rago | ff0a51f | 2018-03-22 09:55:50 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2018 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | #define LOG_TAG "DPFrequency" |
| 18 | //#define LOG_NDEBUG 0 |
| 19 | |
| 20 | #include <log/log.h> |
| 21 | #include "DPFrequency.h" |
| 22 | #include <algorithm> |
| 23 | |
| 24 | namespace dp_fx { |
| 25 | |
| 26 | using Eigen::MatrixXd; |
| 27 | #define MAX_BLOCKSIZE 16384 //For this implementation |
| 28 | #define MIN_BLOCKSIZE 8 |
| 29 | |
| 30 | #define CIRCULAR_BUFFER_UPSAMPLE 4 //4 times buffer size |
| 31 | |
rago | d55d0f3 | 2018-05-15 18:57:31 -0700 | [diff] [blame] | 32 | static constexpr float MIN_ENVELOPE = 1e-6f; //-120 dB |
rago | ff0a51f | 2018-03-22 09:55:50 -0700 | [diff] [blame] | 33 | //helper functionS |
| 34 | static inline bool isPowerOf2(unsigned long n) { |
| 35 | return (n & (n - 1)) == 0; |
| 36 | } |
| 37 | static constexpr float EPSILON = 0.0000001f; |
| 38 | |
| 39 | static inline bool isZero(float f) { |
| 40 | return fabs(f) <= EPSILON; |
| 41 | } |
| 42 | |
| 43 | template <class T> |
| 44 | bool compareEquality(T a, T b) { |
| 45 | return (a == b); |
| 46 | } |
| 47 | |
| 48 | template <> bool compareEquality<float>(float a, float b) { |
| 49 | return isZero(a - b); |
| 50 | } |
| 51 | |
| 52 | //TODO: avoid using macro for estimating change and assignment. |
| 53 | #define IS_CHANGED(c, a, b) { c |= !compareEquality(a,b); \ |
| 54 | (a) = (b); } |
| 55 | |
rago | ff0a51f | 2018-03-22 09:55:50 -0700 | [diff] [blame] | 56 | //ChannelBuffers helper |
| 57 | void ChannelBuffer::initBuffers(unsigned int blockSize, unsigned int overlapSize, |
| 58 | unsigned int halfFftSize, unsigned int samplingRate, DPBase &dpBase) { |
| 59 | ALOGV("ChannelBuffer::initBuffers blockSize %d, overlap %d, halfFft %d", |
| 60 | blockSize, overlapSize, halfFftSize); |
| 61 | |
| 62 | mSamplingRate = samplingRate; |
| 63 | mBlockSize = blockSize; |
| 64 | |
| 65 | cBInput.resize(mBlockSize * CIRCULAR_BUFFER_UPSAMPLE); |
| 66 | cBOutput.resize(mBlockSize * CIRCULAR_BUFFER_UPSAMPLE); |
| 67 | |
| 68 | //fill input with half block size... |
rago | d55d0f3 | 2018-05-15 18:57:31 -0700 | [diff] [blame] | 69 | for (unsigned int k = 0; k < mBlockSize/2; k++) { |
rago | ff0a51f | 2018-03-22 09:55:50 -0700 | [diff] [blame] | 70 | cBInput.write(0); |
| 71 | } |
| 72 | |
| 73 | //temp vectors |
| 74 | input.resize(mBlockSize); |
| 75 | output.resize(mBlockSize); |
| 76 | outTail.resize(overlapSize); |
| 77 | |
| 78 | //module vectors |
| 79 | mPreEqFactorVector.resize(halfFftSize, 1.0); |
| 80 | mPostEqFactorVector.resize(halfFftSize, 1.0); |
| 81 | |
| 82 | mPreEqBands.resize(dpBase.getPreEqBandCount()); |
| 83 | mMbcBands.resize(dpBase.getMbcBandCount()); |
| 84 | mPostEqBands.resize(dpBase.getPostEqBandCount()); |
| 85 | ALOGV("mPreEqBands %zu, mMbcBands %zu, mPostEqBands %zu",mPreEqBands.size(), |
| 86 | mMbcBands.size(), mPostEqBands.size()); |
| 87 | |
| 88 | DPChannel *pChannel = dpBase.getChannel(0); |
rago | d55d0f3 | 2018-05-15 18:57:31 -0700 | [diff] [blame] | 89 | if (pChannel != nullptr) { |
rago | ff0a51f | 2018-03-22 09:55:50 -0700 | [diff] [blame] | 90 | mPreEqInUse = pChannel->getPreEq()->isInUse(); |
| 91 | mMbcInUse = pChannel->getMbc()->isInUse(); |
| 92 | mPostEqInUse = pChannel->getPostEq()->isInUse(); |
| 93 | mLimiterInUse = pChannel->getLimiter()->isInUse(); |
| 94 | } |
rago | d55d0f3 | 2018-05-15 18:57:31 -0700 | [diff] [blame] | 95 | |
| 96 | mLimiterParams.linkGroup = -1; //no group. |
rago | ff0a51f | 2018-03-22 09:55:50 -0700 | [diff] [blame] | 97 | } |
| 98 | |
| 99 | void ChannelBuffer::computeBinStartStop(BandParams &bp, size_t binStart) { |
| 100 | |
| 101 | bp.binStart = binStart; |
| 102 | bp.binStop = (int)(0.5 + bp.freqCutoffHz * mBlockSize / mSamplingRate); |
| 103 | } |
| 104 | |
rago | d55d0f3 | 2018-05-15 18:57:31 -0700 | [diff] [blame] | 105 | //== LinkedLimiters Helper |
| 106 | void LinkedLimiters::reset() { |
