760
1761 // set the early reflections gains
1762 earlyGain = pPreset->m_nEarlyGain;
1763 for (i = 0; i < REVERB_MAX_NUM_REFLECTIONS; i++) {
1764 pReverb->m_sEarlyL.m_nGain[i]
1765 = MULT_EG1_EG1(pPreset->m_sEarlyL.m_nGain[i],earlyGain);
1766 pReverb->m_sEarlyR.m_nGain[i]
1767 = MULT_EG1_EG1(pPreset->m_sEarlyR.m_nGain[i],earlyGain);
1768 }
1769
1770 pReverb->m_nMaxExcursion = pPreset->m_nMaxExcursion;
1771
1772 pReverb->m_sAp0.m_nApGain = pPreset->m_nAp0_ApGain;
1773 pReverb->m_sAp1.m_nApGain = pPreset->m_nAp1_ApGain;
1774
1775 // set the early reflections delay
1776 earlyDelay = ((int) pPreset->m_nEarlyDelay * pReverb->m_nSamplingRate)
1777 >> 16;
1778 pReverb->m_nEarlyDelay = earlyDelay;
1779 maxSamples = (int32_t) (MAX_EARLY_TIME * pReverb->m_nSamplingRate)
1780 >> 16;
1781 for (i = 0; i < REVERB_MAX_NUM_REFLECTIONS; i++) {
1782 //stored as time based, convert to sample based
1783 temp = earlyDelay + (((int) pPreset->m_sEarlyL.m_zDelay[i]
1784 * pReverb->m_nSamplingRate) >> 16);
1785 if (temp > maxSamples)
1786 temp = maxSamples;
1787 pReverb->m_sEarlyL.m_zDelay[i] = pReverb->m_nEarly0in + temp;
1788 //stored as time based, convert to sample based
1789 temp = earlyDelay + (((int) pPreset->m_sEarlyR.m_zDelay[i]
1790 * pReverb->m_nSamplingRate) >> 16);
1791 if (temp > maxSamples)
1792 temp = maxSamples;
1793 pReverb->m_sEarlyR.m_zDelay[i] = pReverb->m_nEarly1in + temp;
1794 }
1795
1796 maxSamples = (int32_t) (MAX_DELAY_TIME * pReverb->m_nSamplingRate)
1797 >> 16;
1798 //stored as time based, convert to sample based
1799 /*lint -e{702} shift for performance */
1800 temp = (pPreset->m_nLateDelay * pReverb->m_nSamplingRate) >> 16;
1801 if ((temp + pReverb->m_nMaxExcursion) > maxSamples) {
1802 temp = maxSamples - pReverb->m_nMaxExcursion;
1803 }
1804 temp -= pReverb->m_nLateDelay;
1805 pReverb->m_nDelay0Out += temp;
1806 pReverb->m_nDelay1Out += temp;
1807 pReverb->m_nLateDelay += temp;
1808
1809 maxSamples = (int32_t) (MAX_AP_TIME * pReverb->m_nSamplingRate) >> 16;
1810 //stored as time based, convert to absolute sample value
1811 temp = pPreset->m_nAp0_ApOut;
1812 /*lint -e{702} shift for performance */
1813 temp = (temp * pReverb->m_nSamplingRate) >> 16;
1814 if (temp > maxSamples)
1815 temp = maxSamples;
1816 pReverb->m_sAp0.m_zApOut = (uint16_t) (pReverb->m_sAp0.m_zApIn + temp);
1817
1818 //stored as time based, convert to absolute sample value
1819 temp = pPreset->m_nAp1_ApOut;
1820 /*lint -e{702} shift for performance */
1821 temp = (temp * pReverb->m_nSamplingRate) >> 16;
1822 if (temp > maxSamples)
1823 temp = maxSamples;
