blob: 38e387c6863f2b6572b0cf876fc1dbebb081fb71 [file] [log] [blame]
Andy Hung86eae0e2013-12-09 12:12:46 -08001/*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ANDROID_AUDIO_RESAMPLER_FIR_PROCESS_H
18#define ANDROID_AUDIO_RESAMPLER_FIR_PROCESS_H
19
20namespace android {
21
22// depends on AudioResamplerFirOps.h
23
24template<int CHANNELS, typename TC>
25static inline
26void mac(
27 int32_t& l, int32_t& r,
28 const TC coef,
29 const int16_t* samples)
30{
31 if (CHANNELS == 2) {
32 uint32_t rl = *reinterpret_cast<const uint32_t*>(samples);
33 l = mulAddRL(1, rl, coef, l);
34 r = mulAddRL(0, rl, coef, r);
35 } else {
36 r = l = mulAdd(samples[0], coef, l);
37 }
38}
39
40template<int CHANNELS, typename TC>
41static inline
42void interpolate(
43 int32_t& l, int32_t& r,
44 const TC coef_0, const TC coef_1,
45 const int16_t lerp, const int16_t* samples)
46{
47 TC sinc;
48
49 if (is_same<TC, int16_t>::value) {
50 sinc = (lerp * ((coef_1-coef_0)<<1)>>16) + coef_0;
51 } else {
52 sinc = mulAdd(lerp, (coef_1-coef_0)<<1, coef_0);
53 }
54 if (CHANNELS == 2) {
55 uint32_t rl = *reinterpret_cast<const uint32_t*>(samples);
56 l = mulAddRL(1, rl, sinc, l);
57 r = mulAddRL(0, rl, sinc, r);
58 } else {
59 r = l = mulAdd(samples[0], sinc, l);
60 }
61}
62
63/*
64 * Calculates a single output sample (two stereo frames).
65 *
66 * This function computes both the positive half FIR dot product and
67 * the negative half FIR dot product, accumulates, and then applies the volume.
68 *
69 * This is a locked phase filter (it does not compute the interpolation).
70 *
71 * Use fir() to compute the proper coefficient pointers for a polyphase
72 * filter bank.
73 */
74
75template <int CHANNELS, int STRIDE, typename TC>
76static inline
77void ProcessL(int32_t* const out,
78 int count,
79 const TC* coefsP,
80 const TC* coefsN,
81 const int16_t* sP,
82 const int16_t* sN,
83 const int32_t* const volumeLR)
84{
85 int32_t l = 0;
86 int32_t r = 0;
87 do {
88 mac<CHANNELS>(l, r, *coefsP++, sP);
89 sP -= CHANNELS;
90 mac<CHANNELS>(l, r, *coefsN++, sN);
91 sN += CHANNELS;
92 } while (--count > 0);
93 out[0] += 2 * mulRL(0, l, volumeLR[0]); // Note: only use top 16b
94 out[1] += 2 * mulRL(0, r, volumeLR[1]); // Note: only use top 16b
95}
96
97/*
98 * Calculates a single output sample (two stereo frames) interpolating phase.
99 *
100 * This function computes both the positive half FIR dot product and
101 * the negative half FIR dot product, accumulates, and then applies the volume.
102 *
103 * This is an interpolated phase filter.
104 *
105 * Use fir() to compute the proper coefficient pointers for a polyphase
106 * filter bank.
107 */
108
109template <int CHANNELS, int STRIDE, typename TC>
110static inline
111void Process(int32_t* const out,
112 int count,
113 const TC* coefsP,
114 const TC* coefsN,
115 const TC* coefsP1,
116 const TC* coefsN1,
117 const int16_t* sP,
118 const int16_t* sN,
119 uint32_t lerpP,
120 const int32_t* const volumeLR)
121{
122 (void) coefsP1; // suppress unused parameter warning
123 (void) coefsN1;
124 if (sizeof(*coefsP)==4) {
125 lerpP >>= 16; // ensure lerpP is 16b
126 }
127 int32_t l = 0;
128 int32_t r = 0;
129 for (size_t i = 0; i < count; ++i) {
130 interpolate<CHANNELS>(l, r, coefsP[0], coefsP[count], lerpP, sP);
131 coefsP++;
132 sP -= CHANNELS;
133 interpolate<CHANNELS>(l, r, coefsN[count], coefsN[0], lerpP, sN);
134 coefsN++;
135 sN += CHANNELS;
136 }
137 out[0] += 2 * mulRL(0, l, volumeLR[0]); // Note: only use top 16b
138 out[1] += 2 * mulRL(0, r, volumeLR[1]); // Note: only use top 16b
139}
140
141/*
142 * Calculates a single output sample (two stereo frames) from input sample pointer.
143 *
144 * This sets up the params for the accelerated Process() and ProcessL()
145 * functions to do the appropriate dot products.
146 *
147 * @param out should point to the output buffer with at least enough space for 2 output frames.
148 *
149 * @param phase is the fractional distance between input samples for interpolation:
150 * phase >= 0 && phase < phaseWrapLimit. It can be thought of as a rational fraction
151 * of phase/phaseWrapLimit.
152 *
153 * @param phaseWrapLimit is #polyphases<<coefShift, where #polyphases is the number of polyphases
154 * in the polyphase filter. Likewise, #polyphases can be obtained as (phaseWrapLimit>>coefShift).
