Andy Hung | e059b8f | 2021-06-08 17:10:54 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2021 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | //#define LOG_NDEBUG 0 |
| 18 | #define LOG_TAG "mixerop_tests" |
| 19 | #include <log/log.h> |
| 20 | |
| 21 | #include <inttypes.h> |
| 22 | #include <type_traits> |
| 23 | |
| 24 | #include <../AudioMixerOps.h> |
| 25 | #include <gtest/gtest.h> |
| 26 | |
| 27 | using namespace android; |
| 28 | |
| 29 | // Note: gtest templated tests require typenames, not integers. |
| 30 | template <int MIXTYPE, int NCHAN> |
| 31 | class MixerOpsBasicTest { |
| 32 | public: |
| 33 | static void testStereoVolume() { |
| 34 | using namespace android::audio_utils::channels; |
| 35 | |
| 36 | constexpr size_t FRAME_COUNT = 1000; |
| 37 | constexpr size_t SAMPLE_COUNT = FRAME_COUNT * NCHAN; |
| 38 | |
| 39 | const float in[SAMPLE_COUNT] = {[0 ... (SAMPLE_COUNT - 1)] = 1.f}; |
| 40 | |
| 41 | AUDIO_GEOMETRY_SIDE sides[NCHAN]; |
| 42 | size_t i = 0; |
| 43 | unsigned channel = canonicalChannelMaskFromCount(NCHAN); |
| 44 | constexpr unsigned LFE_LFE2 = |
| 45 | AUDIO_CHANNEL_OUT_LOW_FREQUENCY | AUDIO_CHANNEL_OUT_LOW_FREQUENCY_2; |
| 46 | bool has_LFE_LFE2 = (channel & LFE_LFE2) == LFE_LFE2; |
| 47 | while (channel != 0) { |
| 48 | const int index = __builtin_ctz(channel); |
| 49 | if (has_LFE_LFE2 && (1 << index) == AUDIO_CHANNEL_OUT_LOW_FREQUENCY) { |
| 50 | sides[i++] = AUDIO_GEOMETRY_SIDE_LEFT; // special case |
| 51 | } else if (has_LFE_LFE2 && (1 << index) == AUDIO_CHANNEL_OUT_LOW_FREQUENCY_2) { |
| 52 | sides[i++] = AUDIO_GEOMETRY_SIDE_RIGHT; // special case |
| 53 | } else { |
| 54 | sides[i++] = sideFromChannelIdx(index); |
| 55 | } |
| 56 | channel &= ~(1 << index); |
| 57 | } |
| 58 | |
| 59 | float vola[2] = {1.f, 0.f}; // left volume at max. |
| 60 | float out[SAMPLE_COUNT]{}; |
| 61 | float aux[FRAME_COUNT]{}; |
| 62 | float volaux = 0.5; |
| 63 | { |
| 64 | volumeMulti<MIXTYPE, NCHAN>(out, FRAME_COUNT, in, aux, vola, volaux); |
| 65 | const float *outp = out; |
| 66 | const float *auxp = aux; |
| 67 | const float left = vola[0]; |
| 68 | const float center = (vola[0] + vola[1]) * 0.5; |
| 69 | const float right = vola[1]; |
| 70 | for (size_t i = 0; i < FRAME_COUNT; ++i) { |
| 71 | for (size_t j = 0; j < NCHAN; ++j) { |
| 72 | const float audio = *outp++; |
| 73 | if (sides[j] == AUDIO_GEOMETRY_SIDE_LEFT) { |
| 74 | EXPECT_EQ(left, audio); |
| 75 | } else if (sides[j] == AUDIO_GEOMETRY_SIDE_CENTER) { |
| 76 | EXPECT_EQ(center, audio); |
| 77 | } else { |
| 78 | EXPECT_EQ(right, audio); |
| 79 | } |
| 80 | } |
| 81 | EXPECT_EQ(volaux, *auxp++); // works if all channels contain 1.f |
| 82 | } |
| 83 | } |
| 84 | float volb[2] = {0.f, 0.5f}; // right volume at half max. |
| 85 | { |
| 86 | // this accumulates into out, aux. |
| 87 | // float out[SAMPLE_COUNT]{}; |
| 88 | // float aux[FRAME_COUNT]{}; |
| 89 | volumeMulti<MIXTYPE, NCHAN>(out, FRAME_COUNT, in, aux, volb, volaux); |
| 90 | const float *outp = out; |
| 91 | const float *auxp = aux; |
| 92 | const float left = vola[0] + volb[0]; |
| 93 | const float center = (vola[0] + vola[1] + volb[0] + volb[1]) * 0.5; |
| 94 | const float right = vola[1] + volb[1]; |
| 95 | for (size_t i = 0; i < FRAME_COUNT; ++i) { |
| 96 | for (size_t j = 0; j < NCHAN; ++j) { |
| 97 | const float audio = *outp++; |