| 107 | mGroupsMap.clear(); |
| 108 | } |
rago | ff0a51f | 2018-03-22 09:55:50 -0700 | [diff] [blame] | 109 | |
rago | d55d0f3 | 2018-05-15 18:57:31 -0700 | [diff] [blame] | 110 | void LinkedLimiters::update(int32_t group, int index) { |
| 111 | mGroupsMap[group].push_back(index); |
| 112 | } |
| 113 | |
| 114 | void LinkedLimiters::remove(int index) { |
| 115 | //check all groups and if index is found, remove it. |
| 116 | //if group is empty afterwards, remove it. |
| 117 | for (auto it = mGroupsMap.begin(); it != mGroupsMap.end(); ) { |
| 118 | for (auto itIndex = it->second.begin(); itIndex != it->second.end(); ) { |
| 119 | if (*itIndex == index) { |
| 120 | itIndex = it->second.erase(itIndex); |
| 121 | } else { |
| 122 | ++itIndex; |
| 123 | } |
| 124 | } |
| 125 | if (it->second.size() == 0) { |
| 126 | it = mGroupsMap.erase(it); |
| 127 | } else { |
| 128 | ++it; |
| 129 | } |
| 130 | } |
| 131 | } |
| 132 | |
| 133 | //== DPFrequency |
rago | ff0a51f | 2018-03-22 09:55:50 -0700 | [diff] [blame] | 134 | void DPFrequency::reset() { |
| 135 | } |
| 136 | |
| 137 | size_t DPFrequency::getMinBockSize() { |
| 138 | return MIN_BLOCKSIZE; |
| 139 | } |
| 140 | |
| 141 | size_t DPFrequency::getMaxBockSize() { |
| 142 | return MAX_BLOCKSIZE; |
| 143 | } |
| 144 | |
| 145 | void DPFrequency::configure(size_t blockSize, size_t overlapSize, |
| 146 | size_t samplingRate) { |
| 147 | ALOGV("configure"); |
| 148 | mBlockSize = blockSize; |
| 149 | if (mBlockSize > MAX_BLOCKSIZE) { |
| 150 | mBlockSize = MAX_BLOCKSIZE; |
| 151 | } else if (mBlockSize < MIN_BLOCKSIZE) { |
| 152 | mBlockSize = MIN_BLOCKSIZE; |
| 153 | } else { |
| 154 | if (!isPowerOf2(blockSize)) { |
| 155 | //find next highest power of 2. |
| 156 | mBlockSize = 1 << (32 - __builtin_clz(blockSize)); |
| 157 | } |
| 158 | } |
| 159 | |
| 160 | mHalfFFTSize = 1 + mBlockSize / 2; //including Nyquist bin |
| 161 | mOverlapSize = std::min(overlapSize, mBlockSize/2); |
| 162 | |
| 163 | int channelcount = getChannelCount(); |
| 164 | mSamplingRate = samplingRate; |
| 165 | mChannelBuffers.resize(channelcount); |
| 166 | for (int ch = 0; ch < channelcount; ch++) { |
| 167 | mChannelBuffers[ch].initBuffers(mBlockSize, mOverlapSize, mHalfFFTSize, |
| 168 | mSamplingRate, *this); |
| 169 | } |
| 170 | |
rago | d55d0f3 | 2018-05-15 18:57:31 -0700 | [diff] [blame] | 171 | //effective number of frames processed per second |
| 172 | mBlocksPerSecond = (float)mSamplingRate / (mBlockSize - mOverlapSize); |
| 173 | |
rago | ff0a51f | 2018-03-22 09:55:50 -0700 | [diff] [blame] | 174 | fill_window(mVWindow, RDSP_WINDOW_HANNING_FLAT_TOP, mBlockSize, mOverlapSize); |
rago | d55d0f3 | 2018-05-15 18:57:31 -0700 | [diff] [blame] | 175 | |
| 176 | //compute window rms for energy compensation |
| 177 | mWindowRms = 0; |
| 178 | for (size_t i = 0; i < mVWindow.size(); i++) { |
| 179 | mWindowRms += mVWindow[i] * mVWindow[i]; |
| 180 | } |
| 181 | |
| 182 | //Making sure window rms is not zero. |
| 183 | mWindowRms = std::max(sqrt(mWindowRms / mVWindow.size()), MIN_ENVELOPE); |
rago | ff0a51f | 2018-03-22 09:55:50 -0700 | [diff] [blame] | 184 | } |
| 185 | |
| 186 | void DPFrequency::updateParameters(ChannelBuffer &cb, int channelIndex) { |
| 187 | DPChannel *pChannel = getChannel(channelIndex); |
| 188 | |
rago | d55d0f3 | 2018-05-15 18:57:31 -0700 | [diff] [blame] | 189 | if (pChannel == nullptr) { |
rago | ff0a51f | 2018-03-22 09:55:50 -0700 | [diff] [blame] | 190 | ALOGE("Error: updateParameters null DPChannel %d", channelIndex); |
| 191 | return; |
| 192 | } |
| 193 | |
| 194 | //===Input Gain and preEq |
| 195 | { |
| 196 | bool changed = false; |
| 197 | IS_CHANGED(changed, cb.inputGainDb, pChannel->getInputGain()); |
| 198 | //===EqPre |
| 199 | if (cb.mPreEqInUse) { |
| 200 | DPEq *pPreEq = pChannel->getPreEq(); |
rago | d55d0f3 | 2018-05-15 18:57:31 -0700 | [diff] [blame] | 201 | if (pPreEq == nullptr) { |
