blob: 2997f6e3c94a80530fb7e252874732584988c015 [file] [log] [blame]
Pawin Vongmasa36653902018-11-15 00:10:25 -08001/*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef C2BUFFER_H_
18#define C2BUFFER_H_
19
20#include <C2.h>
21#include <C2BufferBase.h>
22#include <C2Param.h> // for C2Info
23
24#include <memory>
25#include <vector>
26
27#ifdef __ANDROID__
28#include <android-C2Buffer.h>
29#else
30
31typedef void* C2Handle;
32
33#endif
34
35/// \defgroup buffer Buffers
36/// @{
37
38/// \defgroup buffer_sync Synchronization
39/// @{
40
41/**
42 * Synchronization is accomplished using event and fence objects.
43 *
44 * These are cross-process extensions of promise/future infrastructure.
45 * Events are analogous to std::promise<void>, whereas fences are to std::shared_future<void>.
46 *
47 * Fences and events are shareable/copyable.
48 *
49 * Fences are used in two scenarios, and all copied instances refer to the same event.
50 * \todo do events need to be copyable or should they be unique?
51 *
52 * acquire sync fence object: signaled when it is safe for the component or client to access
53 * (the contents of) an object.
54 *
55 * release sync fence object: \todo
56 *
57 * Fences can be backed by hardware. Hardware fences are guaranteed to signal NO MATTER WHAT within
58 * a short (platform specific) amount of time; this guarantee is usually less than 15 msecs.
59 */
60
61/**
62 * Fence object used by components and the framework.
63 *
64 * Implements the waiting for an event, analogous to a 'future'.
65 *
66 * To be implemented by vendors if using HW fences.
67 */
68class C2Fence {
69public:
70 /**
71 * Waits for a fence to be signaled with a timeout.
72 *
73 * \todo a mechanism to cancel a wait - for now the only way to do this is to abandon the
74 * event, but fences are shared so canceling a wait will cancel all waits.
75 *
76 * \param timeoutNs the maximum time to wait in nsecs
77 *
78 * \retval C2_OK the fence has been signaled
79 * \retval C2_TIMED_OUT the fence has not been signaled within the timeout
80 * \retval C2_BAD_STATE the fence has been abandoned without being signaled (it will never
81 * be signaled)
82 * \retval C2_REFUSED no permission to wait for the fence (unexpected - system)
83 * \retval C2_CORRUPTED some unknown error prevented waiting for the fence (unexpected)
84 */
85 c2_status_t wait(c2_nsecs_t timeoutNs);
86
87 /**
88 * Used to check if this fence is valid (if there is a chance for it to be signaled.)
89 * A fence becomes invalid if the controling event is destroyed without it signaling the fence.
90 *
91 * \return whether this fence is valid
92 */
93 bool valid() const;
94
95 /**
96 * Used to check if this fence has been signaled (is ready).
97 *
98 * \return whether this fence has been signaled
99 */
100 bool ready() const;
101
102 /**
103 * Returns a file descriptor that can be used to wait for this fence in a select system call.
104 * \note The returned file descriptor, if valid, must be closed by the caller.
105 *
106 * This can be used in e.g. poll() system calls. This file becomes readable (POLLIN) when the
107 * fence is signaled, and bad (POLLERR) if the fence is abandoned.
108 *
109 * \return a file descriptor representing this fence (with ownership), or -1 if the fence
110 * has already been signaled (\todo or abandoned).
111 *
112 * \todo this must be compatible with fences used by gralloc
113 */
114 int fd() const;
115
116 /**
117 * Returns whether this fence is a hardware-backed fence.
118 * \return whether this is a hardware fence
119 */
120 bool isHW() const;
121
122 /**
123 * Null-fence. A fence that has fired.
124 */
125 constexpr C2Fence() : mImpl(nullptr) { }
126
127private:
128 class Impl;
129 std::shared_ptr<Impl> mImpl;
130 C2Fence(std::shared_ptr<Impl> impl);
131 friend struct _C2FenceFactory;
132};
133
134/**
135 * Event object used by components and the framework.
136 *
137 * Implements the signaling of an event, analogous to a 'promise'.
138 *
139 * Hardware backed events do not go through this object, and must be exposed directly as fences
140 * by vendors.
141 */
142class C2Event {
143public:
144 /**
145 * Returns a fence for this event.
146 */
147 C2Fence fence() const;
148
149 /**
150 * Signals (all) associated fence(s).
151 * This has no effect no effect if the event was already signaled or abandoned.
152 *
153 * \retval C2_OK the fence(s) were successfully signaled
154 * \retval C2_BAD_STATE the fence(s) have already been abandoned or merged (caller error)
155 * \retval C2_DUPLICATE the fence(s) have already been signaled (caller error)
156 * \retval C2_REFUSED no permission to signal the fence (unexpected - system)
157 * \retval C2_CORRUPTED some unknown error prevented signaling the fence(s) (unexpected)
158 */
159 c2_status_t fire();
160
161 /**
162 * Trigger this event from the merging of the supplied fences. This means that it will be
163 * abandoned if any of these fences have been abandoned, and it will be fired if all of these
164 * fences have been signaled.
165 *
166 * \retval C2_OK the merging was successfully done
167 * \retval C2_NO_MEMORY not enough memory to perform the merging
168 * \retval C2_DUPLICATE the fence have already been merged (caller error)
169 * \retval C2_BAD_STATE the fence have already been signaled or abandoned (caller error)
170 * \retval C2_REFUSED no permission to merge the fence (unexpected - system)
171 * \retval C2_CORRUPTED some unknown error prevented merging the fence(s) (unexpected)
172 */
173 c2_status_t merge(std::vector<C2Fence> fences);
174
175 /**
176 * Abandons the event and any associated fence(s).
177 * \note Call this to explicitly abandon an event before it is destructed to avoid a warning.
178 *
179 * This has no effect no effect if the event was already signaled or abandoned.
180 *
181 * \retval C2_OK the fence(s) were successfully signaled
182 * \retval C2_BAD_STATE the fence(s) have already been signaled or merged (caller error)
183 * \retval C2_DUPLICATE the fence(s) have already been abandoned (caller error)
184 * \retval C2_REFUSED no permission to abandon the fence (unexpected - system)
185 * \retval C2_CORRUPTED some unknown error prevented signaling the fence(s) (unexpected)
186 */
187 c2_status_t abandon();
188
189private:
190 class Impl;
191 std::shared_ptr<Impl> mImpl;
192};
193
194/// \addtogroup buf_internal Internal
195/// @{
196
197/**
198 * Interface for objects that encapsulate an updatable status value.
199 */
200struct _C2InnateStatus {
201 inline c2_status_t status() const { return mStatus; }
202
203protected:
204 _C2InnateStatus(c2_status_t status) : mStatus(status) { }
205
206 c2_status_t mStatus; // this status is updatable by the object
207};
208
209/// @}
210
211/**
212 * This is a utility template for objects protected by an acquire fence, so that errors during
213 * acquiring the object are propagated to the object itself.
214 */
215template<typename T>
216class C2Acquirable : public C2Fence {
217public:
218 /**
219 * Acquires the object protected by an acquire fence. Any errors during the mapping will be
220 * passed to the object.
221 *
222 * \return acquired object potentially invalidated if waiting for the fence failed.
223 */
224 T get() {
225 // TODO:
226 // wait();
227 return mT;
228 }
229
230protected:
231 C2Acquirable(c2_status_t error, C2Fence fence, T t) : C2Fence(fence), mInitialError(error), mT(t) { }
232
233private:
234 c2_status_t mInitialError;
235 T mT; // TODO: move instead of copy
236};
237
238/// @}
239
240/// \defgroup linear Linear Data Blocks
241/// @{
242
243/**************************************************************************************************
244 LINEAR ASPECTS, BLOCKS AND VIEWS
245**************************************************************************************************/
246
247/**
248 * Basic segment math support.
249 */
250struct C2Segment {
251 uint32_t offset;
252 uint32_t size;
253
254 inline constexpr C2Segment(uint32_t offset_, uint32_t size_)
255 : offset(offset_),
256 size(size_) {
257 }
258
259 inline constexpr bool isEmpty() const {
260 return size == 0;
261 }
262
263 inline constexpr bool isValid() const {
264 return offset <= ~size;
265 }
266
267 inline constexpr operator bool() const {
268 return isValid() && !isEmpty();
269 }
270
271 inline constexpr bool operator!() const {
272 return !bool(*this);
273 }
274
275 C2_ALLOW_OVERFLOW
276 inline constexpr bool contains(const C2Segment &other) const {
277 if (!isValid() || !other.isValid()) {
278 return false;
279 } else {
280 return offset <= other.offset
281 && offset + size >= other.offset + other.size;
282 }
283 }
284
285 inline constexpr bool operator==(const C2Segment &other) const {
286 if (!isValid()) {
287 return !other.isValid();
288 } else {
289 return offset == other.offset && size == other.size;
290 }
291 }
292
293 inline constexpr bool operator!=(const C2Segment &other) const {
294 return !operator==(other);
295 }
296
297 inline constexpr bool operator>=(const C2Segment &other) const {
298 return contains(other);
299 }
300
301 inline constexpr bool operator>(const C2Segment &other) const {
302 return contains(other) && !operator==(other);
303 }
304
305 inline constexpr bool operator<=(const C2Segment &other) const {
306 return other.contains(*this);
307 }
308
309 inline constexpr bool operator<(const C2Segment &other) const {
310 return other.contains(*this) && !operator==(other);
311 }
312
313 C2_ALLOW_OVERFLOW
314 inline constexpr uint32_t end() const {
315 return offset + size;
316 }
317
318 C2_ALLOW_OVERFLOW
319 inline constexpr C2Segment intersect(const C2Segment &other) const {
320 return C2Segment(c2_max(offset, other.offset),
321 c2_min(end(), other.end()) - c2_max(offset, other.offset));
322 }
323
324 /** clamps end to offset if it overflows */
325 inline constexpr C2Segment normalize() const {
326 return C2Segment(offset, c2_max(offset, end()) - offset);
327 }
328
329 /** clamps end to max if it overflows */
330 inline constexpr C2Segment saturate() const {
331 return C2Segment(offset, c2_min(size, ~offset));
332 }
333
334};
335
336/**
337 * Common aspect for all objects that have a linear capacity.