| 98 | if (sides[j] == AUDIO_GEOMETRY_SIDE_LEFT) { |
| 99 | EXPECT_EQ(left, audio); |
| 100 | } else if (sides[j] == AUDIO_GEOMETRY_SIDE_CENTER) { |
| 101 | EXPECT_EQ(center, audio); |
| 102 | } else { |
| 103 | EXPECT_EQ(right, audio); |
| 104 | } |
| 105 | } |
| 106 | // aux is accumulated so 2x the amplitude |
| 107 | EXPECT_EQ(volaux * 2.f, *auxp++); // works if all channels contain 1.f |
| 108 | } |
| 109 | } |
| 110 | |
| 111 | { // test aux as derived from out. |
| 112 | // AUX channel is the weighted sum of all of the output channels prior to volume |
| 113 | // adjustment. We must set L and R to the same volume to allow computation |
| 114 | // of AUX from the output values. |
| 115 | const float volmono = 0.25f; |
| 116 | const float vollr[2] = {volmono, volmono}; // all the same. |
| 117 | float out[SAMPLE_COUNT]{}; |
| 118 | float aux[FRAME_COUNT]{}; |
| 119 | volumeMulti<MIXTYPE, NCHAN>(out, FRAME_COUNT, in, aux, vollr, volaux); |
| 120 | const float *outp = out; |
| 121 | const float *auxp = aux; |
| 122 | for (size_t i = 0; i < FRAME_COUNT; ++i) { |
| 123 | float accum = 0.f; |
| 124 | for (size_t j = 0; j < NCHAN; ++j) { |
| 125 | accum += *outp++; |
| 126 | } |
| 127 | EXPECT_EQ(accum / NCHAN * volaux / volmono, *auxp++); |
| 128 | } |
| 129 | } |
| 130 | } |
| 131 | }; |
| 132 | |
| 133 | TEST(mixerops, stereovolume_1) { // Note: mono not used for output sinks yet. |
| 134 | MixerOpsBasicTest<MIXTYPE_MULTI_STEREOVOL, 1>::testStereoVolume(); |
| 135 | } |
| 136 | TEST(mixerops, stereovolume_2) { |
| 137 | MixerOpsBasicTest<MIXTYPE_MULTI_STEREOVOL, 2>::testStereoVolume(); |
| 138 | } |
| 139 | TEST(mixerops, stereovolume_3) { |
| 140 | MixerOpsBasicTest<MIXTYPE_MULTI_STEREOVOL, 3>::testStereoVolume(); |
| 141 | } |
| 142 | TEST(mixerops, stereovolume_4) { |
| 143 | MixerOpsBasicTest<MIXTYPE_MULTI_STEREOVOL, 4>::testStereoVolume(); |
| 144 | } |
| 145 | TEST(mixerops, stereovolume_5) { |
| 146 | MixerOpsBasicTest<MIXTYPE_MULTI_STEREOVOL, 5>::testStereoVolume(); |
| 147 | } |
| 148 | TEST(mixerops, stereovolume_6) { |
| 149 | MixerOpsBasicTest<MIXTYPE_MULTI_STEREOVOL, 6>::testStereoVolume(); |
| 150 | } |
| 151 | TEST(mixerops, stereovolume_7) { |
| 152 | MixerOpsBasicTest<MIXTYPE_MULTI_STEREOVOL, 7>::testStereoVolume(); |
| 153 | } |
| 154 | TEST(mixerops, stereovolume_8) { |
| 155 | MixerOpsBasicTest<MIXTYPE_MULTI_STEREOVOL, 8>::testStereoVolume(); |
| 156 | } |
| 157 | TEST(mixerops, stereovolume_12) { |
| 158 | if constexpr (FCC_LIMIT >= 12) { // NOTE: FCC_LIMIT is an enum, so can't #if |
| 159 | MixerOpsBasicTest<MIXTYPE_MULTI_STEREOVOL, 12>::testStereoVolume(); |
| 160 | } |
| 161 | } |
| 162 | TEST(mixerops, stereovolume_24) { |
| 163 | if constexpr (FCC_LIMIT >= 24) { |
| 164 | MixerOpsBasicTest<MIXTYPE_MULTI_STEREOVOL, 24>::testStereoVolume(); |
| 165 | } |
| 166 | } |
| 167 | TEST(mixerops, channel_equivalence) { |
| 168 | // we must match the constexpr function with the system determined channel mask from count. |
| 169 | for (size_t i = 0; i < FCC_LIMIT; ++i) { |
| 170 | const audio_channel_mask_t actual = canonicalChannelMaskFromCount(i); |
| 171 | const audio_channel_mask_t system = audio_channel_out_mask_from_count(i); |
| 172 | if (system == AUDIO_CHANNEL_INVALID) continue; |
| 173 | EXPECT_EQ(system, actual); |
| 174 | } |
| 175 | } |