rago | ff0a51f | 2018-03-22 09:55:50 -0700 | [diff] [blame] | 202 | ALOGE("Error: updateParameters null PreEq for channel: %d", channelIndex); |
| 203 | return; |
| 204 | } |
| 205 | IS_CHANGED(changed, cb.mPreEqEnabled, pPreEq->isEnabled()); |
| 206 | if (cb.mPreEqEnabled) { |
| 207 | for (unsigned int b = 0; b < getPreEqBandCount(); b++) { |
| 208 | DPEqBand *pEqBand = pPreEq->getBand(b); |
rago | d55d0f3 | 2018-05-15 18:57:31 -0700 | [diff] [blame] | 209 | if (pEqBand == nullptr) { |
rago | ff0a51f | 2018-03-22 09:55:50 -0700 | [diff] [blame] | 210 | ALOGE("Error: updateParameters null PreEqBand for band %d", b); |
| 211 | return; //failed. |
| 212 | } |
| 213 | ChannelBuffer::EqBandParams *pEqBandParams = &cb.mPreEqBands[b]; |
| 214 | IS_CHANGED(changed, pEqBandParams->enabled, pEqBand->isEnabled()); |
| 215 | IS_CHANGED(changed, pEqBandParams->freqCutoffHz, |
| 216 | pEqBand->getCutoffFrequency()); |
| 217 | IS_CHANGED(changed, pEqBandParams->gainDb, pEqBand->getGain()); |
| 218 | } |
| 219 | } |
| 220 | } |
| 221 | |
| 222 | if (changed) { |
| 223 | float inputGainFactor = dBtoLinear(cb.inputGainDb); |
| 224 | if (cb.mPreEqInUse && cb.mPreEqEnabled) { |
| 225 | ALOGV("preEq changed, recomputing! channel %d", channelIndex); |
| 226 | size_t binNext = 0; |
| 227 | for (unsigned int b = 0; b < getPreEqBandCount(); b++) { |
| 228 | ChannelBuffer::EqBandParams *pEqBandParams = &cb.mPreEqBands[b]; |
| 229 | |
| 230 | //frequency translation |
| 231 | cb.computeBinStartStop(*pEqBandParams, binNext); |
| 232 | binNext = pEqBandParams->binStop + 1; |
| 233 | float factor = dBtoLinear(pEqBandParams->gainDb); |
| 234 | if (!pEqBandParams->enabled) { |
| 235 | factor = inputGainFactor; |
| 236 | } |
| 237 | for (size_t k = pEqBandParams->binStart; |
| 238 | k <= pEqBandParams->binStop && k < mHalfFFTSize; k++) { |
| 239 | cb.mPreEqFactorVector[k] = factor * inputGainFactor; |
| 240 | } |
| 241 | } |
| 242 | } else { |
| 243 | ALOGV("only input gain changed, recomputing!"); |
| 244 | //populate PreEq factor with input gain factor. |
| 245 | for (size_t k = 0; k < mHalfFFTSize; k++) { |
| 246 | cb.mPreEqFactorVector[k] = inputGainFactor; |
| 247 | } |
| 248 | } |
| 249 | } |
| 250 | } //inputGain and preEq |
| 251 | |
| 252 | //===EqPost |
| 253 | if (cb.mPostEqInUse) { |
| 254 | bool changed = false; |
| 255 | |
| 256 | DPEq *pPostEq = pChannel->getPostEq(); |
rago | d55d0f3 | 2018-05-15 18:57:31 -0700 | [diff] [blame] | 257 | if (pPostEq == nullptr) { |
rago | ff0a51f | 2018-03-22 09:55:50 -0700 | [diff] [blame] | 258 | ALOGE("Error: updateParameters null postEq for channel: %d", channelIndex); |
| 259 | return; //failed. |
| 260 | } |
| 261 | IS_CHANGED(changed, cb.mPostEqEnabled, pPostEq->isEnabled()); |
| 262 | if (cb.mPostEqEnabled) { |
| 263 | for (unsigned int b = 0; b < getPostEqBandCount(); b++) { |
| 264 | DPEqBand *pEqBand = pPostEq->getBand(b); |
rago | d55d0f3 | 2018-05-15 18:57:31 -0700 | [diff] [blame] | 265 | if (pEqBand == nullptr) { |
rago | ff0a51f | 2018-03-22 09:55:50 -0700 | [diff] [blame] | 266 | ALOGE("Error: updateParameters PostEqBand NULL for band %d", b); |
| 267 | return; //failed. |
| 268 | } |
| 269 | ChannelBuffer::EqBandParams *pEqBandParams = &cb.mPostEqBands[b]; |
| 270 | IS_CHANGED(changed, pEqBandParams->enabled, pEqBand->isEnabled()); |
| 271 | IS_CHANGED(changed, pEqBandParams->freqCutoffHz, |
| 272 | pEqBand->getCutoffFrequency()); |
| 273 | IS_CHANGED(changed, pEqBandParams->gainDb, pEqBand->getGain()); |
| 274 | } |
| 275 | if (changed) { |
| 276 | ALOGV("postEq changed, recomputing! channel %d", channelIndex); |
| 277 | size_t binNext = 0; |
| 278 | for (unsigned int b = 0; b < getPostEqBandCount(); b++) { |
| 279 | ChannelBuffer::EqBandParams *pEqBandParams = &cb.mPostEqBands[b]; |
| 280 | |
| 281 | //frequency translation |
| 282 | cb.computeBinStartStop(*pEqBandParams, binNext); |
| 283 | binNext = pEqBandParams->binStop + 1; |
| 284 | float factor = dBtoLinear(pEqBandParams->gainDb); |
