Eric Laurent | 135ad07 | 2010-05-21 06:05:13 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2008 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | #ifndef ANDROID_EFFECTSMATH_H_ |
| 18 | #define ANDROID_EFFECTSMATH_H_ |
| 19 | |
| 20 | #include <stdint.h> |
| 21 | |
| 22 | #if __cplusplus |
| 23 | extern "C" { |
| 24 | #endif |
| 25 | |
| 26 | /** coefs for pan, generates sin, cos */ |
| 27 | #define COEFF_PAN_G2 -27146 /* -0.82842712474619 = 2 - 4/sqrt(2) */ |
| 28 | #define COEFF_PAN_G0 23170 /* 0.707106781186547 = 1/sqrt(2) */ |
| 29 | |
| 30 | /* |
| 31 | coefficients for approximating |
| 32 | 2^x = gn2toX0 + gn2toX1*x + gn2toX2*x^2 + gn2toX3*x^3 |
| 33 | where x is a int.frac number representing number of octaves. |
| 34 | Actually, we approximate only the 2^(frac) using the power series |
| 35 | and implement the 2^(int) as a shift, so that |
| 36 | 2^x == 2^(int.frac) == 2^(int) * 2^(fract) |
| 37 | == (gn2toX0 + gn2toX1*x + gn2toX2*x^2 + gn2toX3*x^3) << (int) |
| 38 | |
| 39 | The gn2toX.. were generated using a best fit for a 3rd |
| 40 | order polynomial, instead of taking the coefficients from |
| 41 | a truncated Taylor (or Maclaurin?) series. |
| 42 | */ |
| 43 | |
| 44 | #define GN2_TO_X0 32768 /* 1 */ |
| 45 | #define GN2_TO_X1 22833 /* 0.696807861328125 */ |
| 46 | #define GN2_TO_X2 7344 /* 0.22412109375 */ |
| 47 | #define GN2_TO_X3 2588 /* 0.0789794921875 */ |
| 48 | |
| 49 | /*---------------------------------------------------------------------------- |
| 50 | * Fixed Point Math |
| 51 | *---------------------------------------------------------------------------- |
| 52 | * These macros are used for fixed point multiplies. If the processor |
| 53 | * supports fixed point multiplies, replace these macros with inline |
| 54 | * assembly code to improve performance. |
| 55 | *---------------------------------------------------------------------------- |
| 56 | */ |
| 57 | |
| 58 | /* Fixed point multiply 0.15 x 0.15 = 0.15 returned as 32-bits */ |
| 59 | #define FMUL_15x15(a,b) \ |
| 60 | /*lint -e(704) <avoid multiply for performance>*/ \ |
| 61 | (((int32_t)(a) * (int32_t)(b)) >> 15) |
| 62 | |
| 63 | /* Fixed point multiply 0.7 x 0.7 = 0.15 returned as 32-bits */ |
| 64 | #define FMUL_7x7(a,b) \ |
| 65 | /*lint -e(704) <avoid multiply for performance>*/ \ |
| 66 | (((int32_t)(a) * (int32_t)(b) ) << 1) |
| 67 | |
| 68 | /* Fixed point multiply 0.8 x 0.8 = 0.15 returned as 32-bits */ |
| 69 | #define FMUL_8x8(a,b) \ |
| 70 | /*lint -e(704) <avoid multiply for performance>*/ \ |
| 71 | (((int32_t)(a) * (int32_t)(b) ) >> 1) |
| 72 | |
| 73 | /* Fixed point multiply 0.8 x 1.15 = 0.15 returned as 32-bits */ |
| 74 | #define FMUL_8x15(a,b) \ |
| 75 | /*lint -e(704) <avoid divide for performance>*/ \ |
| 76 | (((int32_t)((a) << 7) * (int32_t)(b)) >> 15) |
| 77 | |
| 78 | /* macros for fractional phase accumulator */ |
| 79 | /* |
| 80 | Note: changed the _U32 to _I32 on 03/14/02. This should not |
| 81 | affect the phase calculations, and should allow us to reuse these |
| 82 | macros for other audio sample related math. |
| 83 | */ |
| 84 | #define HARDWARE_BIT_WIDTH 32 |
| 85 | |
| 86 | #define NUM_PHASE_INT_BITS 1 |
| 87 | #define NUM_PHASE_FRAC_BITS 15 |
| 88 | |
| 89 | #define PHASE_FRAC_MASK (uint32_t) ((0x1L << NUM_PHASE_FRAC_BITS) -1) |
| 90 | |
| 91 | #define GET_PHASE_INT_PART(x) (uint32_t)((uint32_t)(x) >> NUM_PHASE_FRAC_BITS) |