338 */
339class _C2LinearCapacityAspect {
340/// \name Linear capacity interface
341/// @{
342public:
343 inline constexpr uint32_t capacity() const { return mCapacity; }
344
345 inline constexpr operator C2Segment() const {
346 return C2Segment(0, mCapacity);
347 }
348
349protected:
350
351#if UINTPTR_MAX == 0xffffffff
352 static_assert(sizeof(size_t) == sizeof(uint32_t), "size_t is too big");
353#else
354 static_assert(sizeof(size_t) > sizeof(uint32_t), "size_t is too small");
355 // explicitly disable construction from size_t
356 inline explicit _C2LinearCapacityAspect(size_t capacity) = delete;
357#endif
358
359 inline explicit constexpr _C2LinearCapacityAspect(uint32_t capacity)
360 : mCapacity(capacity) { }
361
362 inline explicit constexpr _C2LinearCapacityAspect(const _C2LinearCapacityAspect *parent)
363 : mCapacity(parent == nullptr ? 0 : parent->capacity()) { }
364
365private:
366 uint32_t mCapacity;
367/// @}
368};
369
370/**
371 * Aspect for objects that have a linear range inside a linear capacity.
372 *
373 * This class is copiable.
374 */
375class _C2LinearRangeAspect : public _C2LinearCapacityAspect {
376/// \name Linear range interface
377/// @{
378public:
379 inline constexpr uint32_t offset() const { return mOffset; }
380 inline constexpr uint32_t endOffset() const { return mOffset + mSize; }
381 inline constexpr uint32_t size() const { return mSize; }
382
383 inline constexpr operator C2Segment() const {
384 return C2Segment(mOffset, mSize);
385 }
386
387private:
388 // subrange of capacity [0, capacity] & [size, size + offset]
389 inline constexpr _C2LinearRangeAspect(uint32_t capacity_, size_t offset, size_t size)
390 : _C2LinearCapacityAspect(capacity_),
391 mOffset(c2_min(offset, capacity())),
392 mSize(c2_min(size, capacity() - mOffset)) {
393 }
394
395protected:
396 // copy constructor (no error check)
397 inline constexpr _C2LinearRangeAspect(const _C2LinearRangeAspect &other)
398 : _C2LinearCapacityAspect(other.capacity()),
399 mOffset(other.offset()),
400 mSize(other.size()) {
401 }
402
403 // parent capacity range [0, capacity]
404 inline constexpr explicit _C2LinearRangeAspect(const _C2LinearCapacityAspect *parent)
405 : _C2LinearCapacityAspect(parent),
406 mOffset(0),
407 mSize(capacity()) {
408 }
409
410 // subrange of parent capacity [0, capacity] & [size, size + offset]
411 inline constexpr _C2LinearRangeAspect(const _C2LinearCapacityAspect *parent, size_t offset, size_t size)
412 : _C2LinearCapacityAspect(parent),
413 mOffset(c2_min(offset, capacity())),
414 mSize(c2_min(size, capacity() - mOffset)) {
415 }
416
417 // subsection of the parent's and [offset, offset + size] ranges
418 inline constexpr _C2LinearRangeAspect(const _C2LinearRangeAspect *parent, size_t offset, size_t size)
419 : _C2LinearCapacityAspect(parent),
420 mOffset(c2_min(c2_max(offset, parent == nullptr ? 0 : parent->offset()), capacity())),
421 mSize(std::min(c2_min(size, parent == nullptr ? 0 : parent->size()), capacity() - mOffset)) {
422 }
423
424public:
425 inline constexpr _C2LinearRangeAspect childRange(size_t offset, size_t size) const {
426 return _C2LinearRangeAspect(
427 mSize,
428 c2_min(c2_max(offset, mOffset), capacity()) - mOffset,
429 c2_min(c2_min(size, mSize), capacity() - c2_min(c2_max(offset, mOffset), capacity())));
430 }
431
432 friend class _C2EditableLinearRangeAspect;
433 // invariants 0 <= mOffset <= mOffset + mSize <= capacity()
434 uint32_t mOffset;
435 uint32_t mSize;
436/// @}
437};
438
439/**
440 * Utility class for safe range calculations using size_t-s.
441 */
442class C2LinearRange : public _C2LinearRangeAspect {
443public:
444 inline constexpr C2LinearRange(const _C2LinearCapacityAspect &parent, size_t offset, size_t size)
445 : _C2LinearRangeAspect(&parent, offset, size) { }
446
447 inline constexpr C2LinearRange(const _C2LinearRangeAspect &parent, size_t offset, size_t size)
448 : _C2LinearRangeAspect(&parent, offset, size) { }
449
450 inline constexpr C2LinearRange intersect(size_t offset, size_t size) const {
451 return C2LinearRange(*this, offset, size);
452 }
453};
454
455/**
456 * Utility class for simple and safe capacity and range construction.
457 */
458class C2LinearCapacity : public _C2LinearCapacityAspect {
459public:
460 inline constexpr explicit C2LinearCapacity(size_t capacity)
461 : _C2LinearCapacityAspect(c2_min(capacity, std::numeric_limits<uint32_t>::max())) { }
462
463 inline constexpr C2LinearRange range(size_t offset, size_t size) const {
464 return C2LinearRange(*this, offset, size);
465 }
466};
467
468/**
469 * Aspect for objects that have an editable linear range.
470 *
471 * This class is copiable.
472 */
473class _C2EditableLinearRangeAspect : public _C2LinearRangeAspect {
474 using _C2LinearRangeAspect::_C2LinearRangeAspect;
475
476public:
477/// \name Editable linear range interface
478/// @{
479
480 /**
481 * Sets the offset to |offset|, while trying to keep the end of the buffer unchanged (e.g.
482 * size will grow if offset is decreased, and may shrink if offset is increased.) Returns
483 * true if successful, which is equivalent to if 0 <= |offset| <= capacity().
484 *
485 * Note: setting offset and size will yield different result depending on the order of the
486 * operations. Always set offset first to ensure proper size.
487 */
488 inline bool setOffset(uint32_t offset) {
489 if (offset > capacity()) {
490 return false;
491 }
492
493 if (offset > mOffset + mSize) {
494 mSize = 0;
495 } else {
496 mSize = mOffset + mSize - offset;
497 }
498 mOffset = offset;
499 return true;
500 }
501
502 /**
503 * Sets the size to |size|. Returns true if successful, which is equivalent to
504 * if 0 <= |size| <= capacity() - offset().
505 *
506 * Note: setting offset and size will yield different result depending on the order of the
507 * operations. Always set offset first to ensure proper size.
508 */
509 inline bool setSize(uint32_t size) {
510 if (size > capacity() - mOffset) {
511 return false;
512 } else {
513 mSize = size;
514 return true;
515 }
516 }
517
518 /**
519 * Sets the offset to |offset| with best effort. Same as setOffset() except that offset will
520 * be clamped to the buffer capacity.
521 *
522 * Note: setting offset and size (even using best effort) will yield different result depending
523 * on the order of the operations. Always set offset first to ensure proper size.
524 */
525 inline void setOffset_be(uint32_t offset) {
526 (void)setOffset(c2_min(offset, capacity()));
527 }
528
529 /**
530 * Sets the size to |size| with best effort. Same as setSize() except that the selected region
531 * will be clamped to the buffer capacity (e.g. size is clamped to [0, capacity() - offset()]).
532 *
533 * Note: setting offset and size (even using best effort) will yield different result depending
534 * on the order of the operations. Always set offset first to ensure proper size.
535 */
536 inline void setSize_be(uint32_t size) {
537 mSize = c2_min(size, capacity() - mOffset);
538 }
539/// @}
540};
541
542/**************************************************************************************************
543 ALLOCATIONS
544**************************************************************************************************/
545
546/// \ingroup allocator Allocation and memory placement
547/// @{
548
549class C2LinearAllocation;
550class C2GraphicAllocation;
551
552/**
553 * Allocators are used by the framework to allocate memory (allocations) for buffers. They can
554 * support either 1D or 2D allocations.
555 *
556 * \note In theory they could support both, but in practice, we will use only one or the other.
557 *
558 * Never constructed on stack.
559 *
560 * Allocators are provided by vendors.
561 */
562class C2Allocator {
563public:
564 /**
565 * Allocator ID type.
566 */
567 typedef uint32_t id_t;
568 enum : id_t {
569 BAD_ID = 0xBADD, // invalid allocator ID
570 };
571
572 /**
573 * Allocation types. This is a bitmask and is used in C2Allocator::Info
574 * to list the supported allocation types of an allocator.
575 */
576 enum type_t : uint32_t {
577 LINEAR = 1 << 0, //
578 GRAPHIC = 1 << 1,
579 };
580
581 /**
582 * Information about an allocator.
583 *
584 * Allocators don't have a query API so all queriable information is stored here.
585 */
586 struct Traits {
587 C2String name; ///< allocator name
588 id_t id; ///< allocator ID
589 type_t supportedTypes; ///< supported allocation types
590 C2MemoryUsage minimumUsage; ///< usage that is minimally required for allocations
591 C2MemoryUsage maximumUsage; ///< usage that is maximally allowed for allocations
592 };
593
594 /**
595 * Returns the unique name of this allocator.
596 *
597 * This method MUST be "non-blocking" and return within 1ms.
598 *
599 * \return the name of this allocator.
600 * \retval an empty string if there was not enough memory to allocate the actual name.
601 */
602 virtual C2String getName() const = 0;
603
604 /**
605 * Returns a unique ID for this allocator. This ID is used to get this allocator from the
606 * allocator store, and to identify this allocator across all processes.
607 *
608 * This method MUST be "non-blocking" and return within 1ms.
609 *
610 * \return a unique ID for this allocator.
611 */
612 virtual id_t getId() const = 0;
613
614 /**
615 * Returns the allocator traits.
616 *
617 * This method MUST be "non-blocking" and return within 1ms.
618 *
619 * Allocators don't have a full-fledged query API, only this method.
620 *
621 * \return allocator information
622 */
623 virtual std::shared_ptr<const Traits> getTraits() const = 0;
624
625 /**
626 * Allocates a 1D allocation of given |capacity| and |usage|. If successful, the allocation is
627 * stored in |allocation|. Otherwise, |allocation| is set to 'nullptr'.
628 *
629 * \param capacity the size of requested allocation (the allocation could be slightly
630 * larger, e.g. to account for any system-required alignment)
631 * \param usage the memory usage info for the requested allocation. \note that the
632 * returned allocation may be later used/mapped with different usage.
633 * The allocator should layout the buffer to be optimized for this usage,
634 * but must support any usage. One exception: protected buffers can
635 * only be used in a protected scenario.