| 285 | if (!pEqBandParams->enabled) { |
| 286 | factor = 1.0; |
| 287 | } |
| 288 | for (size_t k = pEqBandParams->binStart; |
| 289 | k <= pEqBandParams->binStop && k < mHalfFFTSize; k++) { |
| 290 | cb.mPostEqFactorVector[k] = factor; |
| 291 | } |
| 292 | } |
| 293 | } |
| 294 | } //enabled |
| 295 | } |
| 296 | |
| 297 | //===MBC |
| 298 | if (cb.mMbcInUse) { |
| 299 | DPMbc *pMbc = pChannel->getMbc(); |
rago | d55d0f3 | 2018-05-15 18:57:31 -0700 | [diff] [blame] | 300 | if (pMbc == nullptr) { |
rago | ff0a51f | 2018-03-22 09:55:50 -0700 | [diff] [blame] | 301 | ALOGE("Error: updateParameters Mbc NULL for channel: %d", channelIndex); |
| 302 | return; |
| 303 | } |
| 304 | cb.mMbcEnabled = pMbc->isEnabled(); |
| 305 | if (cb.mMbcEnabled) { |
| 306 | bool changed = false; |
| 307 | for (unsigned int b = 0; b < getMbcBandCount(); b++) { |
| 308 | DPMbcBand *pMbcBand = pMbc->getBand(b); |
rago | d55d0f3 | 2018-05-15 18:57:31 -0700 | [diff] [blame] | 309 | if (pMbcBand == nullptr) { |
rago | ff0a51f | 2018-03-22 09:55:50 -0700 | [diff] [blame] | 310 | ALOGE("Error: updateParameters MbcBand NULL for band %d", b); |
| 311 | return; //failed. |
| 312 | } |
| 313 | ChannelBuffer::MbcBandParams *pMbcBandParams = &cb.mMbcBands[b]; |
| 314 | pMbcBandParams->enabled = pMbcBand->isEnabled(); |
| 315 | IS_CHANGED(changed, pMbcBandParams->freqCutoffHz, |
| 316 | pMbcBand->getCutoffFrequency()); |
| 317 | |
| 318 | pMbcBandParams->gainPreDb = pMbcBand->getPreGain(); |
| 319 | pMbcBandParams->gainPostDb = pMbcBand->getPostGain(); |
| 320 | pMbcBandParams->attackTimeMs = pMbcBand->getAttackTime(); |
| 321 | pMbcBandParams->releaseTimeMs = pMbcBand->getReleaseTime(); |
| 322 | pMbcBandParams->ratio = pMbcBand->getRatio(); |
| 323 | pMbcBandParams->thresholdDb = pMbcBand->getThreshold(); |
| 324 | pMbcBandParams->kneeWidthDb = pMbcBand->getKneeWidth(); |
| 325 | pMbcBandParams->noiseGateThresholdDb = pMbcBand->getNoiseGateThreshold(); |
| 326 | pMbcBandParams->expanderRatio = pMbcBand->getExpanderRatio(); |
| 327 | |
| 328 | } |
| 329 | |
| 330 | if (changed) { |
| 331 | ALOGV("mbc changed, recomputing! channel %d", channelIndex); |
| 332 | size_t binNext= 0; |
| 333 | for (unsigned int b = 0; b < getMbcBandCount(); b++) { |
| 334 | ChannelBuffer::MbcBandParams *pMbcBandParams = &cb.mMbcBands[b]; |
| 335 | |
| 336 | pMbcBandParams->previousEnvelope = 0; |
| 337 | |
| 338 | //frequency translation |
| 339 | cb.computeBinStartStop(*pMbcBandParams, binNext); |
| 340 | binNext = pMbcBandParams->binStop + 1; |
| 341 | } |
rago | ff0a51f | 2018-03-22 09:55:50 -0700 | [diff] [blame] | 342 | } |
rago | d55d0f3 | 2018-05-15 18:57:31 -0700 | [diff] [blame] | 343 | } |
| 344 | } |
rago | ff0a51f | 2018-03-22 09:55:50 -0700 | [diff] [blame] | 345 | |
rago | d55d0f3 | 2018-05-15 18:57:31 -0700 | [diff] [blame] | 346 | //===Limiter |
| 347 | if (cb.mLimiterInUse) { |
| 348 | bool changed = false; |
| 349 | DPLimiter *pLimiter = pChannel->getLimiter(); |
| 350 | if (pLimiter == nullptr) { |
| 351 | ALOGE("Error: updateParameters Limiter NULL for channel: %d", channelIndex); |
| 352 | return; |
| 353 | } |
| 354 | cb.mLimiterEnabled = pLimiter->isEnabled(); |
| 355 | if (cb.mLimiterEnabled) { |
| 356 | IS_CHANGED(changed, cb.mLimiterParams.linkGroup , |
| 357 | (int32_t)pLimiter->getLinkGroup()); |
| 358 | cb.mLimiterParams.attackTimeMs = pLimiter->getAttackTime(); |
| 359 | cb.mLimiterParams.releaseTimeMs = pLimiter->getReleaseTime(); |
| 360 | cb.mLimiterParams.ratio = pLimiter->getRatio(); |
| 361 | cb.mLimiterParams.thresholdDb = pLimiter->getThreshold(); |
| 362 | cb.mLimiterParams.postGainDb = pLimiter->getPostGain(); |
| 363 | } |
| 364 | |
| 365 | if (changed) { |
| 366 | ALOGV("limiter changed, recomputing linkGroups for %d", channelIndex); |
| 367 | mLinkedLimiters.remove(channelIndex); //in case it was already there. |
| 368 | mLinkedLimiters.update(cb.mLimiterParams.linkGroup, channelIndex); |