| 92 | #define GET_PHASE_FRAC_PART(x) (uint32_t)((uint32_t)(x) & PHASE_FRAC_MASK) |
| 93 | |
| 94 | #define DEFAULT_PHASE_FRAC 0 |
| 95 | #define DEFAULT_PHASE_INT 0 |
| 96 | |
| 97 | /* |
| 98 | Linear interpolation calculates: |
| 99 | output = (1-frac) * sample[n] + (frac) * sample[n+1] |
| 100 | |
| 101 | where conceptually 0 <= frac < 1 |
| 102 | |
| 103 | For a fixed point implementation, frac is actually an integer value |
| 104 | with an implied binary point one position to the left. The value of |
| 105 | one (unity) is given by PHASE_ONE |
| 106 | one half and one quarter are useful for 4-point linear interp. |
| 107 | */ |
| 108 | #define PHASE_ONE (int32_t) (0x1L << NUM_PHASE_FRAC_BITS) |
| 109 | |
| 110 | /* |
| 111 | Multiply the signed audio sample by the unsigned fraction. |
| 112 | - a is the signed audio sample |
| 113 | - b is the unsigned fraction (cast to signed int as long as coef |
| 114 | uses (n-1) or less bits, where n == hardware bit width) |
| 115 | */ |
| 116 | #define MULT_AUDIO_COEF(audio,coef) /*lint -e704 <avoid divide for performance>*/ \ |
| 117 | (int32_t)( \ |
| 118 | ( \ |
| 119 | ((int32_t)(audio)) * ((int32_t)(coef)) \ |
| 120 | ) \ |
| 121 | >> NUM_PHASE_FRAC_BITS \ |
| 122 | ) \ |
| 123 | /* lint +704 <restore checking>*/ |
| 124 | |
| 125 | /* wet / dry calculation macros */ |
| 126 | #define NUM_WET_DRY_FRAC_BITS 7 // 15 |
| 127 | #define NUM_WET_DRY_INT_BITS 9 // 1 |
| 128 | |
| 129 | /* define a 1.0 */ |
| 130 | #define WET_DRY_ONE (int32_t) ((0x1L << NUM_WET_DRY_FRAC_BITS)) |
| 131 | #define WET_DRY_MINUS_ONE (int32_t) (~WET_DRY_ONE) |
| 132 | #define WET_DRY_FULL_SCALE (int32_t) (WET_DRY_ONE - 1) |
| 133 | |
| 134 | #define MULT_AUDIO_WET_DRY_COEF(audio,coef) /*lint -e(702) <avoid divide for performance>*/ \ |
| 135 | (int32_t)( \ |
| 136 | ( \ |
| 137 | ((int32_t)(audio)) * ((int32_t)(coef)) \ |
| 138 | ) \ |
| 139 | >> NUM_WET_DRY_FRAC_BITS \ |
| 140 | ) |
| 141 | |
| 142 | /* Envelope 1 (EG1) calculation macros */ |
| 143 | #define NUM_EG1_INT_BITS 1 |
| 144 | #define NUM_EG1_FRAC_BITS 15 |
| 145 | |
| 146 | /* the max positive gain used in the synth for EG1 */ |
| 147 | /* SYNTH_FULL_SCALE_EG1_GAIN must match the value in the dls2eas |
| 148 | converter, otherwise, the values we read from the .eas file are bogus. */ |
| 149 | #define SYNTH_FULL_SCALE_EG1_GAIN (int32_t) ((0x1L << NUM_EG1_FRAC_BITS) -1) |
| 150 | |
| 151 | /* define a 1.0 */ |
| 152 | #define EG1_ONE (int32_t) ((0x1L << NUM_EG1_FRAC_BITS)) |
| 153 | #define EG1_MINUS_ONE (int32_t) (~SYNTH_FULL_SCALE_EG1_GAIN) |
| 154 | |
| 155 | #define EG1_HALF (int32_t) (EG1_ONE/2) |
| 156 | #define EG1_MINUS_HALF (int32_t) (EG1_MINUS_ONE/2) |
| 157 | |
| 158 | /* |
| 159 | We implement the EG1 using a linear gain value, which means that the |
| 160 | attack segment is handled by incrementing (adding) the linear gain. |
| 161 | However, EG1 treats the Decay, Sustain, and Release differently than |
| 162 | the Attack portion. For Decay, Sustain, and Release, the gain is |
| 163 | linear on dB scale, which is equivalent to exponential damping on |
| 164 | a linear scale. Because we use a linear gain for EG1, we implement |
| 165 | the Decay and Release as multiplication (instead of incrementing |
| 166 | as we did for the attack segment). |
| 167 | Therefore, we need the following macro to implement the multiplication |
| 168 | (i.e., exponential damping) during the Decay and Release segments of |