155 *
156 * @param coefShift gives the bit alignment of the polyphase index in the phase parameter.
157 *
158 * @param halfNumCoefs is the half the number of coefficients per polyphase filter. Since the
159 * overall filterbank is odd-length symmetric, only halfNumCoefs need be stored.
160 *
161 * @param coefs is the polyphase filter bank, starting at from polyphase index 0, and ranging to
162 * and including the #polyphases. Each polyphase of the filter has half-length halfNumCoefs
163 * (due to symmetry). The total size of the filter bank in coefficients is
164 * (#polyphases+1)*halfNumCoefs.
165 *
166 * The filter bank coefs should be aligned to a minimum of 16 bytes (preferrably to cache line).
167 *
168 * The coefs should be attenuated (to compensate for passband ripple)
169 * if storing back into the native format.
170 *
171 * @param samples are unaligned input samples. The position is in the "middle" of the
172 * sample array with respect to the FIR filter:
173 * the negative half of the filter is dot product from samples+1 to samples+halfNumCoefs;
174 * the positive half of the filter is dot product from samples to samples-halfNumCoefs+1.
175 *
176 * @param volumeLR is a pointer to an array of two 32 bit volume values, one per stereo channel,
177 * expressed as a S32 integer. A negative value inverts the channel 180 degrees.
178 * The pointer volumeLR should be aligned to a minimum of 8 bytes.
179 * A typical value for volume is 0x1000 to align to a unity gain output of 20.12.
180 *
181 * In between calls to filterCoefficient, the phase is incremented by phaseIncrement, where
182 * phaseIncrement is calculated as inputSampling * phaseWrapLimit / outputSampling.
183 *
184 * The filter polyphase index is given by indexP = phase >> coefShift. Due to
185 * odd length symmetric filter, the polyphase index of the negative half depends on
186 * whether interpolation is used.
187 *
188 * The fractional siting between the polyphase indices is given by the bits below coefShift:
189 *
190 * lerpP = phase << 32 - coefShift >> 1; // for 32 bit unsigned phase multiply
191 * lerpP = phase << 32 - coefShift >> 17; // for 16 bit unsigned phase multiply
192 *
193 * For integer types, this is expressed as:
194 *
195 * lerpP = phase << sizeof(phase)*8 - coefShift
196 * >> (sizeof(phase)-sizeof(*coefs))*8 + 1;
197 *
198 */
199
200template<int CHANNELS, bool LOCKED, int STRIDE, typename TC>
201static inline
202void fir(int32_t* const out,
203 const uint32_t phase, const uint32_t phaseWrapLimit,
204 const int coefShift, const int halfNumCoefs, const TC* const coefs,
205 const int16_t* const samples, const int32_t* const volumeLR)
206{
207 // NOTE: be very careful when modifying the code here. register
208 // pressure is very high and a small change might cause the compiler
209 // to generate far less efficient code.
210 // Always sanity check the result with objdump or test-resample.
211
212 if (LOCKED) {
213 // locked polyphase (no interpolation)
214 // Compute the polyphase filter index on the positive and negative side.
215 uint32_t indexP = phase >> coefShift;
216 uint32_t indexN = (phaseWrapLimit - phase) >> coefShift;
217 const TC* coefsP = coefs + indexP*halfNumCoefs;
218 const TC* coefsN = coefs + indexN*halfNumCoefs;
219 const int16_t* sP = samples;
220 const int16_t* sN = samples + CHANNELS;
221
222 // dot product filter.
223 ProcessL<CHANNELS, STRIDE>(out,
224 halfNumCoefs, coefsP, coefsN, sP, sN, volumeLR);
225 } else {
226 // interpolated polyphase
227 // Compute the polyphase filter index on the positive and negative side.
228 uint32_t indexP = phase >> coefShift;
229 uint32_t indexN = (phaseWrapLimit - phase - 1) >> coefShift; // one's complement.
230 const TC* coefsP = coefs + indexP*halfNumCoefs;
231 const TC* coefsN = coefs + indexN*halfNumCoefs;
232 const TC* coefsP1 = coefsP + halfNumCoefs;
233 const TC* coefsN1 = coefsN + halfNumCoefs;
234 const int16_t* sP = samples;
235 const int16_t* sN = samples + CHANNELS;
236
237 // Interpolation fraction lerpP derived by shifting all the way up and down
238 // to clear the appropriate bits and align to the appropriate level
239 // for the integer multiply. The constants should resolve in compile time.
240 //
241 // The interpolated filter coefficient is derived as follows for the pos/neg half:
242 //
243 // interpolated[P] = index[P]*lerpP + index[P+1]*(1-lerpP)
244 // interpolated[N] = index[N+1]*lerpP + index[N]*(1-lerpP)
245 uint32_t lerpP = phase << (sizeof(phase)*8 - coefShift)
246 >> ((sizeof(phase)-sizeof(*coefs))*8 + 1);
247
248 // on-the-fly interpolated dot product filter
249 Process<CHANNELS, STRIDE>(out,
250 halfNumCoefs, coefsP, coefsN, coefsP1, coefsN1, sP, sN, lerpP, volumeLR);
251 }
252}
253
254}; // namespace android
255
256#endif /*ANDROID_AUDIO_RESAMPLER_FIR_PROCESS_H*/