rago | ff0a51f | 2018-03-22 09:55:50 -0700 | [diff] [blame] | 369 | } |
| 370 | } |
rago | d24e983 | 2018-05-18 17:20:16 -0700 | [diff] [blame] | 371 | |
| 372 | //=== Output Gain |
| 373 | cb.outputGainDb = pChannel->getOutputGain(); |
rago | ff0a51f | 2018-03-22 09:55:50 -0700 | [diff] [blame] | 374 | } |
| 375 | |
| 376 | size_t DPFrequency::processSamples(const float *in, float *out, size_t samples) { |
| 377 | const float *pIn = in; |
| 378 | float *pOut = out; |
| 379 | |
| 380 | int channelCount = mChannelBuffers.size(); |
| 381 | if (channelCount < 1) { |
| 382 | ALOGW("warning: no Channels ready for processing"); |
| 383 | return 0; |
| 384 | } |
| 385 | |
| 386 | //**Check if parameters have changed and update |
| 387 | for (int ch = 0; ch < channelCount; ch++) { |
| 388 | updateParameters(mChannelBuffers[ch], ch); |
| 389 | } |
| 390 | |
| 391 | //**separate into channels |
| 392 | for (size_t k = 0; k < samples; k += channelCount) { |
| 393 | for (int ch = 0; ch < channelCount; ch++) { |
| 394 | mChannelBuffers[ch].cBInput.write(*pIn++); |
| 395 | } |
| 396 | } |
| 397 | |
rago | d55d0f3 | 2018-05-15 18:57:31 -0700 | [diff] [blame] | 398 | //**process all channelBuffers |
| 399 | processChannelBuffers(mChannelBuffers); |
rago | ff0a51f | 2018-03-22 09:55:50 -0700 | [diff] [blame] | 400 | |
| 401 | //** estimate how much data is available in ALL channels |
| 402 | size_t available = mChannelBuffers[0].cBOutput.availableToRead(); |
| 403 | for (int ch = 1; ch < channelCount; ch++) { |
| 404 | available = std::min(available, mChannelBuffers[ch].cBOutput.availableToRead()); |
| 405 | } |
| 406 | |
| 407 | //** make sure to output just what the buffer can handle |
| 408 | if (available > samples/channelCount) { |
| 409 | available = samples/channelCount; |
| 410 | } |
| 411 | |
| 412 | //**Prepend zeroes if necessary |
| 413 | size_t fill = samples - (channelCount * available); |
| 414 | for (size_t k = 0; k < fill; k++) { |
| 415 | *pOut++ = 0; |
| 416 | } |
| 417 | |
| 418 | //**interleave channels |
| 419 | for (size_t k = 0; k < available; k++) { |
| 420 | for (int ch = 0; ch < channelCount; ch++) { |
| 421 | *pOut++ = mChannelBuffers[ch].cBOutput.read(); |
| 422 | } |
| 423 | } |
| 424 | |
| 425 | return samples; |
| 426 | } |
| 427 | |
rago | d55d0f3 | 2018-05-15 18:57:31 -0700 | [diff] [blame] | 428 | size_t DPFrequency::processChannelBuffers(CBufferVector &channelBuffers) { |
| 429 | const int channelCount = channelBuffers.size(); |
rago | ff0a51f | 2018-03-22 09:55:50 -0700 | [diff] [blame] | 430 | size_t processedSamples = 0; |
rago | d55d0f3 | 2018-05-15 18:57:31 -0700 | [diff] [blame] | 431 | size_t processFrames = mBlockSize - mOverlapSize; |
rago | ff0a51f | 2018-03-22 09:55:50 -0700 | [diff] [blame] | 432 | |
rago | d55d0f3 | 2018-05-15 18:57:31 -0700 | [diff] [blame] | 433 | size_t available = channelBuffers[0].cBInput.availableToRead(); |
| 434 | for (int ch = 1; ch < channelCount; ch++) { |
| 435 | available = std::min(available, channelBuffers[ch].cBInput.availableToRead()); |
rago | ff0a51f | 2018-03-22 09:55:50 -0700 | [diff] [blame] | 436 | } |
| 437 | |
rago | d55d0f3 | 2018-05-15 18:57:31 -0700 | [diff] [blame] | 438 | while (available >= processFrames) { |
| 439 | //First pass |
| 440 | for (int ch = 0; ch < channelCount; ch++) { |
| 441 | ChannelBuffer * pCb = &channelBuffers[ch]; |
| 442 | //move tail of previous |
| 443 | std::copy(pCb->input.begin() + processFrames, |
| 444 | pCb->input.end(), |
| 445 | pCb->input.begin()); |
| 446 | |
| 447 | //read new available data |
| 448 | for (unsigned int k = 0; k < processFrames; k++) { |
| 449 | pCb->input[mOverlapSize + k] = pCb->cBInput.read(); |
| 450 | } |
| 451 | //first stages: fft, preEq, mbc, postEq and start of Limiter |
| 452 | processedSamples += processFirstStages(*pCb); |
| 453 | } |
| 454 | |
| 455 | //**compute linked limiters and update levels if needed |
| 456 | processLinkedLimiters(channelBuffers); |
| 457 | |