636 * \param allocation pointer to where the allocation shall be stored on success. nullptr
637 * will be stored here on failure
638 *
639 * \retval C2_OK the allocation was successful
640 * \retval C2_NO_MEMORY not enough memory to complete the allocation
641 * \retval C2_TIMED_OUT the allocation timed out
642 * \retval C2_REFUSED no permission to complete the allocation
643 * \retval C2_BAD_VALUE capacity or usage are not supported (invalid) (caller error)
644 * \retval C2_OMITTED this allocator does not support 1D allocations
645 * \retval C2_CORRUPTED some unknown, unrecoverable error occured during allocation (unexpected)
646 */
647 virtual c2_status_t newLinearAllocation(
648 uint32_t capacity __unused, C2MemoryUsage usage __unused,
649 std::shared_ptr<C2LinearAllocation> *allocation /* nonnull */) {
650 *allocation = nullptr;
651 return C2_OMITTED;
652 }
653
654 /**
655 * (Re)creates a 1D allocation from a native |handle|. If successful, the allocation is stored
656 * in |allocation|. Otherwise, |allocation| is set to 'nullptr'.
657 *
658 * \param handle the handle for the existing allocation. On success, the allocation will
659 * take ownership of |handle|.
660 * \param allocation pointer to where the allocation shall be stored on success. nullptr
661 * will be stored here on failure
662 *
663 * \retval C2_OK the allocation was recreated successfully
664 * \retval C2_NO_MEMORY not enough memory to recreate the allocation
665 * \retval C2_TIMED_OUT the recreation timed out (unexpected)
666 * \retval C2_REFUSED no permission to recreate the allocation
667 * \retval C2_BAD_VALUE invalid handle (caller error)
668 * \retval C2_OMITTED this allocator does not support 1D allocations
669 * \retval C2_CORRUPTED some unknown, unrecoverable error occured during allocation (unexpected)
670 */
671 virtual c2_status_t priorLinearAllocation(
672 const C2Handle *handle __unused,
673 std::shared_ptr<C2LinearAllocation> *allocation /* nonnull */) {
674 *allocation = nullptr;
675 return C2_OMITTED;
676 }
677
678 /**
679 * Allocates a 2D allocation of given |width|, |height|, |format| and |usage|. If successful,
680 * the allocation is stored in |allocation|. Otherwise, |allocation| is set to 'nullptr'.
681 *
682 * \param width the width of requested allocation (the allocation could be slightly
683 * larger, e.g. to account for any system-required alignment)
684 * \param height the height of requested allocation (the allocation could be slightly
685 * larger, e.g. to account for any system-required alignment)
686 * \param format the pixel format of requested allocation. This could be a vendor
687 * specific format.
688 * \param usage the memory usage info for the requested allocation. \note that the
689 * returned allocation may be later used/mapped with different usage.
690 * The allocator should layout the buffer to be optimized for this usage,
691 * but must support any usage. One exception: protected buffers can
692 * only be used in a protected scenario.
693 * \param allocation pointer to where the allocation shall be stored on success. nullptr
694 * will be stored here on failure
695 *
696 * \retval C2_OK the allocation was successful
697 * \retval C2_NO_MEMORY not enough memory to complete the allocation
698 * \retval C2_TIMED_OUT the allocation timed out
699 * \retval C2_REFUSED no permission to complete the allocation
700 * \retval C2_BAD_VALUE width, height, format or usage are not supported (invalid) (caller error)
701 * \retval C2_OMITTED this allocator does not support 2D allocations
702 * \retval C2_CORRUPTED some unknown, unrecoverable error occured during allocation (unexpected)
703 */
704 virtual c2_status_t newGraphicAllocation(
705 uint32_t width __unused, uint32_t height __unused, uint32_t format __unused,
706 C2MemoryUsage usage __unused,
707 std::shared_ptr<C2GraphicAllocation> *allocation /* nonnull */) {
708 *allocation = nullptr;
709 return C2_OMITTED;
710 }
711
712 /**
713 * (Re)creates a 2D allocation from a native handle. If successful, the allocation is stored
714 * in |allocation|. Otherwise, |allocation| is set to 'nullptr'.
715 *
716 * \param handle the handle for the existing allocation. On success, the allocation will
717 * take ownership of |handle|.
718 * \param allocation pointer to where the allocation shall be stored on success. nullptr
719 * will be stored here on failure
720 *
721 * \retval C2_OK the allocation was recreated successfully
722 * \retval C2_NO_MEMORY not enough memory to recreate the allocation
723 * \retval C2_TIMED_OUT the recreation timed out (unexpected)
724 * \retval C2_REFUSED no permission to recreate the allocation
725 * \retval C2_BAD_VALUE invalid handle (caller error)
726 * \retval C2_OMITTED this allocator does not support 2D allocations
727 * \retval C2_CORRUPTED some unknown, unrecoverable error occured during recreation (unexpected)
728 */
729 virtual c2_status_t priorGraphicAllocation(
730 const C2Handle *handle __unused,
731 std::shared_ptr<C2GraphicAllocation> *allocation /* nonnull */) {
732 *allocation = nullptr;
733 return C2_OMITTED;
734 }
735
736 virtual ~C2Allocator() = default;
737protected:
738 C2Allocator() = default;
739};
740
741/**
742 * \ingroup linear allocator
743 * 1D allocation interface.
744 */
745class C2LinearAllocation : public _C2LinearCapacityAspect {
746public:
747 /**
748 * Maps a portion of an allocation starting from |offset| with |size| into local process memory.
749 * Stores the starting address into |addr|, or NULL if the operation was unsuccessful.
750 * |fence| will contain an acquire sync fence object. If it is already
751 * safe to access the buffer contents, then it will contain an empty (already fired) fence.
752 *
753 * \param offset starting position of the portion to be mapped (this does not have to
754 * be page aligned)
755 * \param size size of the portion to be mapped (this does not have to be page
756 * aligned)
757 * \param usage the desired usage. \todo this must be kSoftwareRead and/or
758 * kSoftwareWrite.
759 * \param fence a pointer to a fence object if an async mapping is requested. If
760 * not-null, and acquire fence will be stored here on success, or empty
761 * fence on failure. If null, the mapping will be synchronous.
762 * \param addr a pointer to where the starting address of the mapped portion will be
763 * stored. On failure, nullptr will be stored here.
764 *
765 * \todo Only one portion can be mapped at the same time - this is true for gralloc, but there
766 * is no need for this for 1D buffers.
767 * \todo Do we need to support sync operation as we could just wait for the fence?
768 *
769 * \retval C2_OK the operation was successful
770 * \retval C2_REFUSED no permission to map the portion
771 * \retval C2_TIMED_OUT the operation timed out
772 * \retval C2_DUPLICATE if the allocation is already mapped.
773 * \retval C2_NO_MEMORY not enough memory to complete the operation
774 * \retval C2_BAD_VALUE the parameters (offset/size) are invalid or outside the allocation, or
775 * the usage flags are invalid (caller error)
776 * \retval C2_CORRUPTED some unknown error prevented the operation from completing (unexpected)
777 */
778 virtual c2_status_t map(
779 size_t offset, size_t size, C2MemoryUsage usage, C2Fence *fence /* nullable */,
780 void **addr /* nonnull */) = 0;
781
782 /**
783 * Unmaps a portion of an allocation at |addr| with |size|. These must be parameters previously
784 * passed to and returned by |map|; otherwise, this operation is a no-op.
785 *
786 * \param addr starting address of the mapped region
787 * \param size size of the mapped region
788 * \param fence a pointer to a fence object if an async unmapping is requested. If
789 * not-null, a release fence will be stored here on success, or empty fence
790 * on failure. This fence signals when the original allocation contains
791 * all changes that happened to the mapped region. If null, the unmapping
792 * will be synchronous.
793 *
794 * \retval C2_OK the operation was successful
795 * \retval C2_TIMED_OUT the operation timed out
796 * \retval C2_NOT_FOUND if the allocation was not mapped previously.
797 * \retval C2_BAD_VALUE the parameters (addr/size) do not correspond to previously mapped
798 * regions (caller error)
799 * \retval C2_CORRUPTED some unknown error prevented the operation from completing (unexpected)
800 * \retval C2_REFUSED no permission to unmap the portion (unexpected - system)
801 */
802 virtual c2_status_t unmap(void *addr, size_t size, C2Fence *fence /* nullable */) = 0;
803
804 /**
805 * Returns the allocator ID for this allocation. This is useful to put the handle into context.
806 */
807 virtual C2Allocator::id_t getAllocatorId() const = 0;
808
809 /**
810 * Returns a pointer to the allocation handle.
811 */
812 virtual const C2Handle *handle() const = 0;
813
814 /**
815 * Returns true if this is the same allocation as |other|.
816 */
817 virtual bool equals(const std::shared_ptr<C2LinearAllocation> &other) const = 0;
818
819protected:
820 // \todo should we limit allocation directly?
821 C2LinearAllocation(size_t capacity) : _C2LinearCapacityAspect(c2_min(capacity, UINT32_MAX)) {}
822 virtual ~C2LinearAllocation() = default;
823};
824
825class C2CircularBlock;
826class C2LinearBlock;
827class C2GraphicBlock;
828
829/**
830 * Block pools are used by components to obtain output buffers in an efficient way. They can
831 * support either linear (1D), circular (1D) or graphic (2D) blocks.
832 *
833 * Block pools decouple the recycling of memory/allocations from the components. They are meant to
834 * be an opaque service (there are no public APIs other than obtaining blocks) provided by the
835 * platform. Block pools are also meant to decouple allocations from memory used by buffers. This
836 * is accomplished by allowing pools to allot multiple memory 'blocks' on a single allocation. As
837 * their name suggest, block pools maintain a pool of memory blocks. When a component asks for
838 * a memory block, pools will try to return a free memory block already in the pool. If no such
839 * block exists, they will allocate memory using the backing allocator and allot a block on that
840 * allocation. When blocks are no longer used in the system, they are recycled back to the block
841 * pool and are available as free blocks.
842 *
843 * Never constructed on stack.
844 */
845class C2BlockPool {
846public:
847 /**
848 * Block pool ID type.
849 */
850 typedef uint64_t local_id_t;
851
852 enum : local_id_t {
853 BASIC_LINEAR = 0, ///< ID of basic (unoptimized) block pool for fetching 1D blocks
854 BASIC_GRAPHIC = 1, ///< ID of basic (unoptimized) block pool for fetching 2D blocks
855 PLATFORM_START = 0x10,
856 };
857
858 /**
859 * Returns the ID for this block pool. This ID is used to get this block pool from the platform.
860 * It is only valid in the current process.
861 *
862 * This method MUST be "non-blocking" and return within 1ms.
863 *
864 * \return a local ID for this block pool.
865 */
866 virtual local_id_t getLocalId() const = 0;
867
868 /**
869 * Returns the ID of the backing allocator of this block pool.
870 *
871 * This method MUST be "non-blocking" and return within 1ms.
872 *
873 * \return the ID of the backing allocator of this block pool.
874 */
875 virtual C2Allocator::id_t getAllocatorId() const = 0;
876
877 /**
878 * Obtains a linear writeable block of given |capacity| and |usage|. If successful, the
879 * block is stored in |block|. Otherwise, |block| is set to 'nullptr'.