1824 pReverb->m_sAp1.m_zApOut = (uint16_t) (pReverb->m_sAp1.m_zApIn + temp);
1825 //gpsReverbObject->m_sAp1.m_zApOut = pPreset->m_nAp1_ApOut;
1826 }
1827
1828 //stored as time based, convert to sample based
1829 temp = pPreset->m_nXfadeInterval;
1830 /*lint -e{702} shift for performance */
1831 temp = (temp * pReverb->m_nSamplingRate) >> 16;
1832 pReverb->m_nXfadeInterval = (uint16_t) temp;
1833 //gsReverbObject.m_nXfadeInterval = pPreset->m_nXfadeInterval;
1834 pReverb->m_nXfadeCounter = pReverb->m_nXfadeInterval + 1; // force update on first iteration
1835
1836
1837 pReverb->m_nCurrentRoom = pReverb->m_nNextRoom;
1838
1839 return 0;
1840
1841} /* end ReverbUpdateRoom */
1842
1843/*----------------------------------------------------------------------------
1844 * ReverbReadInPresets()
1845 *----------------------------------------------------------------------------
1846 * Purpose: sets global reverb preset bank to defaults
1847 *
1848 * Inputs:
1849 *
1850 * Outputs:
1851 *
1852 *----------------------------------------------------------------------------
1853 */
1854static int ReverbReadInPresets(reverb_object_t *pReverb) {
1855
1856 int preset = 0;
1857 int defaultPreset = 0;
1858
1859 //now init any remaining presets to defaults
1860 for (defaultPreset = preset; defaultPreset < REVERB_MAX_ROOM_TYPE; defaultPreset++) {
1861 reverb_preset_t *pPreset = &pReverb->m_sPreset.m_sPreset[defaultPreset];
1862 if (defaultPreset == 0 || defaultPreset > REVERB_MAX_ROOM_TYPE - 1) {
1863 pPreset->m_nRvbLpfFbk = 8307;
1864 pPreset->m_nRvbLpfFwd = 14768;
1865 pPreset->m_nEarlyGain = 27690;
1866 pPreset->m_nEarlyDelay = 1311;
1867 pPreset->m_nLateGain = 8191;
1868 pPreset->m_nLateDelay = 3932;
1869 pPreset->m_nRoomLpfFbk = 3692;
1870 pPreset->m_nRoomLpfFwd = 24569;
1871 pPreset->m_sEarlyL.m_zDelay[0] = 1376;
1872 pPreset->m_sEarlyL.m_nGain[0] = 22152;
1873 pPreset->m_sEarlyL.m_zDelay[1] = 2163;
1874 pPreset->m_sEarlyL.m_nGain[1] = 17537;
1875 pPreset->m_sEarlyL.m_zDelay[2] = 0;
1876 pPreset->m_sEarlyL.m_nGain[2] = 14768;
1877 pPreset->m_sEarlyL.m_zDelay[3] = 1835;
1878 pPreset->m_sEarlyL.m_nGain[3] = 14307;
1879 pPreset->m_sEarlyL.m_zDelay[4] = 0;
1880 pPreset->m_sEarlyL.m_nGain[4] = 13384;
1881 pPreset->m_sEarlyR.m_zDelay[0] = 721;
1882 pPreset->m_sEarlyR.m_nGain[0] = 20306;
1883 pPreset->m_sEarlyR.m_zDelay[1] = 2621;
1884 pPreset->m_sEarlyR.m_nGain[1] = 17537;
1885 pPreset->m_sEarlyR.m_zDelay[2] = 0;
1886 pPreset->m_sEarlyR.m_nGain[2] = 14768;
1887 pPreset->m_sEarlyR.m_zDelay[3] = 0;
1888 pPreset->m_sEarlyR.m_nGain[3] = 16153;
1889 pPreset->m_sEarlyR.m_zDelay[4] = 0;
1890 pPreset->m_sEarlyR.m_nGain[4] = 13384;