| 458 | //final pass. |
| 459 | for (int ch = 0; ch < channelCount; ch++) { |
| 460 | ChannelBuffer * pCb = &channelBuffers[ch]; |
| 461 | |
| 462 | //linked limiter and ifft |
| 463 | processLastStages(*pCb); |
| 464 | |
| 465 | //mix tail (and capture new tail |
| 466 | for (unsigned int k = 0; k < mOverlapSize; k++) { |
| 467 | pCb->output[k] += pCb->outTail[k]; |
| 468 | pCb->outTail[k] = pCb->output[processFrames + k]; //new tail |
| 469 | } |
| 470 | |
| 471 | //output data |
| 472 | for (unsigned int k = 0; k < processFrames; k++) { |
| 473 | pCb->cBOutput.write(pCb->output[k]); |
| 474 | } |
| 475 | } |
| 476 | available -= processFrames; |
| 477 | } |
rago | ff0a51f | 2018-03-22 09:55:50 -0700 | [diff] [blame] | 478 | return processedSamples; |
| 479 | } |
rago | d55d0f3 | 2018-05-15 18:57:31 -0700 | [diff] [blame] | 480 | size_t DPFrequency::processFirstStages(ChannelBuffer &cb) { |
rago | ff0a51f | 2018-03-22 09:55:50 -0700 | [diff] [blame] | 481 | |
| 482 | //##apply window |
| 483 | Eigen::Map<Eigen::VectorXf> eWindow(&mVWindow[0], mVWindow.size()); |
rago | d55d0f3 | 2018-05-15 18:57:31 -0700 | [diff] [blame] | 484 | Eigen::Map<Eigen::VectorXf> eInput(&cb.input[0], cb.input.size()); |
rago | ff0a51f | 2018-03-22 09:55:50 -0700 | [diff] [blame] | 485 | |
| 486 | Eigen::VectorXf eWin = eInput.cwiseProduct(eWindow); //apply window |
| 487 | |
rago | d55d0f3 | 2018-05-15 18:57:31 -0700 | [diff] [blame] | 488 | //##fft |
| 489 | //Note: we are using eigen with the default scaling, which ensures that |
| 490 | // IFFT( FFT(x) ) = x. |
| 491 | // TODO: optimize by using the noscale option, and compensate with dB scale offsets |
| 492 | mFftServer.fwd(cb.complexTemp, eWin); |
rago | ff0a51f | 2018-03-22 09:55:50 -0700 | [diff] [blame] | 493 | |
rago | d55d0f3 | 2018-05-15 18:57:31 -0700 | [diff] [blame] | 494 | size_t cSize = cb.complexTemp.size(); |
rago | ff0a51f | 2018-03-22 09:55:50 -0700 | [diff] [blame] | 495 | size_t maxBin = std::min(cSize/2, mHalfFFTSize); |
| 496 | |
| 497 | //== EqPre (always runs) |
| 498 | for (size_t k = 0; k < maxBin; k++) { |
rago | d55d0f3 | 2018-05-15 18:57:31 -0700 | [diff] [blame] | 499 | cb.complexTemp[k] *= cb.mPreEqFactorVector[k]; |
rago | ff0a51f | 2018-03-22 09:55:50 -0700 | [diff] [blame] | 500 | } |
| 501 | |
| 502 | //== MBC |
| 503 | if (cb.mMbcInUse && cb.mMbcEnabled) { |
| 504 | for (size_t band = 0; band < cb.mMbcBands.size(); band++) { |
| 505 | ChannelBuffer::MbcBandParams *pMbcBandParams = &cb.mMbcBands[band]; |
| 506 | float fEnergySum = 0; |
| 507 | |
| 508 | //apply pre gain. |
| 509 | float preGainFactor = dBtoLinear(pMbcBandParams->gainPreDb); |
| 510 | float preGainSquared = preGainFactor * preGainFactor; |
| 511 | |
| 512 | for (size_t k = pMbcBandParams->binStart; k <= pMbcBandParams->binStop; k++) { |
rago | d55d0f3 | 2018-05-15 18:57:31 -0700 | [diff] [blame] | 513 | fEnergySum += std::norm(cb.complexTemp[k]) * preGainSquared; //mag squared |
rago | ff0a51f | 2018-03-22 09:55:50 -0700 | [diff] [blame] | 514 | } |
| 515 | |
rago | d55d0f3 | 2018-05-15 18:57:31 -0700 | [diff] [blame] | 516 | //Eigen FFT is full spectrum, even if the source was real data. |
| 517 | // Each half spectrum has half the energy. This is taken into account with the * 2 |
| 518 | // factor in the energy computations. |
| 519 | // energy = sqrt(sum_components_squared) number_points |
| 520 | // in here, the fEnergySum is duplicated to account for the second half spectrum, |
| 521 | // and the windowRms is used to normalize by the expected energy reduction |
| 522 | // caused by the window used (expected for steady state signals) |
| 523 | fEnergySum = sqrt(fEnergySum * 2) / (mBlockSize * mWindowRms); |
| 524 | |
| 525 | // updates computed per frame advance. |
rago | ff0a51f | 2018-03-22 09:55:50 -0700 | [diff] [blame] | 526 | float fTheta = 0.0; |
rago | d55d0f3 | 2018-05-15 18:57:31 -0700 | [diff] [blame] | 527 | float fFAttSec = pMbcBandParams->attackTimeMs / 1000; //in seconds |