| 169 | the EG1 |
| 170 | */ |
| 171 | #define MULT_EG1_EG1(gain,damping) /*lint -e(704) <avoid divide for performance>*/ \ |
| 172 | (int32_t)( \ |
| 173 | ( \ |
| 174 | ((int32_t)(gain)) * ((int32_t)(damping)) \ |
| 175 | ) \ |
| 176 | >> NUM_EG1_FRAC_BITS \ |
| 177 | ) |
| 178 | |
| 179 | // Use the following macro specifically for the filter, when multiplying |
| 180 | // the b1 coefficient. The 0 <= |b1| < 2, which therefore might overflow |
| 181 | // in certain conditions because we store b1 as a 1.15 value. |
| 182 | // Instead, we could store b1 as b1p (b1' == b1 "prime") where |
| 183 | // b1p == b1/2, thus ensuring no potential overflow for b1p because |
| 184 | // 0 <= |b1p| < 1 |
| 185 | // However, during the filter calculation, we must account for the fact |
| 186 | // that we are using b1p instead of b1, and thereby multiply by |
| 187 | // an extra factor of 2. Rather than multiply by an extra factor of 2, |
| 188 | // we can instead shift the result right by one less, hence the |
| 189 | // modified shift right value of (NUM_EG1_FRAC_BITS -1) |
| 190 | #define MULT_EG1_EG1_X2(gain,damping) /*lint -e(702) <avoid divide for performance>*/ \ |
| 191 | (int32_t)( \ |
| 192 | ( \ |
| 193 | ((int32_t)(gain)) * ((int32_t)(damping)) \ |
| 194 | ) \ |
| 195 | >> (NUM_EG1_FRAC_BITS -1) \ |
| 196 | ) |
| 197 | |
| 198 | #define SATURATE_EG1(x) /*lint -e{734} saturation operation */ \ |
| 199 | ((int32_t)(x) > SYNTH_FULL_SCALE_EG1_GAIN) ? (SYNTH_FULL_SCALE_EG1_GAIN) : \ |
| 200 | ((int32_t)(x) < EG1_MINUS_ONE) ? (EG1_MINUS_ONE) : (x); |
| 201 | |
| 202 | |
| 203 | /* use "digital cents" == "dents" instead of cents */ |
| 204 | /* we coudl re-use the phase frac macros, but if we do, |
| 205 | we must change the phase macros to cast to _I32 instead of _U32, |
| 206 | because using a _U32 cast causes problems when shifting the exponent |
| 207 | for the 2^x calculation, because right shift a negative values MUST |
| 208 | be sign extended, or else the 2^x calculation is wrong */ |
| 209 | |
| 210 | /* use "digital cents" == "dents" instead of cents */ |
| 211 | #define NUM_DENTS_FRAC_BITS 12 |
| 212 | #define NUM_DENTS_INT_BITS (HARDWARE_BIT_WIDTH - NUM_DENTS_FRAC_BITS) |
| 213 | |
| 214 | #define DENTS_FRAC_MASK (int32_t) ((0x1L << NUM_DENTS_FRAC_BITS) -1) |
| 215 | |
| 216 | #define GET_DENTS_INT_PART(x) /*lint -e(704) <avoid divide for performance>*/ \ |
| 217 | (int32_t)((int32_t)(x) >> NUM_DENTS_FRAC_BITS) |
| 218 | |
| 219 | #define GET_DENTS_FRAC_PART(x) (int32_t)((int32_t)(x) & DENTS_FRAC_MASK) |
| 220 | |
| 221 | #define DENTS_ONE (int32_t) (0x1L << NUM_DENTS_FRAC_BITS) |
| 222 | |
| 223 | /* use CENTS_TO_DENTS to convert a value in cents to dents */ |
| 224 | #define CENTS_TO_DENTS (int32_t) (DENTS_ONE * (0x1L << NUM_EG1_FRAC_BITS) / 1200L) \ |
| 225 | |
| 226 | |
| 227 | /* |
| 228 | For gain, the LFO generates a value that modulates in terms |
| 229 | of dB. However, we use a linear gain value, so we must convert |
| 230 | the LFO value in dB to a linear gain. Normally, we would use |
| 231 | linear gain = 10^x, where x = LFO value in dB / 20. |
| 232 | Instead, we implement 10^x using our 2^x approximation. |
| 233 | because |
| 234 | |
| 235 | 10^x = 2^(log2(10^x)) = 2^(x * log2(10)) |
| 236 | |
| 237 | so we need to multiply by log2(10) which is just a constant. |
| 238 | Ah, but just wait -- our 2^x actually doesn't exactly implement |