880 *
881 * \param capacity the size of requested block.
882 * \param usage the memory usage info for the requested block. Returned blocks will be
883 * optimized for this usage, but may be used with any usage. One exception:
884 * protected blocks/buffers can only be used in a protected scenario.
885 * \param block pointer to where the obtained block shall be stored on success. nullptr will
886 * be stored here on failure
887 *
888 * \retval C2_OK the operation was successful
889 * \retval C2_NO_MEMORY not enough memory to complete any required allocation
890 * \retval C2_TIMED_OUT the operation timed out
891 * \retval C2_REFUSED no permission to complete any required allocation
892 * \retval C2_BAD_VALUE capacity or usage are not supported (invalid) (caller error)
893 * \retval C2_OMITTED this pool does not support linear blocks
894 * \retval C2_CORRUPTED some unknown, unrecoverable error occured during operation (unexpected)
895 */
896 virtual c2_status_t fetchLinearBlock(
897 uint32_t capacity __unused, C2MemoryUsage usage __unused,
898 std::shared_ptr<C2LinearBlock> *block /* nonnull */) {
899 *block = nullptr;
900 return C2_OMITTED;
901 }
902
903 /**
904 * Obtains a circular writeable block of given |capacity| and |usage|. If successful, the
905 * block is stored in |block|. Otherwise, |block| is set to 'nullptr'.
906 *
907 * \param capacity the size of requested circular block. (note: the size of the obtained
908 * block could be slightly larger, e.g. to accommodate any system-required
909 * alignment)
910 * \param usage the memory usage info for the requested block. Returned blocks will be
911 * optimized for this usage, but may be used with any usage. One exception:
912 * protected blocks/buffers can only be used in a protected scenario.
913 * \param block pointer to where the obtained block shall be stored on success. nullptr
914 * will be stored here on failure
915 *
916 * \retval C2_OK the operation was successful
917 * \retval C2_NO_MEMORY not enough memory to complete any required allocation
918 * \retval C2_TIMED_OUT the operation timed out
919 * \retval C2_REFUSED no permission to complete any required allocation
920 * \retval C2_BAD_VALUE capacity or usage are not supported (invalid) (caller error)
921 * \retval C2_OMITTED this pool does not support circular blocks
922 * \retval C2_CORRUPTED some unknown, unrecoverable error occured during operation (unexpected)
923 */
924 virtual c2_status_t fetchCircularBlock(
925 uint32_t capacity __unused, C2MemoryUsage usage __unused,
926 std::shared_ptr<C2CircularBlock> *block /* nonnull */) {
927 *block = nullptr;
928 return C2_OMITTED;
929 }
930
931 /**
932 * Obtains a 2D graphic block of given |width|, |height|, |format| and |usage|. If successful,
933 * the block is stored in |block|. Otherwise, |block| is set to 'nullptr'.
934 *
935 * \param width the width of requested block (the obtained block could be slightly larger, e.g.
936 * to accommodate any system-required alignment)
937 * \param height the height of requested block (the obtained block could be slightly larger,
938 * e.g. to accommodate any system-required alignment)
939 * \param format the pixel format of requested block. This could be a vendor specific format.
940 * \param usage the memory usage info for the requested block. Returned blocks will be
941 * optimized for this usage, but may be used with any usage. One exception:
942 * protected blocks/buffers can only be used in a protected scenario.
943 * \param block pointer to where the obtained block shall be stored on success. nullptr
944 * will be stored here on failure
945 *
946 * \retval C2_OK the operation was successful
947 * \retval C2_NO_MEMORY not enough memory to complete any required allocation
948 * \retval C2_TIMED_OUT the operation timed out
949 * \retval C2_REFUSED no permission to complete any required allocation
950 * \retval C2_BAD_VALUE width, height, format or usage are not supported (invalid) (caller
951 * error)
952 * \retval C2_OMITTED this pool does not support 2D blocks
953 * \retval C2_CORRUPTED some unknown, unrecoverable error occured during operation (unexpected)
954 */
955 virtual c2_status_t fetchGraphicBlock(
956 uint32_t width __unused, uint32_t height __unused, uint32_t format __unused,
957 C2MemoryUsage usage __unused,
958 std::shared_ptr<C2GraphicBlock> *block /* nonnull */) {
959 *block = nullptr;
960 return C2_OMITTED;
961 }
962
963 virtual ~C2BlockPool() = default;
964protected:
965 C2BlockPool() = default;
966};
967
968/// @}
969
970// ================================================================================================
971// BLOCKS
972// ================================================================================================
973
974/**
975 * Blocks are sections of allocations. They can be either 1D or 2D.
976 */
977
978class C2LinearAllocation;
979
980/**
981 * A 1D block.
982 *
983 * \note capacity() is not meaningful for users of blocks; instead size() is the capacity of the
984 * usable portion. Use and offset() and size() if accessing the block directly through its handle
985 * to represent the allotted range of the underlying allocation to this block.
986 */
987class C2Block1D : public _C2LinearRangeAspect {
988public:
989 /**
990 * Returns the underlying handle for this allocation.
991 *
992 * \note that the block and its block pool has shared ownership of the handle
993 * and if all references to the block are released, the underlying block
994 * allocation may get reused even if a client keeps a clone of this handle.
995 */
996 const C2Handle *handle() const;
997
998 /**
999 * Returns the allocator's ID that created the underlying allocation for this block. This
1000 * provides the context for understanding the handle.
1001 */
1002 C2Allocator::id_t getAllocatorId() const;
1003
1004protected:
1005 class Impl;
1006 /** construct a block. */
1007 C2Block1D(std::shared_ptr<Impl> impl, const _C2LinearRangeAspect &range);
1008
1009 friend struct _C2BlockFactory;
1010 std::shared_ptr<Impl> mImpl;
1011};
1012
1013/**
1014 * Read view provides read-only access for a linear memory segment.
1015 *
1016 * This class is copiable.
1017 */
1018class C2ReadView : public _C2LinearCapacityAspect {
1019public:
1020 /**
1021 * \return pointer to the start of the block or nullptr on error.
1022 * This pointer is only valid during the lifetime of this view or until it is released.
1023 */
1024 const uint8_t *data() const;
1025
1026 /**
1027 * Returns a portion of this view.
1028 *
1029 * \param offset the start offset of the portion. \note This is clamped to the capacity of this
1030 * view.
1031 * \param size the size of the portion. \note This is clamped to the remaining data from offset.
1032 *
1033 * \return a read view containing a portion of this view
1034 */
1035 C2ReadView subView(size_t offset, size_t size) const;
1036
1037 /**
1038 * \return error during the creation/mapping of this view.
1039 */
1040 c2_status_t error() const;
1041
1042 /**
1043 * Releases this view. This sets error to C2_NO_INIT.
1044 */
1045 //void release();
1046
1047protected:
1048 class Impl;
1049 C2ReadView(std::shared_ptr<Impl> impl, uint32_t offset, uint32_t size);
1050 explicit C2ReadView(c2_status_t error);
1051
1052private:
1053 friend struct _C2BlockFactory;
1054 std::shared_ptr<Impl> mImpl;
1055 uint32_t mOffset; /**< offset into the linear block backing this read view */
1056};
1057
1058/**
1059 * Write view provides read/write access for a linear memory segment.
1060 *
1061 * This class is copiable. \todo movable only?
1062 */
1063class C2WriteView : public _C2EditableLinearRangeAspect {
1064public:
1065 /**
1066 * Start of the block.
1067 *
1068 * \return pointer to the start of the block or nullptr on error.
1069 * This pointer is only valid during the lifetime of this view or until it is released.
1070 */
1071 uint8_t *base();
1072
1073 /**
1074 * \return pointer to the block at the current offset or nullptr on error.
1075 * This pointer is only valid during the lifetime of this view or until it is released.
1076 */
1077 uint8_t *data();
1078
1079 /**
1080 * \return error during the creation/mapping of this view.
1081 */
1082 c2_status_t error() const;
1083
1084 /**
1085 * Releases this view. This sets error to C2_NO_INIT.
1086 */
1087 //void release();
1088
1089protected:
1090 class Impl;
1091 C2WriteView(std::shared_ptr<Impl> impl);
1092 explicit C2WriteView(c2_status_t error);
1093
1094private:
1095 friend struct _C2BlockFactory;
1096 std::shared_ptr<Impl> mImpl;
1097};
1098
1099/**
1100 * A constant (read-only) linear block (portion of an allocation) with an acquire fence.
1101 * Blocks are unmapped when created, and can be mapped into a read view on demand.
1102 *
1103 * This class is copiable and contains a reference to the allocation that it is based on.
1104 */
1105class C2ConstLinearBlock : public C2Block1D {
1106public:
1107 /**
1108 * Maps this block into memory and returns a read view for it.
1109 *
1110 * \return a read view for this block.
1111 */
1112 C2Acquirable<C2ReadView> map() const;
1113
1114 /**
1115 * Returns a portion of this block.
1116 *
1117 * \param offset the start offset of the portion. \note This is clamped to the capacity of this
1118 * block.
1119 * \param size the size of the portion. \note This is clamped to the remaining data from offset.
1120 *
1121 * \return a constant linear block containing a portion of this block
1122 */
1123 C2ConstLinearBlock subBlock(size_t offset, size_t size) const;
1124
1125 /**
1126 * Returns the acquire fence for this block.
1127 *
1128 * \return a fence that must be waited on before reading the block.
1129 */
1130 C2Fence fence() const { return mFence; }
1131
1132protected:
1133 C2ConstLinearBlock(std::shared_ptr<Impl> impl, const _C2LinearRangeAspect &range, C2Fence mFence);
1134
1135private:
1136 friend struct _C2BlockFactory;
1137 C2Fence mFence;
1138};
1139
1140/**
1141 * Linear block is a writeable 1D block. Once written, it can be shared in whole or in parts with
1142 * consumers/readers as read-only const linear block(s).
1143 */
1144class C2LinearBlock : public C2Block1D {
1145public:
1146 /**
1147 * Maps this block into memory and returns a write view for it.
1148 *
1149 * \return a write view for this block.
1150 */
1151 C2Acquirable<C2WriteView> map();
1152
1153 /**
1154 * Creates a read-only const linear block for a portion of this block; optionally protected
1155 * by an acquire fence. There are two ways to use this:
1156 *
1157 * 1) share ready block after writing data into the block. In this case no fence shall be
1158 * supplied, and the block shall not be modified after calling this method.
1159 * 2) share block metadata before actually (finishing) writing the data into the block. In
1160 * this case a fence must be supplied that will be triggered when the data is written.