| 528 | float fFRelSec = pMbcBandParams->releaseTimeMs / 1000; //in seconds |
rago | ff0a51f | 2018-03-22 09:55:50 -0700 | [diff] [blame] | 529 | |
| 530 | if (fEnergySum > pMbcBandParams->previousEnvelope) { |
rago | d55d0f3 | 2018-05-15 18:57:31 -0700 | [diff] [blame] | 531 | fTheta = exp(-1.0 / (fFAttSec * mBlocksPerSecond)); |
rago | ff0a51f | 2018-03-22 09:55:50 -0700 | [diff] [blame] | 532 | } else { |
rago | d55d0f3 | 2018-05-15 18:57:31 -0700 | [diff] [blame] | 533 | fTheta = exp(-1.0 / (fFRelSec * mBlocksPerSecond)); |
rago | ff0a51f | 2018-03-22 09:55:50 -0700 | [diff] [blame] | 534 | } |
| 535 | |
rago | d55d0f3 | 2018-05-15 18:57:31 -0700 | [diff] [blame] | 536 | float fEnv = (1.0 - fTheta) * fEnergySum + fTheta * pMbcBandParams->previousEnvelope; |
rago | ff0a51f | 2018-03-22 09:55:50 -0700 | [diff] [blame] | 537 | //preserve for next iteration |
| 538 | pMbcBandParams->previousEnvelope = fEnv; |
| 539 | |
rago | ce5f342 | 2018-05-23 16:07:48 -0700 | [diff] [blame] | 540 | if (fEnv < MIN_ENVELOPE) { |
| 541 | fEnv = MIN_ENVELOPE; |
rago | ff0a51f | 2018-03-22 09:55:50 -0700 | [diff] [blame] | 542 | } |
rago | ce5f342 | 2018-05-23 16:07:48 -0700 | [diff] [blame] | 543 | const float envDb = linearToDb(fEnv); |
| 544 | float newLevelDb = envDb; |
| 545 | //using shorter variables for code clarity |
| 546 | const float thresholdDb = pMbcBandParams->thresholdDb; |
| 547 | const float ratio = pMbcBandParams->ratio; |
| 548 | const float kneeWidthDbHalf = pMbcBandParams->kneeWidthDb / 2; |
| 549 | const float noiseGateThresholdDb = pMbcBandParams->noiseGateThresholdDb; |
| 550 | const float expanderRatio = pMbcBandParams->expanderRatio; |
| 551 | |
| 552 | //find segment |
| 553 | if (envDb > thresholdDb + kneeWidthDbHalf) { |
| 554 | //compression segment |
| 555 | newLevelDb = envDb + ((1 / ratio) - 1) * (envDb - thresholdDb); |
| 556 | } else if (envDb > thresholdDb - kneeWidthDbHalf) { |
| 557 | //knee-compression segment |
| 558 | float temp = (envDb - thresholdDb + kneeWidthDbHalf); |
| 559 | newLevelDb = envDb + ((1 / ratio) - 1) * |
| 560 | temp * temp / (kneeWidthDbHalf * 4); |
| 561 | } else if (envDb < noiseGateThresholdDb) { |
| 562 | //expander segment |
| 563 | newLevelDb = noiseGateThresholdDb - |
| 564 | expanderRatio * (noiseGateThresholdDb - envDb); |
| 565 | } |
| 566 | |
| 567 | float newFactor = dBtoLinear(newLevelDb - envDb); |
rago | ff0a51f | 2018-03-22 09:55:50 -0700 | [diff] [blame] | 568 | |
| 569 | //apply post gain. |
rago | ce5f342 | 2018-05-23 16:07:48 -0700 | [diff] [blame] | 570 | newFactor *= dBtoLinear(pMbcBandParams->gainPostDb); |
rago | ff0a51f | 2018-03-22 09:55:50 -0700 | [diff] [blame] | 571 | |
| 572 | //apply to this band |
| 573 | for (size_t k = pMbcBandParams->binStart; k <= pMbcBandParams->binStop; k++) { |
rago | ce5f342 | 2018-05-23 16:07:48 -0700 | [diff] [blame] | 574 | cb.complexTemp[k] *= newFactor; |
rago | ff0a51f | 2018-03-22 09:55:50 -0700 | [diff] [blame] | 575 | } |
| 576 | |
| 577 | } //end per band process |
| 578 | |
| 579 | } //end MBC |
| 580 | |
| 581 | //== EqPost |
| 582 | if (cb.mPostEqInUse && cb.mPostEqEnabled) { |
| 583 | for (size_t k = 0; k < maxBin; k++) { |
rago | d55d0f3 | 2018-05-15 18:57:31 -0700 | [diff] [blame] | 584 | cb.complexTemp[k] *= cb.mPostEqFactorVector[k]; |
| 585 | } |
| 586 | } |
| 587 | |
| 588 | //== Limiter. First Pass |
| 589 | if (cb.mLimiterInUse && cb.mLimiterEnabled) { |
| 590 | float fEnergySum = 0; |
| 591 | for (size_t k = 0; k < maxBin; k++) { |
| 592 | fEnergySum += std::norm(cb.complexTemp[k]); |
| 593 | } |
| 594 | |
| 595 | //see explanation above for energy computation logic |
| 596 | fEnergySum = sqrt(fEnergySum * 2) / (mBlockSize * mWindowRms); |
| 597 | float fTheta = 0.0; |
| 598 | float fFAttSec = cb.mLimiterParams.attackTimeMs / 1000; //in seconds |
| 599 | float fFRelSec = cb.mLimiterParams.releaseTimeMs / 1000; //in seconds |
| 600 | |