| 239 | 2^x, but it actually assumes that the input is in cents, and within |
| 240 | the 2^x approximation converts its input from cents to octaves |
| 241 | by dividing its input by 1200. |
| 242 | |
| 243 | So, in order to convert the LFO gain value in dB to something |
| 244 | that our existing 2^x approximation can use, multiply the LFO gain |
| 245 | by log2(10) * 1200 / 20 |
| 246 | |
| 247 | The divide by 20 helps convert dB to linear gain, and we might |
| 248 | as well incorporate that operation into this conversion. |
| 249 | Of course, we need to keep some fractional bits, so multiply |
| 250 | the constant by NUM_EG1_FRAC_BITS |
| 251 | */ |
| 252 | |
| 253 | /* use LFO_GAIN_TO_CENTS to convert the LFO gain value to cents */ |
| 254 | #if 0 |
| 255 | #define DOUBLE_LOG2_10 (double) (3.32192809488736) /* log2(10) */ |
| 256 | |
| 257 | #define DOUBLE_LFO_GAIN_TO_CENTS (double) \ |
| 258 | ( \ |
| 259 | (DOUBLE_LOG2_10) * \ |
| 260 | 1200.0 / \ |
| 261 | 20.0 \ |
| 262 | ) |
| 263 | |
| 264 | #define LFO_GAIN_TO_CENTS (int32_t) \ |
| 265 | ( \ |
| 266 | DOUBLE_LFO_GAIN_TO_CENTS * \ |
| 267 | (0x1L << NUM_EG1_FRAC_BITS) \ |
| 268 | ) |
| 269 | #endif |
| 270 | |
| 271 | #define LFO_GAIN_TO_CENTS (int32_t) (1671981156L >> (23 - NUM_EG1_FRAC_BITS)) |
| 272 | |
| 273 | |
| 274 | #define MULT_DENTS_COEF(dents,coef) /*lint -e704 <avoid divide for performance>*/ \ |
| 275 | (int32_t)( \ |
| 276 | ( \ |
| 277 | ((int32_t)(dents)) * ((int32_t)(coef)) \ |
| 278 | ) \ |
| 279 | >> NUM_DENTS_FRAC_BITS \ |
| 280 | ) \ |
| 281 | /* lint +e704 <restore checking>*/ |
| 282 | |
| 283 | |
| 284 | /* we use 16-bits in the PC per audio sample */ |
| 285 | #define BITS_PER_AUDIO_SAMPLE 16 |
| 286 | |
| 287 | /* we define 1 as 1.0 - 1 LSbit */ |
| 288 | #define DISTORTION_ONE (int32_t)((0x1L << (BITS_PER_AUDIO_SAMPLE-1)) -1) |
| 289 | #define DISTORTION_MINUS_ONE (int32_t)(~DISTORTION_ONE) |
| 290 | |
| 291 | /* drive coef is given as int.frac */ |
| 292 | #define NUM_DRIVE_COEF_INT_BITS 1 |
| 293 | #define NUM_DRIVE_COEF_FRAC_BITS 4 |
| 294 | |
| 295 | #define MULT_AUDIO_DRIVE(audio,drive) /*lint -e(702) <avoid divide for performance>*/ \ |
| 296 | (int32_t) ( \ |
| 297 | ( \ |
| 298 | ((int32_t)(audio)) * ((int32_t)(drive)) \ |
| 299 | ) \ |
| 300 | >> NUM_DRIVE_COEF_FRAC_BITS \ |
| 301 | ) |
| 302 | |
| 303 | #define MULT_AUDIO_AUDIO(audio1,audio2) /*lint -e(702) <avoid divide for performance>*/ \ |
| 304 | (int32_t) ( \ |
| 305 | ( \ |
| 306 | ((int32_t)(audio1)) * ((int32_t)(audio2)) \ |
| 307 | ) \ |
| 308 | >> (BITS_PER_AUDIO_SAMPLE-1) \ |
| 309 | ) |
| 310 | |
| 311 | #define SATURATE(x) \ |
| 312 | ((((int32_t)(x)) > DISTORTION_ONE) ? (DISTORTION_ONE) : \ |
| 313 | (((int32_t)(x)) < DISTORTION_MINUS_ONE) ? (DISTORTION_MINUS_ONE) : ((int32_t)(x))); |
| 314 | |
| 315 | |
| 316 | /*---------------------------------------------------------------------------- |
| 317 | * Effects_log2() |
| 318 | *---------------------------------------------------------------------------- |
| 319 | * Purpose: |
| 320 | * Fixed-point log2 function. |
| 321 | * |
| 322 | * Inputs: |
| 323 | * Input is interpreted as an integer (should not be 0). |
| 324 | * |
| 325 | * Outputs: |
| 326 | * Output is in 15-bit precision. |
| 327 | * |
| 328 | * Side Effects: |
| 329 | * |
| 330 | *---------------------------------------------------------------------------- |
| 331 | */ |
| 332 | int32_t Effects_log2(uint32_t x); |