1161 * The block shall be modified only until firing the event for the fence.
1162 */
1163 C2ConstLinearBlock share(size_t offset, size_t size, C2Fence fence);
1164
1165protected:
1166 C2LinearBlock(std::shared_ptr<Impl> impl, const _C2LinearRangeAspect &range);
1167
1168 friend struct _C2BlockFactory;
1169};
1170
1171/// @}
1172
1173/**************************************************************************************************
1174 CIRCULAR BLOCKS AND VIEWS
1175**************************************************************************************************/
1176
1177/// \defgroup circular Circular buffer support
1178/// @{
1179
1180/**
1181 * Circular blocks can be used to share data between a writer and a reader (and/or other consumers)-
1182 * in a memory-efficient way by reusing a section of memory. Circular blocks are a bit more complex
1183 * than single reader/single writer schemes to facilitate block-based consuming of data.
1184 *
1185 * They can operate in two modes:
1186 *
1187 * 1) one writer that creates blocks to be consumed (this model can be used by components)
1188 *
1189 * 2) one writer that writes continuously, and one reader that can creates blocks to be consumed
1190 * by further recipients (this model is used by the framework, and cannot be used by components.)
1191 *
1192 * Circular blocks have four segments with running pointers:
1193 * - reserved: data reserved and available for the writer
1194 * - committed: data committed by the writer and available to the reader (if present)
1195 * - used: data used by consumers (if present)
1196 * - available: unused data available to be reserved
1197 */
1198class C2CircularBlock : public C2Block1D {
1199 // TODO: add methods
1200
1201private:
1202 size_t mReserved __unused; // end of reserved section
1203 size_t mCommitted __unused; // end of committed section
1204 size_t mUsed __unused; // end of used section
1205 size_t mFree __unused; // end of free section
1206};
1207
1208class _C2CircularBlockSegment : public _C2LinearCapacityAspect {
1209public:
1210 /**
1211 * Returns the available size for this segment.
1212 *
1213 * \return currently available size for this segment
1214 */
1215 size_t available() const;
1216
1217 /**
1218 * Reserve some space for this segment from its current start.
1219 *
1220 * \param size desired space in bytes
1221 * \param fence a pointer to an acquire fence. If non-null, the reservation is asynchronous and
1222 * a fence will be stored here that will be signaled when the reservation is
1223 * complete. If null, the reservation is synchronous.
1224 *
1225 * \retval C2_OK the space was successfully reserved
1226 * \retval C2_NO_MEMORY the space requested cannot be reserved
1227 * \retval C2_TIMED_OUT the reservation timed out \todo when?
1228 * \retval C2_CORRUPTED some unknown error prevented reserving space. (unexpected)
1229 */
1230 c2_status_t reserve(size_t size, C2Fence *fence /* nullable */);
1231
1232 /**
1233 * Abandons a portion of this segment. This will move to the beginning of this segment.
1234 *
1235 * \note This methods is only allowed if this segment is producing blocks.
1236 *
1237 * \param size number of bytes to abandon
1238 *
1239 * \retval C2_OK the data was successfully abandoned
1240 * \retval C2_TIMED_OUT the operation timed out (unexpected)
1241 * \retval C2_CORRUPTED some unknown error prevented abandoning the data (unexpected)
1242 */
1243 c2_status_t abandon(size_t size);
1244
1245 /**
1246 * Share a portion as block(s) with consumers (these are moved to the used section).
1247 *
1248 * \note This methods is only allowed if this segment is producing blocks.
1249 * \note Share does not move the beginning of the segment. (\todo add abandon/offset?)
1250 *
1251 * \param size number of bytes to share
1252 * \param fence fence to be used for the section
1253 * \param blocks vector where the blocks of the section are appended to
1254 *
1255 * \retval C2_OK the portion was successfully shared
1256 * \retval C2_NO_MEMORY not enough memory to share the portion
1257 * \retval C2_TIMED_OUT the operation timed out (unexpected)
1258 * \retval C2_CORRUPTED some unknown error prevented sharing the data (unexpected)
1259 */
1260 c2_status_t share(size_t size, C2Fence fence, std::vector<C2ConstLinearBlock> &blocks);
1261
1262 /**
1263 * Returns the beginning offset of this segment from the start of this circular block.
1264 *
1265 * @return beginning offset
1266 */
1267 size_t begin();
1268
1269 /**
1270 * Returns the end offset of this segment from the start of this circular block.
1271 *
1272 * @return end offset
1273 */
1274 size_t end();
1275};
1276
1277/**
1278 * A circular write-view is a dynamic mapped view for a segment of a circular block. Care must be
1279 * taken when using this view so that only the section owned by the segment is modified.
1280 */
1281class C2CircularWriteView : public _C2LinearCapacityAspect {
1282public:
1283 /**
1284 * Start of the circular block.
1285 * \note the segment does not own this pointer.
1286 *
1287 * \return pointer to the start of the circular block or nullptr on error.
1288 */
1289 uint8_t *base();
1290
1291 /**
1292 * \return error during the creation/mapping of this view.
1293 */
1294 c2_status_t error() const;
1295};
1296
1297/**
1298 * The writer of a circular buffer.
1299 *
1300 * Can commit data to a reader (not supported for components) OR share data blocks directly with a
1301 * consumer.
1302 *
1303 * If a component supports outputting data into circular buffers, it must allocate a circular
1304 * block and use a circular writer.
1305 */
1306class C2CircularWriter : public _C2CircularBlockSegment {
1307public:
1308 /**
1309 * Commits a portion of this segment to the next segment. This moves the beginning of the
1310 * segment.
1311 *
1312 * \param size number of bytes to commit to the next segment
1313 * \param fence fence used for the commit (the fence must signal before the data is committed)
1314 */
1315 c2_status_t commit(size_t size, C2Fence fence);
1316
1317 /**
1318 * Maps this block into memory and returns a write view for it.
1319 *
1320 * \return a write view for this block.
1321 */
1322 C2Acquirable<C2CircularWriteView> map();
1323};
1324
1325/// @}
1326
1327/// \defgroup graphic Graphic Data Blocks
1328/// @{
1329
1330/**
1331 * C2Rect: rectangle type with non-negative coordinates.
1332 *
1333 * \note This struct has public fields without getters/setters. All methods are inline.
1334 */
1335struct C2Rect {
1336// public:
1337 uint32_t width;
1338 uint32_t height;
1339 uint32_t left;
1340 uint32_t top;
1341
1342 constexpr inline C2Rect()
1343 : C2Rect(0, 0, 0, 0) { }
1344
1345 constexpr inline C2Rect(uint32_t width_, uint32_t height_)
1346 : C2Rect(width_, height_, 0, 0) { }
1347
1348 constexpr C2Rect inline at(uint32_t left_, uint32_t top_) const {
1349 return C2Rect(width, height, left_, top_);
1350 }
1351
1352 // utility methods
1353
1354 inline constexpr bool isEmpty() const {
1355 return width == 0 || height == 0;
1356 }
1357
1358 inline constexpr bool isValid() const {
1359 return left <= ~width && top <= ~height;
1360 }
1361
1362 inline constexpr operator bool() const {
1363 return isValid() && !isEmpty();
1364 }
1365
1366 inline constexpr bool operator!() const {
1367 return !bool(*this);
1368 }
1369
1370 C2_ALLOW_OVERFLOW
1371 inline constexpr bool contains(const C2Rect &other) const {
1372 if (!isValid() || !other.isValid()) {
1373 return false;
1374 } else {
1375 return left <= other.left && top <= other.top
1376 && left + width >= other.left + other.width
1377 && top + height >= other.top + other.height;
1378 }
1379 }
1380
1381 inline constexpr bool operator==(const C2Rect &other) const {
1382 if (!isValid()) {
1383 return !other.isValid();
1384 } else {
1385 return left == other.left && top == other.top
1386 && width == other.width && height == other.height;
1387 }
1388 }
1389
1390 inline constexpr bool operator!=(const C2Rect &other) const {
1391 return !operator==(other);
1392 }
1393
1394 inline constexpr bool operator>=(const C2Rect &other) const {
1395 return contains(other);
1396 }
1397
1398 inline constexpr bool operator>(const C2Rect &other) const {
1399 return contains(other) && !operator==(other);
1400 }
1401
1402 inline constexpr bool operator<=(const C2Rect &other) const {
1403 return other.contains(*this);
1404 }
1405
1406 inline constexpr bool operator<(const C2Rect &other) const {
1407 return other.contains(*this) && !operator==(other);
1408 }
1409
1410 C2_ALLOW_OVERFLOW
1411 inline constexpr uint32_t right() const {
1412 return left + width;
1413 }
1414
1415 C2_ALLOW_OVERFLOW
1416 inline constexpr uint32_t bottom() const {
1417 return top + height;
1418 }
1419
1420 C2_ALLOW_OVERFLOW
1421 inline constexpr C2Rect intersect(const C2Rect &other) const {
1422 return C2Rect(c2_min(right(), other.right()) - c2_max(left, other.left),
1423 c2_min(bottom(), other.bottom()) - c2_max(top, other.top),
1424 c2_max(left, other.left),
1425 c2_max(top, other.top));
1426 }
1427
1428 /** clamps right and bottom to top, left if they overflow */
1429 inline constexpr C2Rect normalize() const {
1430 return C2Rect(c2_max(left, right()) - left, c2_max(top, bottom()) - top, left, top);
1431 }
1432
1433private:
1434 /// note: potentially unusual argument order
1435 constexpr inline C2Rect(uint32_t width_, uint32_t height_, uint32_t left_, uint32_t top_)
1436 : width(width_),
1437 height(height_),
1438 left(left_),
1439 top(top_) { }
1440};
1441
1442/**
1443 * Interface for objects that have a width and height (planar capacity).
1444 */
1445class _C2PlanarCapacityAspect {
1446/// \name Planar capacity interface
1447/// @{
1448public:
1449 inline constexpr uint32_t width() const { return _mWidth; }
1450 inline constexpr uint32_t height() const { return _mHeight; }
1451
1452 inline constexpr operator C2Rect() const {
1453 return C2Rect(_mWidth, _mHeight);
1454 }
1455
1456protected:
1457 inline constexpr _C2PlanarCapacityAspect(uint32_t width, uint32_t height)
1458 : _mWidth(width), _mHeight(height) { }
1459
1460 inline explicit constexpr _C2PlanarCapacityAspect(const _C2PlanarCapacityAspect *parent)
1461 : _mWidth(parent == nullptr ? 0 : parent->width()),
1462 _mHeight(parent == nullptr ? 0 : parent->height()) { }
1463
1464private:
1465 uint32_t _mWidth;
1466 uint32_t _mHeight;
1467/// @}
1468};
1469
1470/**
1471 * C2PlaneInfo: information on the layout of a singe flexible plane.