| 601 | if (fEnergySum > cb.mLimiterParams.previousEnvelope) { |
| 602 | fTheta = exp(-1.0 / (fFAttSec * mBlocksPerSecond)); |
| 603 | } else { |
| 604 | fTheta = exp(-1.0 / (fFRelSec * mBlocksPerSecond)); |
| 605 | } |
| 606 | |
| 607 | float fEnv = (1.0 - fTheta) * fEnergySum + fTheta * cb.mLimiterParams.previousEnvelope; |
| 608 | //preserve for next iteration |
| 609 | cb.mLimiterParams.previousEnvelope = fEnv; |
| 610 | |
rago | ce5f342 | 2018-05-23 16:07:48 -0700 | [diff] [blame] | 611 | const float envDb = linearToDb(fEnv); |
| 612 | float newFactorDb = 0; |
| 613 | //using shorter variables for code clarity |
| 614 | const float thresholdDb = cb.mLimiterParams.thresholdDb; |
| 615 | const float ratio = cb.mLimiterParams.ratio; |
rago | d55d0f3 | 2018-05-15 18:57:31 -0700 | [diff] [blame] | 616 | |
rago | ce5f342 | 2018-05-23 16:07:48 -0700 | [diff] [blame] | 617 | if (envDb > thresholdDb) { |
| 618 | //limiter segment |
| 619 | newFactorDb = ((1 / ratio) - 1) * (envDb - thresholdDb); |
rago | d55d0f3 | 2018-05-15 18:57:31 -0700 | [diff] [blame] | 620 | } |
| 621 | |
rago | ce5f342 | 2018-05-23 16:07:48 -0700 | [diff] [blame] | 622 | float newFactor = dBtoLinear(newFactorDb); |
rago | d55d0f3 | 2018-05-15 18:57:31 -0700 | [diff] [blame] | 623 | |
rago | ce5f342 | 2018-05-23 16:07:48 -0700 | [diff] [blame] | 624 | cb.mLimiterParams.newFactor = newFactor; |
rago | d55d0f3 | 2018-05-15 18:57:31 -0700 | [diff] [blame] | 625 | |
| 626 | } //end Limiter |
| 627 | return mBlockSize; |
| 628 | } |
| 629 | |
| 630 | void DPFrequency::processLinkedLimiters(CBufferVector &channelBuffers) { |
| 631 | |
| 632 | const int channelCount = channelBuffers.size(); |
| 633 | for (auto &groupPair : mLinkedLimiters.mGroupsMap) { |
| 634 | float minFactor = 1.0; |
| 635 | //estimate minfactor for all linked |
| 636 | for(int index : groupPair.second) { |
| 637 | if (index >= 0 && index < channelCount) { |
| 638 | minFactor = std::min(channelBuffers[index].mLimiterParams.newFactor, minFactor); |
| 639 | } |
| 640 | } |
| 641 | //apply minFactor |
| 642 | for(int index : groupPair.second) { |
| 643 | if (index >= 0 && index < channelCount) { |
| 644 | channelBuffers[index].mLimiterParams.linkFactor = minFactor; |
| 645 | } |
| 646 | } |
| 647 | } |
| 648 | } |
| 649 | |
| 650 | size_t DPFrequency::processLastStages(ChannelBuffer &cb) { |
rago | d24e983 | 2018-05-18 17:20:16 -0700 | [diff] [blame] | 651 | |
| 652 | float outputGainFactor = dBtoLinear(cb.outputGainDb); |
rago | d55d0f3 | 2018-05-15 18:57:31 -0700 | [diff] [blame] | 653 | //== Limiter. last Pass |
| 654 | if (cb.mLimiterInUse && cb.mLimiterEnabled) { |
rago | d55d0f3 | 2018-05-15 18:57:31 -0700 | [diff] [blame] | 655 | //compute factor, with post-gain |
| 656 | float factor = cb.mLimiterParams.linkFactor * dBtoLinear(cb.mLimiterParams.postGainDb); |
rago | d24e983 | 2018-05-18 17:20:16 -0700 | [diff] [blame] | 657 | outputGainFactor *= factor; |
| 658 | } |
rago | d55d0f3 | 2018-05-15 18:57:31 -0700 | [diff] [blame] | 659 | |
rago | d24e983 | 2018-05-18 17:20:16 -0700 | [diff] [blame] | 660 | //apply to all if != 1.0 |
| 661 | if (!compareEquality(outputGainFactor, 1.0f)) { |
| 662 | size_t cSize = cb.complexTemp.size(); |
| 663 | size_t maxBin = std::min(cSize/2, mHalfFFTSize); |
rago | d55d0f3 | 2018-05-15 18:57:31 -0700 | [diff] [blame] | 664 | for (size_t k = 0; k < maxBin; k++) { |
rago | d24e983 | 2018-05-18 17:20:16 -0700 | [diff] [blame] | 665 | cb.complexTemp[k] *= outputGainFactor; |
rago | ff0a51f | 2018-03-22 09:55:50 -0700 | [diff] [blame] | 666 | } |
| 667 | } |
| 668 | |
| 669 | //##ifft directly to output. |
rago | d55d0f3 | 2018-05-15 18:57:31 -0700 | [diff] [blame] | 670 | Eigen::Map<Eigen::VectorXf> eOutput(&cb.output[0], cb.output.size()); |
| 671 | mFftServer.inv(eOutput, cb.complexTemp); |
rago | ff0a51f | 2018-03-22 09:55:50 -0700 | [diff] [blame] | 672 | return mBlockSize; |
| 673 | } |
| 674 | |
| 675 | } //namespace dp_fx |