| 333 | |
| 334 | /*---------------------------------------------------------------------------- |
| 335 | * Effects_exp2() |
| 336 | *---------------------------------------------------------------------------- |
| 337 | * Purpose: |
| 338 | * Fixed-point radix-2 exponent. |
| 339 | * |
| 340 | * Inputs: |
| 341 | * Input is in 15-bit precision. Must be non-negative and less than 32. |
| 342 | * |
| 343 | * Outputs: |
| 344 | * Output is an integer. |
| 345 | * |
| 346 | * Side Effects: |
| 347 | * |
| 348 | *---------------------------------------------------------------------------- |
| 349 | */ |
| 350 | uint32_t Effects_exp2(int32_t x); |
| 351 | |
| 352 | /*---------------------------------------------------------------------------- |
| 353 | * Effects_MillibelsToLinear16() |
| 354 | *---------------------------------------------------------------------------- |
| 355 | * Purpose: |
| 356 | * Transform gain in millibels to linear gain multiplier: |
| 357 | * |
| 358 | * mB = 2000*log(lin/32767) |
| 359 | * => lin = 2^((mB+2000*log(32767))/2000*log(2)) |
| 360 | * => lin = Effects_exp2(((mB + K1) << 15) / K2) |
| 361 | * with: |
| 362 | * K1 = 2000*log(32767) and K2 = 2000*log(2) |
| 363 | * |
| 364 | * Inputs: |
| 365 | * nGain - log scale value in millibels. |
| 366 | * |
| 367 | * Outputs: |
| 368 | * Returns a 16-bit linear value approximately equal to 2^(nGain/1024) |
| 369 | * |
| 370 | * Side Effects: |
| 371 | * |
| 372 | *---------------------------------------------------------------------------- |
| 373 | */ |
| 374 | #define MB_TO_LIN_K1 9031 |
| 375 | #define MB_TO_LIN_K2 602 |
| 376 | int16_t Effects_MillibelsToLinear16 (int32_t nGain); |
| 377 | |
| 378 | /*---------------------------------------------------------------------------- |
| 379 | * Effects_Linear16ToMillibels() |
| 380 | *---------------------------------------------------------------------------- |
| 381 | * Purpose: |
| 382 | * Transform linear gain multiplier to millibels |
| 383 | * mB = 2000*log(lin/32767) |
| 384 | * = 2000*log(2)*log2(lin)-2000*log(32767) |
| 385 | * => mB = K1*Effects_log2(lin) + K2 |
| 386 | * with: |
| 387 | * K1 = 2000*log(2) and K2 = -2000*log(32767) |
| 388 | * |
| 389 | * Inputs: |
| 390 | * nGain - linear multiplier ranging form 0 to 32767 (corresponding to [0 1] gain range). |
| 391 | * |
| 392 | * Outputs: |
| 393 | * Returns a 16-bit log value expressed in milllibels. |
| 394 | * |
| 395 | * Side Effects: |
| 396 | * |
| 397 | *---------------------------------------------------------------------------- |
| 398 | */ |
| 399 | int16_t Effects_Linear16ToMillibels (int32_t nGain); |
| 400 | |
| 401 | /*---------------------------------------------------------------------------- |
| 402 | * Effects_Sqrt() |
| 403 | *---------------------------------------------------------------------------- |
| 404 | * Purpose: |
| 405 | * Returns the square root of the argument given. |
| 406 | * |
| 407 | * Inputs: |
| 408 | * in - positive number in the range 0 - 2^28 |
| 409 | * |
| 410 | * Outputs: |
| 411 | * Returned value: square root of in. |
| 412 | * |
| 413 | * Side Effects: |
| 414 | * |
| 415 | *---------------------------------------------------------------------------- |
| 416 | */ |
| 417 | int32_t Effects_Sqrt(int32_t in); |
| 418 | |
| 419 | #if __cplusplus |
| 420 | } // extern "C" |
| 421 | #endif |
| 422 | |
| 423 | #endif /*ANDROID_EFFECTSMATH_H_*/ |
| 424 | |