1472 *
1473 * Public fields without getters/setters.
1474 */
1475struct C2PlaneInfo {
1476//public:
1477 enum channel_t : uint32_t {
1478 CHANNEL_Y, ///< luma
1479 CHANNEL_R, ///< red
1480 CHANNEL_G, ///< green
1481 CHANNEL_B, ///< blue
1482 CHANNEL_A, ///< alpha
1483 CHANNEL_CR, ///< Cr
1484 CHANNEL_CB, ///< Cb
1485 } channel;
1486
1487 int32_t colInc; ///< column increment in bytes. may be negative
1488 int32_t rowInc; ///< row increment in bytes. may be negative
1489
1490 uint32_t colSampling; ///< subsampling compared to width (must be a power of 2)
1491 uint32_t rowSampling; ///< subsampling compared to height (must be a power of 2)
1492
1493 uint32_t allocatedDepth; ///< size of each sample (must be a multiple of 8)
1494 uint32_t bitDepth; ///< significant bits per sample
1495 /**
1496 * the right shift of the significant bits in the sample. E.g. if a 10-bit significant
1497 * value is laid out in a 16-bit allocation aligned to LSB (values 0-1023), rightShift
1498 * would be 0 as the 16-bit value read from the sample does not need to be right shifted
1499 * and can be used as is (after applying a 10-bit mask of 0x3FF).
1500 *
1501 * +--------+--------+
1502 * | VV|VVVVVVVV|
1503 * +--------+--------+
1504 * 15 8 7 0
1505 *
1506 * If the value is laid out aligned to MSB, rightShift would be 6, as the value read
1507 * from the allocated sample must be right-shifted by 6 to get the actual sample value.
1508 *
1509 * +--------+--------+
1510 * |VVVVVVVV|VV |
1511 * +--------+--------+
1512 * 15 8 7 0
1513 */
1514 uint32_t rightShift;
1515
1516 enum endianness_t : uint32_t {
1517 NATIVE,
1518 LITTLE_END, // LITTLE_ENDIAN is reserved macro
1519 BIG_END, // BIG_ENDIAN is a reserved macro
1520 } endianness; ///< endianness of the samples
1521
1522 /**
1523 * The following two fields define the relation between multiple planes. If multiple planes are
1524 * interleaved, they share a root plane (whichever plane's start address is the lowest), and
1525 * |offset| is the offset of this plane inside the root plane (in bytes). |rootIx| is the index
1526 * of the root plane. If a plane is independent, rootIx is its index and offset is 0.
1527 */
1528 uint32_t rootIx; ///< index of the root plane
1529 uint32_t offset; ///< offset of this plane inside of the root plane
1530
1531 inline constexpr ssize_t minOffset(uint32_t width, uint32_t height) const {
1532 ssize_t offs = 0;
1533 if (width > 0 && colInc < 0) {
1534 offs += colInc * (ssize_t)(width - 1);
1535 }
1536 if (height > 0 && rowInc < 0) {
1537 offs += rowInc * (ssize_t)(height - 1);
1538 }
1539 return offs;
1540 }
1541
1542 inline constexpr ssize_t maxOffset(uint32_t width, uint32_t height) const {
1543 ssize_t offs = (allocatedDepth + 7) >> 3;
1544 if (width > 0 && colInc > 0) {
1545 offs += colInc * (ssize_t)(width - 1);
1546 }
1547 if (height > 0 && rowInc > 0) {
1548 offs += rowInc * (ssize_t)(height - 1);
1549 }
1550 return offs;
1551 }
1552} C2_PACK;
1553
1554struct C2PlanarLayout {
1555//public:
1556 enum type_t : uint32_t {
1557 TYPE_UNKNOWN = 0,
1558 TYPE_YUV = 0x100, ///< YUV image with 3 planes
1559 TYPE_YUVA, ///< YUVA image with 4 planes
1560 TYPE_RGB, ///< RGB image with 3 planes
1561 TYPE_RGBA, ///< RBGA image with 4 planes
1562 };
1563
1564 type_t type; // image type
1565 uint32_t numPlanes; // number of component planes
1566 uint32_t rootPlanes; // number of layout planes (root planes)
1567
1568 enum plane_index_t : uint32_t {
1569 PLANE_Y = 0,
1570 PLANE_U = 1,
1571 PLANE_V = 2,
1572 PLANE_R = 0,
1573 PLANE_G = 1,
1574 PLANE_B = 2,
1575 PLANE_A = 3,
1576 MAX_NUM_PLANES = 4,
1577 };
1578
1579 C2PlaneInfo planes[MAX_NUM_PLANES];
1580};
1581
1582/**
1583 * Aspect for objects that have a planar section (crop rectangle).
1584 *
1585 * This class is copiable.
1586 */
1587class _C2PlanarSectionAspect : public _C2PlanarCapacityAspect {
1588/// \name Planar section interface
1589/// @{
1590private:
1591 inline constexpr _C2PlanarSectionAspect(uint32_t width, uint32_t height, const C2Rect &crop)
1592 : _C2PlanarCapacityAspect(width, height),
1593 mCrop(C2Rect(std::min(width - std::min(crop.left, width), crop.width),
1594 std::min(height - std::min(crop.top, height), crop.height)).at(
1595 std::min(crop.left, width),
1596 std::min(crop.height, height))) {
1597 }
1598
1599public:
1600 // crop can be an empty rect, does not have to line up with subsampling
1601 // NOTE: we do not support floating-point crop
1602 inline constexpr C2Rect crop() const { return mCrop; }
1603
1604 /**
1605 * Returns a child planar section for |crop|, where the capacity represents this section.
1606 */
1607 inline constexpr _C2PlanarSectionAspect childSection(const C2Rect &crop) const {
1608 return _C2PlanarSectionAspect(
1609 mCrop.width, mCrop.height,
1610 // crop and translate |crop| rect
1611 C2Rect(c2_min(mCrop.right() - c2_clamp(mCrop.left, crop.left, mCrop.right()),
1612 crop.width),
1613 c2_min(mCrop.bottom() - c2_clamp(mCrop.top, crop.top, mCrop.bottom()),
1614 crop.height))
1615 .at(c2_clamp(mCrop.left, crop.left, mCrop.right()) - mCrop.left,
1616 c2_clamp(mCrop.top, crop.top, mCrop.bottom()) - mCrop.top));
1617 }
1618
1619protected:
1620 inline constexpr _C2PlanarSectionAspect(const _C2PlanarCapacityAspect *parent)
1621 : _C2PlanarCapacityAspect(parent), mCrop(width(), height()) {}
1622
1623 inline constexpr _C2PlanarSectionAspect(const _C2PlanarCapacityAspect *parent, const C2Rect &crop)
1624 : _C2PlanarCapacityAspect(parent),
1625 mCrop(parent == nullptr ? C2Rect() : ((C2Rect)*parent).intersect(crop).normalize()) { }
1626
1627 inline constexpr _C2PlanarSectionAspect(const _C2PlanarSectionAspect *parent, const C2Rect &crop)
1628 : _C2PlanarCapacityAspect(parent),
1629 mCrop(parent == nullptr ? C2Rect() : parent->crop().intersect(crop).normalize()) { }
1630
1631private:
1632 friend class _C2EditablePlanarSectionAspect;
1633 C2Rect mCrop;
1634/// @}
1635};
1636
1637/**
1638 * Aspect for objects that have an editable planar section (crop rectangle).
1639 *
1640 * This class is copiable.
1641 */
1642class _C2EditablePlanarSectionAspect : public _C2PlanarSectionAspect {
1643/// \name Planar section interface
1644/// @{
1645 using _C2PlanarSectionAspect::_C2PlanarSectionAspect;
1646
1647public:
1648 // crop can be an empty rect, does not have to line up with subsampling
1649 // NOTE: we do not support floating-point crop
1650 inline constexpr C2Rect crop() const { return mCrop; }
1651
1652 /**
1653 * Sets crop to crop intersected with [(0,0) .. (width, height)]
1654 */
1655 inline void setCrop_be(const C2Rect &crop) {
1656 mCrop.left = std::min(width(), crop.left);
1657 mCrop.top = std::min(height(), crop.top);
1658 // It's guaranteed that mCrop.left <= width() && mCrop.top <= height()
1659 mCrop.width = std::min(width() - mCrop.left, crop.width);
1660 mCrop.height = std::min(height() - mCrop.top, crop.height);
1661 }
1662
1663 /**
1664 * If crop is within the dimensions of this object, it sets crop to it.
1665 *
1666 * \return true iff crop is within the dimensions of this object
1667 */
1668 inline bool setCrop(const C2Rect &crop) {
1669 if (width() < crop.width || height() < crop.height
1670 || width() - crop.width < crop.left || height() - crop.height < crop.top) {
1671 return false;
1672 }
1673 mCrop = crop;
1674 return true;
1675 }
1676/// @}
1677};
1678
1679/**
1680 * Utility class for safe range calculations using size_t-s.
1681 */
1682class C2PlanarSection : public _C2PlanarSectionAspect {
1683public:
1684 inline constexpr C2PlanarSection(const _C2PlanarCapacityAspect &parent, const C2Rect &crop)
1685 : _C2PlanarSectionAspect(&parent, crop) { }
1686
1687 inline constexpr C2PlanarSection(const _C2PlanarSectionAspect &parent, const C2Rect &crop)
1688 : _C2PlanarSectionAspect(&parent, crop) { }
1689
1690 inline constexpr C2PlanarSection intersect(const C2Rect &crop) const {
1691 return C2PlanarSection(*this, crop);
1692 }
1693};
1694
1695/**
1696 * Utility class for simple and safe planar capacity and section construction.
1697 */
1698class C2PlanarCapacity : public _C2PlanarCapacityAspect {
1699public:
1700 inline constexpr explicit C2PlanarCapacity(size_t width, size_t height)
1701 : _C2PlanarCapacityAspect(c2_min(width, std::numeric_limits<uint32_t>::max()),
1702 c2_min(height, std::numeric_limits<uint32_t>::max())) { }
1703
1704 inline constexpr C2PlanarSection section(const C2Rect &crop) const {
1705 return C2PlanarSection(*this, crop);
1706 }
1707};
1708
1709
1710/**
1711 * \ingroup graphic allocator
1712 * 2D allocation interface.
1713 */
1714class C2GraphicAllocation : public _C2PlanarCapacityAspect {
1715public:
1716 /**
1717 * Maps a rectangular section (as defined by |rect|) of a 2D allocation into local process
1718 * memory for flexible access. On success, it fills out |layout| with the plane specifications
1719 * and fills the |addr| array with pointers to the first byte of the top-left pixel of each
1720 * plane used. Otherwise, it leaves |layout| and |addr| untouched. |fence| will contain
1721 * an acquire sync fence object. If it is already safe to access the
1722 * buffer contents, then it will be an empty (already fired) fence.