1891 pPreset->m_nMaxExcursion = 127;
1892 pPreset->m_nXfadeInterval = 6388;
1893 pPreset->m_nAp0_ApGain = 15691;
1894 pPreset->m_nAp0_ApOut = 711;
1895 pPreset->m_nAp1_ApGain = 16317;
1896 pPreset->m_nAp1_ApOut = 1029;
1897 pPreset->m_rfu4 = 0;
1898 pPreset->m_rfu5 = 0;
1899 pPreset->m_rfu6 = 0;
1900 pPreset->m_rfu7 = 0;
1901 pPreset->m_rfu8 = 0;
1902 pPreset->m_rfu9 = 0;
1903 pPreset->m_rfu10 = 0;
1904 } else if (defaultPreset == 1) {
1905 pPreset->m_nRvbLpfFbk = 6461;
1906 pPreset->m_nRvbLpfFwd = 14307;
1907 pPreset->m_nEarlyGain = 27690;
1908 pPreset->m_nEarlyDelay = 1311;
1909 pPreset->m_nLateGain = 8191;
1910 pPreset->m_nLateDelay = 3932;
1911 pPreset->m_nRoomLpfFbk = 3692;
1912 pPreset->m_nRoomLpfFwd = 24569;
1913 pPreset->m_sEarlyL.m_zDelay[0] = 1376;
1914 pPreset->m_sEarlyL.m_nGain[0] = 22152;
1915 pPreset->m_sEarlyL.m_zDelay[1] = 1462;
1916 pPreset->m_sEarlyL.m_nGain[1] = 17537;
1917 pPreset->m_sEarlyL.m_zDelay[2] = 0;
1918 pPreset->m_sEarlyL.m_nGain[2] = 14768;
1919 pPreset->m_sEarlyL.m_zDelay[3] = 1835;
1920 pPreset->m_sEarlyL.m_nGain[3] = 14307;
1921 pPreset->m_sEarlyL.m_zDelay[4] = 0;
1922 pPreset->m_sEarlyL.m_nGain[4] = 13384;
1923 pPreset->m_sEarlyR.m_zDelay[0] = 721;
1924 pPreset->m_sEarlyR.m_nGain[0] = 20306;
1925 pPreset->m_sEarlyR.m_zDelay[1] = 2621;
1926 pPreset->m_sEarlyR.m_nGain[1] = 17537;
1927 pPreset->m_sEarlyR.m_zDelay[2] = 0;
1928 pPreset->m_sEarlyR.m_nGain[2] = 14768;
1929 pPreset->m_sEarlyR.m_zDelay[3] = 0;
1930 pPreset->m_sEarlyR.m_nGain[3] = 16153;
1931 pPreset->m_sEarlyR.m_zDelay[4] = 0;
1932 pPreset->m_sEarlyR.m_nGain[4] = 13384;
1933 pPreset->m_nMaxExcursion = 127;
1934 pPreset->m_nXfadeInterval = 6391;
1935 pPreset->m_nAp0_ApGain = 15230;
1936 pPreset->m_nAp0_ApOut = 708;
1937 pPreset->m_nAp1_ApGain = 15547;
1938 pPreset->m_nAp1_ApOut = 1023;
1939 pPreset->m_rfu4 = 0;
1940 pPreset->m_rfu5 = 0;
1941 pPreset->m_rfu6 = 0;
1942 pPreset->m_rfu7 = 0;
1943 pPreset->m_rfu8 = 0;
1944 pPreset->m_rfu9 = 0;
1945 pPreset->m_rfu10 = 0;
1946 } else if (defaultPreset == 2) {
1947 pPreset->m_nRvbLpfFbk = 5077;
1948 pPreset->m_nRvbLpfFwd = 12922;
1949 pPreset->m_nEarlyGain = 27690;
1950 pPreset->m_nEarlyDelay = 1311;
1951 pPreset->m_nLateGain = 8191;
1952 pPreset->m_nLateDelay = 3932;
1953 pPreset->m_nRoomLpfFbk = 3692;
1954 pPreset->m_nRoomLpfFwd = 21703;
1955 pPreset->m_sEarlyL.m_zDelay[0] = 1376;
1956 pPreset->m_sEarlyL.m_nGain[0] = 22152;
1957 pPreset->m_sEarlyL.m_zDelay[1] = 1462;
1958 pPreset->m_sEarlyL.m_nGain[1] = 17537;
1959 pPreset->m_sEarlyL.m_zDelay[2] = 0;
1960 pPreset->m_sEarlyL.m_nGain[2] = 14768;
1961 pPreset->m_sEarlyL.m_zDelay[3] = 1835;