1723 *
1724 * Safe regions for the pointer addresses returned can be gotten via C2LayoutInfo.minOffset()/
1725 * maxOffset().
1726 *
1727 * \param rect section to be mapped (this does not have to be aligned)
1728 * \param usage the desired usage. \todo this must be kSoftwareRead and/or
1729 * kSoftwareWrite.
1730 * \param fence a pointer to a fence object if an async mapping is requested. If
1731 * not-null, and acquire fence will be stored here on success, or empty
1732 * fence on failure. If null, the mapping will be synchronous.
1733 * \param layout a pointer to where the mapped planes' descriptors will be
1734 * stored. On failure, nullptr will be stored here.
1735 * \param addr pointer to an array with at least C2PlanarLayout::MAX_NUM_PLANES
1736 * elements. Only layout.numPlanes elements will be modified on success.
1737 *
1738 * \retval C2_OK the operation was successful
1739 * \retval C2_REFUSED no permission to map the section
1740 * \retval C2_DUPLICATE there is already a mapped region and this allocation cannot support
1741 * multi-mapping (caller error)
1742 * \retval C2_TIMED_OUT the operation timed out
1743 * \retval C2_NO_MEMORY not enough memory to complete the operation
1744 * \retval C2_BAD_VALUE the parameters (rect) are invalid or outside the allocation, or the
1745 * usage flags are invalid (caller error)
1746 * \retval C2_CORRUPTED some unknown error prevented the operation from completing (unexpected)
1747
1748 */
1749 virtual c2_status_t map(
1750 C2Rect rect, C2MemoryUsage usage, C2Fence *fence,
1751 C2PlanarLayout *layout /* nonnull */, uint8_t **addr /* nonnull */) = 0;
1752
1753 /**
1754 * Unmaps a section of an allocation at |addr| with |rect|. These must be parameters previously
1755 * passed to and returned by |map|; otherwise, this operation is a no-op.
1756 *
1757 * \param addr pointer to an array with at least C2PlanarLayout::MAX_NUM_PLANES
1758 * elements containing the starting addresses of the mapped layers
1759 * \param rect boundaries of the mapped section
1760 * \param fence a pointer to a fence object if an async unmapping is requested. If
1761 * not-null, a release fence will be stored here on success, or empty fence
1762 * on failure. This fence signals when the original allocation contains
1763 * all changes that happened to the mapped section. If null, the unmapping
1764 * will be synchronous.
1765 *
1766 * \retval C2_OK the operation was successful
1767 * \retval C2_TIMED_OUT the operation timed out
1768 * \retval C2_NOT_FOUND there is no such mapped region (caller error)
1769 * \retval C2_CORRUPTED some unknown error prevented the operation from completing (unexpected)
1770 * \retval C2_REFUSED no permission to unmap the section (unexpected - system)
1771 */
1772 virtual c2_status_t unmap(
1773 uint8_t **addr /* nonnull */, C2Rect rect, C2Fence *fence /* nullable */) = 0;
1774
1775 /**
1776 * Returns the allocator ID for this allocation. This is useful to put the handle into context.
1777 */
1778 virtual C2Allocator::id_t getAllocatorId() const = 0;
1779
1780 /**
1781 * Returns a pointer to the allocation handle.
1782 */
1783 virtual const C2Handle *handle() const = 0;
1784
1785 /**
1786 * Returns true if this is the same allocation as |other|.
1787 */
1788 virtual bool equals(const std::shared_ptr<const C2GraphicAllocation> &other) const = 0;
1789
1790protected:
1791 using _C2PlanarCapacityAspect::_C2PlanarCapacityAspect;
1792 virtual ~C2GraphicAllocation() = default;
1793};
1794
1795class C2GraphicAllocation;
1796
1797/**
1798 * A 2D block.
1799 *
1800 * \note width()/height() is not meaningful for users of blocks; instead, crop().width() and
1801 * crop().height() is the capacity of the usable portion. Use and crop() if accessing the block
1802 * directly through its handle to represent the allotted region of the underlying allocation to this
1803 * block.
1804 */
1805class C2Block2D : public _C2PlanarSectionAspect {
1806public:
1807 /**
1808 * Returns the underlying handle for this allocation.
1809 *
1810 * \note that the block and its block pool has shared ownership of the handle
1811 * and if all references to the block are released, the underlying block
1812 * allocation may get reused even if a client keeps a clone of this handle.
1813 */
1814 const C2Handle *handle() const;
1815
1816 /**
1817 * Returns the allocator's ID that created the underlying allocation for this block. This
1818 * provides the context for understanding the handle.
1819 */
1820 C2Allocator::id_t getAllocatorId() const;
1821
1822protected:
1823 class Impl;
1824 C2Block2D(std::shared_ptr<Impl> impl, const _C2PlanarSectionAspect &section);
1825
1826 friend struct _C2BlockFactory;
1827 std::shared_ptr<Impl> mImpl;
1828};
1829
1830/**
1831 * Graphic view provides read or read-write access for a graphic block.
1832 *
1833 * This class is copiable.
1834 *
1835 * \note Due to the subsampling of graphic buffers, a read view must still contain a crop rectangle
1836 * to ensure subsampling is followed. This results in nearly identical interface between read and
1837 * write views, so C2GraphicView can encompass both of them.
1838 */
1839class C2GraphicView : public _C2EditablePlanarSectionAspect {
1840public:
1841 /**
1842 * \return array of pointers (of layout().numPlanes elements) to the start of the planes or
1843 * nullptr on error. Regardless of crop rect, they always point to the top-left corner of each
1844 * plane. Access outside of the crop rect results in an undefined behavior.
1845 */
1846 const uint8_t *const *data() const;
1847
1848 /**
1849 * \return array of pointers (of layout().numPlanes elements) to the start of the planes or
1850 * nullptr on error. Regardless of crop rect, they always point to the top-left corner of each
1851 * plane. Access outside of the crop rect results in an undefined behavior.
1852 */
1853 uint8_t *const *data();
1854
1855 /**
1856 * \return layout of the graphic block to interpret the returned data.
1857 */
1858 const C2PlanarLayout layout() const;
1859
1860 /**
1861 * Returns a section of this view.
1862 *
1863 * \param rect the dimension of the section. \note This is clamped to the crop of this view.
1864 *
1865 * \return a read view containing the requested section of this view
1866 */
1867 const C2GraphicView subView(const C2Rect &rect) const;
1868 C2GraphicView subView(const C2Rect &rect);
1869
1870 /**
1871 * \return error during the creation/mapping of this view.
1872 */
1873 c2_status_t error() const;
1874
1875protected:
1876 class Impl;
1877 C2GraphicView(std::shared_ptr<Impl> impl, const _C2PlanarSectionAspect &section);
1878 explicit C2GraphicView(c2_status_t error);
1879
1880private:
1881 friend struct _C2BlockFactory;
1882 std::shared_ptr<Impl> mImpl;
1883};
1884
1885/**
1886 * A constant (read-only) graphic block (portion of an allocation) with an acquire fence.
1887 * Blocks are unmapped when created, and can be mapped into a read view on demand.
1888 *
1889 * This class is copiable and contains a reference to the allocation that it is based on.
1890 */
1891class C2ConstGraphicBlock : public C2Block2D {
1892public:
1893 /**
1894 * Maps this block into memory and returns a read view for it.
1895 *
1896 * \return a read view for this block.
1897 */
1898 C2Acquirable<const C2GraphicView> map() const;
1899
1900 /**
1901 * Returns a section of this block.
1902 *
1903 * \param rect the coordinates of the section. \note This is clamped to the crop rectangle of
1904 * this block.
1905 *
1906 * \return a constant graphic block containing a portion of this block
1907 */
1908 C2ConstGraphicBlock subBlock(const C2Rect &rect) const;
1909
1910 /**
1911 * Returns the acquire fence for this block.
1912 *
1913 * \return a fence that must be waited on before reading the block.
1914 */
1915 C2Fence fence() const { return mFence; }
1916
1917protected:
1918 C2ConstGraphicBlock(
1919 std::shared_ptr<Impl> impl, const _C2PlanarSectionAspect &section, C2Fence fence);
1920
1921private:
1922 friend struct _C2BlockFactory;
1923 C2Fence mFence;
1924};
1925
1926/**
1927 * Graphic block is a writeable 2D block. Once written, it can be shared in whole or in part with
1928 * consumers/readers as read-only const graphic block.
1929 */
1930class C2GraphicBlock : public C2Block2D {
1931public:
1932 /**
1933 * Maps this block into memory and returns a write view for it.
1934 *
1935 * \return a write view for this block.
1936 */
1937 C2Acquirable<C2GraphicView> map();
1938
1939 /**
1940 * Creates a read-only const linear block for a portion of this block; optionally protected
1941 * by an acquire fence. There are two ways to use this:
1942 *
1943 * 1) share ready block after writing data into the block. In this case no fence shall be
1944 * supplied, and the block shall not be modified after calling this method.
1945 * 2) share block metadata before actually (finishing) writing the data into the block. In
1946 * this case a fence must be supplied that will be triggered when the data is written.
1947 * The block shall be modified only until firing the event for the fence.
1948 */
1949 C2ConstGraphicBlock share(const C2Rect &crop, C2Fence fence);
1950
1951protected:
1952 C2GraphicBlock(std::shared_ptr<Impl> impl, const _C2PlanarSectionAspect &section);
1953
1954 friend struct _C2BlockFactory;
1955};
1956
1957/// @}
1958
1959/// \defgroup buffer_onj Buffer objects
1960/// @{
1961
1962// ================================================================================================
1963// BUFFERS
1964// ================================================================================================
1965
1966/// \todo: Do we still need this?
1967///
1968// There are 2 kinds of buffers: linear or graphic. Linear buffers can contain a single block, or
1969// a list of blocks (LINEAR_CHUNKS). Support for list of blocks is optional, and can allow consuming
1970// data from circular buffers or scattered data sources without extra memcpy. Currently, list of
1971// graphic blocks is not supported.
1972
1973class C2LinearBuffer; // read-write buffer
1974class C2GraphicBuffer; // read-write buffer
1975class C2LinearChunksBuffer;
1976
1977/**
1978 * C2BufferData: the main, non-meta data of a buffer. A buffer can contain either linear blocks
1979 * or graphic blocks, and can contain either a single block or multiple blocks. This is determined
1980 * by its type.
1981 */
1982class C2BufferData {
1983public:
1984 /**
1985 * The type of buffer data.
1986 */
1987 enum type_t : uint32_t {
1988 INVALID, ///< invalid buffer type. Do not use.
1989 LINEAR, ///< the buffer contains a single linear block
1990 LINEAR_CHUNKS, ///< the buffer contains one or more linear blocks
1991 GRAPHIC, ///< the buffer contains a single graphic block
1992 GRAPHIC_CHUNKS, ///< the buffer contains one of more graphic blocks
1993 };
1994 typedef type_t Type; // deprecated
1995
1996 /**
1997 * Gets the type of this buffer (data).
1998 * \return the type of this buffer data.
1999 */
2000 type_t type() const;
2001
2002 /**
2003 * Gets the linear blocks of this buffer.
2004 * \return a constant list of const linear blocks of this buffer.
2005 * \retval empty list if this buffer does not contain linear block(s).
2006 */
2007 const std::vector<C2ConstLinearBlock> linearBlocks() const;
2008
2009 /**
2010 * Gets the graphic blocks of this buffer.
2011 * \return a constant list of const graphic blocks of this buffer.
2012 * \retval empty list if this buffer does not contain graphic block(s).
2013 */
2014 const std::vector<C2ConstGraphicBlock> graphicBlocks() const;
2015
2016private:
2017 class Impl;
2018 std::shared_ptr<Impl> mImpl;
2019
2020protected:
2021 // no public constructor
2022 explicit C2BufferData(const std::vector<C2ConstLinearBlock> &blocks);
2023 explicit C2BufferData(const std::vector<C2ConstGraphicBlock> &blocks);
2024};
2025
2026/**
2027 * C2Buffer: buffer base class. These are always used as shared_ptrs. Though the underlying buffer
2028 * objects (native buffers, ion buffers, or dmabufs) are reference-counted by the system,
2029 * C2Buffers hold only a single reference.
2030 *
2031 * These objects cannot be used on the stack.
2032 */
2033class C2Buffer {
2034public:
2035 /**
2036 * Gets the buffer's data.
2037 *
2038 * \return the buffer's data.
2039 */
2040 const C2BufferData data() const;
2041
2042 /**
2043 * These will still work if used in onDeathNotify.
2044 */
2045#if 0
2046 inline std::shared_ptr<C2LinearBuffer> asLinearBuffer() const {
2047 return mType == LINEAR ? std::shared_ptr::reinterpret_cast<C2LinearBuffer>(this) : nullptr;
2048 }
2049
2050 inline std::shared_ptr<C2GraphicBuffer> asGraphicBuffer() const {
2051 return mType == GRAPHIC ? std::shared_ptr::reinterpret_cast<C2GraphicBuffer>(this) : nullptr;
2052 }
2053
2054 inline std::shared_ptr<C2CircularBuffer> asCircularBuffer() const {
2055 return mType == CIRCULAR ? std::shared_ptr::reinterpret_cast<C2CircularBuffer>(this) : nullptr;
2056 }
2057#endif
2058
2059 ///@name Pre-destroy notification handling
2060 ///@{
2061
2062 /**
2063 * Register for notification just prior to the destruction of this object.
2064 */
2065 typedef void (*OnDestroyNotify) (const C2Buffer *buf, void *arg);
2066
2067 /**
2068 * Registers for a pre-destroy notification. This is called just prior to the destruction of
2069 * this buffer (when this buffer is no longer valid.)
2070 *
2071 * \param onDestroyNotify the notification callback
2072 * \param arg an arbitrary parameter passed to the callback
2073 *
2074 * \retval C2_OK the registration was successful.
2075 * \retval C2_DUPLICATE a notification was already registered for this callback and argument
2076 * \retval C2_NO_MEMORY not enough memory to register for this callback
2077 * \retval C2_CORRUPTED an unknown error prevented the registration (unexpected)
2078 */
2079 c2_status_t registerOnDestroyNotify(OnDestroyNotify onDestroyNotify, void *arg = nullptr);
2080
2081 /**
2082 * Unregisters a previously registered pre-destroy notification.
2083 *
2084 * \param onDestroyNotify the notification callback
2085 * \param arg an arbitrary parameter passed to the callback
2086 *
2087 * \retval C2_OK the unregistration was successful.
2088 * \retval C2_NOT_FOUND the notification was not found
2089 * \retval C2_CORRUPTED an unknown error prevented the registration (unexpected)
2090 */
2091 c2_status_t unregisterOnDestroyNotify(OnDestroyNotify onDestroyNotify, void *arg = nullptr);
2092
2093 ///@}
2094
2095 virtual ~C2Buffer() = default;
2096
2097 ///@name Buffer-specific arbitrary metadata handling
2098 ///@{
2099
2100 /**
2101 * Gets the list of metadata associated with this buffer.
2102 *
2103 * \return a constant list of info objects associated with this buffer.
2104 */
2105 const std::vector<std::shared_ptr<const C2Info>> info() const;
2106
2107 /**
2108 * Attaches (or updates) an (existing) metadata for this buffer.
2109 * If the metadata is stream specific, the stream information will be reset.
2110 *
2111 * \param info Metadata to update
2112 *
2113 * \retval C2_OK the metadata was successfully attached/updated.
2114 * \retval C2_NO_MEMORY not enough memory to attach the metadata (this return value is not
2115 * used if the same kind of metadata is already attached to the buffer).
2116 */
2117 c2_status_t setInfo(const std::shared_ptr<C2Info> &info);
2118
2119 /**
2120 * Checks if there is a certain type of metadata attached to this buffer.
2121 *
2122 * \param index the parameter type of the metadata
2123 *
2124 * \return true iff there is a metadata with the parameter type attached to this buffer.
2125 */
2126 bool hasInfo(C2Param::Type index) const;
2127
2128 /**
2129 * Checks if there is a certain type of metadata attached to this buffer, and returns a
2130 * shared pointer to it if there is. Returns an empty shared pointer object (nullptr) if there
2131 * is not.
2132 *
2133 * \param index the parameter type of the metadata
2134 *
2135 * \return shared pointer to the metadata.
2136 */
2137 std::shared_ptr<const C2Info> getInfo(C2Param::Type index) const;
2138
2139 /**
2140 * Removes a metadata from the buffer.
2141 */
2142 std::shared_ptr<C2Info> removeInfo(C2Param::Type index);
2143 ///@}
2144
2145 /**
2146 * Creates a buffer containing a single linear block.
2147 *
2148 * \param block the content of the buffer.
2149 *
2150 * \return shared pointer to the created buffer.
2151 */
2152 static std::shared_ptr<C2Buffer> CreateLinearBuffer(const C2ConstLinearBlock &block);
2153
2154 /**
2155 * Creates a buffer containing a single graphic block.
2156 *
2157 * \param block the content of the buffer.
2158 *
2159 * \return shared pointer to the created buffer.
2160 */
2161 static std::shared_ptr<C2Buffer> CreateGraphicBuffer(const C2ConstGraphicBlock &block);
2162
2163
2164
2165protected:
2166 // no public constructor
2167 explicit C2Buffer(const std::vector<C2ConstLinearBlock> &blocks);
2168 explicit C2Buffer(const std::vector<C2ConstGraphicBlock> &blocks);
2169
2170private:
2171 class Impl;
2172 std::shared_ptr<Impl> mImpl;
2173// Type _mType;
2174};
2175
2176/**
2177 * An extension of C2Info objects that can contain arbitrary buffer data.
2178 *
2179 * \note This object is not describable and contains opaque data.
2180 */
2181class C2InfoBuffer {
2182public:
2183 /**
2184 * Gets the index of this info object.
2185 *
2186 * \return the parameter index.
2187 */
2188 const C2Param::Index index() const;
2189
2190 /**
2191 * Gets the buffer's data.
2192 *
2193 * \return the buffer's data.
2194 */
2195 const C2BufferData data() const;
2196};
2197
2198/// @}
2199
2200/// \cond INTERNAL
2201
2202/// \todo These are no longer used
2203
2204/// \addtogroup linear
2205/// @{
2206
2207/** \deprecated */
2208class C2LinearBuffer
2209 : public C2Buffer, public _C2LinearRangeAspect,
2210 public std::enable_shared_from_this<C2LinearBuffer> {
2211public:
2212 /** \todo what is this? */
2213 const C2Handle *handle() const;
2214
2215protected:
2216 inline C2LinearBuffer(const C2ConstLinearBlock &block);
2217
2218private:
2219 class Impl;
2220 Impl *mImpl;
2221};
2222
2223class C2ReadCursor;
2224
2225class C2WriteCursor {
2226public:
2227 uint32_t remaining() const; // remaining data to be read
2228 void commit(); // commits the current position. discard data before current position
2229 void reset() const; // resets position to the last committed position
2230 // slices off at most |size| bytes, and moves cursor ahead by the number of bytes
2231 // sliced off.
2232 C2ReadCursor slice(uint32_t size) const;
2233 // slices off at most |size| bytes, and moves cursor ahead by the number of bytes
2234 // sliced off.
2235 C2WriteCursor reserve(uint32_t size);
2236 // bool read(T&);
2237 // bool write(T&);
2238 C2Fence waitForSpace(uint32_t size);
2239};
2240
2241/// @}
2242
2243/// \addtogroup graphic
2244/// @{
2245
2246struct C2ColorSpace {
2247//public:
2248 enum Standard {
2249 BT601,
2250 BT709,
2251 BT2020,
2252 // TODO
2253 };
2254
2255 enum Range {
2256 LIMITED,
2257 FULL,
2258 // TODO
2259 };
2260
2261 enum TransferFunction {
2262 BT709Transfer,
2263 BT2020Transfer,
2264 HybridLogGamma2,
2265 HybridLogGamma4,
2266 // TODO
2267 };
2268};
2269
2270/** \deprecated */
2271class C2GraphicBuffer : public C2Buffer {
2272public:
2273 // constant attributes
2274 inline uint32_t width() const { return mWidth; }
2275 inline uint32_t height() const { return mHeight; }
2276 inline uint32_t format() const { return mFormat; }
2277 inline const C2MemoryUsage usage() const { return mUsage; }
2278
2279 // modifiable attributes
2280
2281
2282 virtual const C2ColorSpace colorSpace() const = 0;
2283 // best effort
2284 virtual void setColorSpace_be(const C2ColorSpace &colorSpace) = 0;
2285 virtual bool setColorSpace(const C2ColorSpace &colorSpace) = 0;
2286
2287 const C2Handle *handle() const;
2288
2289protected:
2290 uint32_t mWidth;
2291 uint32_t mHeight;
2292 uint32_t mFormat;
2293 C2MemoryUsage mUsage;
2294
2295 class Impl;
2296 Impl *mImpl;
2297};
2298
2299/// @}
2300
2301/// \endcond
2302
2303/// @}
2304
2305#endif // C2BUFFER_H_