1962 pPreset->m_sEarlyL.m_nGain[3] = 14307;
1963 pPreset->m_sEarlyL.m_zDelay[4] = 0;
1964 pPreset->m_sEarlyL.m_nGain[4] = 13384;
1965 pPreset->m_sEarlyR.m_zDelay[0] = 721;
1966 pPreset->m_sEarlyR.m_nGain[0] = 20306;
1967 pPreset->m_sEarlyR.m_zDelay[1] = 2621;
1968 pPreset->m_sEarlyR.m_nGain[1] = 17537;
1969 pPreset->m_sEarlyR.m_zDelay[2] = 0;
1970 pPreset->m_sEarlyR.m_nGain[2] = 14768;
1971 pPreset->m_sEarlyR.m_zDelay[3] = 0;
1972 pPreset->m_sEarlyR.m_nGain[3] = 16153;
1973 pPreset->m_sEarlyR.m_zDelay[4] = 0;
1974 pPreset->m_sEarlyR.m_nGain[4] = 13384;
1975 pPreset->m_nMaxExcursion = 127;
1976 pPreset->m_nXfadeInterval = 6449;
1977 pPreset->m_nAp0_ApGain = 15691;
1978 pPreset->m_nAp0_ApOut = 774;
1979 pPreset->m_nAp1_ApGain = 16317;
1980 pPreset->m_nAp1_ApOut = 1155;
1981 pPreset->m_rfu4 = 0;
1982 pPreset->m_rfu5 = 0;
1983 pPreset->m_rfu6 = 0;
1984 pPreset->m_rfu7 = 0;
1985 pPreset->m_rfu8 = 0;
1986 pPreset->m_rfu9 = 0;
1987 pPreset->m_rfu10 = 0;
1988 } else if (defaultPreset == 3) {
1989 pPreset->m_nRvbLpfFbk = 5077;
1990 pPreset->m_nRvbLpfFwd = 11076;
1991 pPreset->m_nEarlyGain = 27690;
1992 pPreset->m_nEarlyDelay = 1311;
1993 pPreset->m_nLateGain = 8191;
1994 pPreset->m_nLateDelay = 3932;
1995 pPreset->m_nRoomLpfFbk = 3692;
1996 pPreset->m_nRoomLpfFwd = 20474;
1997 pPreset->m_sEarlyL.m_zDelay[0] = 1376;
1998 pPreset->m_sEarlyL.m_nGain[0] = 22152;
1999 pPreset->m_sEarlyL.m_zDelay[1] = 1462;
2000 pPreset->m_sEarlyL.m_nGain[1] = 17537;
2001 pPreset->m_sEarlyL.m_zDelay[2] = 0;
2002 pPreset->m_sEarlyL.m_nGain[2] = 14768;
2003 pPreset->m_sEarlyL.m_zDelay[3] = 1835;
2004 pPreset->m_sEarlyL.m_nGain[3] = 14307;
2005 pPreset->m_sEarlyL.m_zDelay[4] = 0;
2006 pPreset->m_sEarlyL.m_nGain[4] = 13384;
2007 pPreset->m_sEarlyR.m_zDelay[0] = 721;
2008 pPreset->m_sEarlyR.m_nGain[0] = 20306;
2009 pPreset->m_sEarlyR.m_zDelay[1] = 2621;
2010 pPreset->m_sEarlyR.m_nGain[1] = 17537;
2011 pPreset->m_sEarlyR.m_zDelay[2] = 0;
2012 pPreset->m_sEarlyR.m_nGain[2] = 14768;
2013 pPreset->m_sEarlyR.m_zDelay[3] = 0;
2014 pPreset->m_sEarlyR.m_nGain[3] = 16153;
2015 pPreset->m_sEarlyR.m_zDelay[4] = 0;
2016 pPreset->m_sEarlyR.m_nGain[4] = 13384;
2017 pPreset->m_nMaxExcursion = 127;
2018 pPreset->m_nXfadeInterval = 6470; //6483;
2019 pPreset->m_nAp0_ApGain = 14768;
2020 pPreset->m_nAp0_ApOut = 792;
2021 pPreset->m_nAp1_ApGain = 14777;
2022 pPreset->m_nAp1_ApOut = 1191;
2023 pPreset->m_rfu4 = 0;
2024 pPreset->m_rfu5 = 0;
2025 pPreset->m_rfu6 = 0;
2026 pPreset->m_rfu7 = 0;
2027 pPreset->m_rfu8 = 0;
2028 pPreset->m_rfu9 = 0;
2029 pPreset->m_rfu10 = 0;
2030 }
2031 }
2032
2033 return 0;
2034}