blob: e44645ba6bce9b947f777bcff3389a57e39ce0e6 [file] [log] [blame]
Nicholas Flintham1e3d3112013-04-10 10:48:38 +01001/*
2 * Copyright (C) 2007 Google, Inc.
3 * Copyright (c) 2009-2012, Code Aurora Forum. All rights reserved.
4 *
5 * This software is licensed under the terms of the GNU General Public
6 * License version 2, as published by the Free Software Foundation, and
7 * may be copied, distributed, and modified under those terms.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 */
15
16#include <linux/module.h>
17#include <linux/clocksource.h>
18#include <linux/clockchips.h>
19#include <linux/init.h>
20#include <linux/time.h>
21#include <linux/interrupt.h>
22#include <linux/irq.h>
23#include <linux/delay.h>
24#include <linux/io.h>
25#include <linux/percpu.h>
26
27#include <asm/localtimer.h>
28#include <asm/mach/time.h>
29#include <asm/hardware/gic.h>
30#include <asm/sched_clock.h>
31#include <asm/smp_plat.h>
32#include <mach/msm_iomap.h>
33#include <mach/irqs.h>
34#include <mach/socinfo.h>
35
36#if defined(CONFIG_MSM_SMD)
37#include "smd_private.h"
38#endif
39#include "timer.h"
40
41enum {
42 MSM_TIMER_DEBUG_SYNC = 1U << 0,
43};
44static int msm_timer_debug_mask;
45module_param_named(debug_mask, msm_timer_debug_mask, int, S_IRUGO | S_IWUSR | S_IWGRP);
46
47#ifdef CONFIG_MSM7X00A_USE_GP_TIMER
48 #define DG_TIMER_RATING 100
49#else
50 #define DG_TIMER_RATING 300
51#endif
52
53#ifndef MSM_TMR0_BASE
54#define MSM_TMR0_BASE MSM_TMR_BASE
55#endif
56
57#define MSM_DGT_SHIFT (5)
58
59#define TIMER_MATCH_VAL 0x0000
60#define TIMER_COUNT_VAL 0x0004
61#define TIMER_ENABLE 0x0008
62#define TIMER_CLEAR 0x000C
63#define DGT_CLK_CTL 0x0034
64enum {
65 DGT_CLK_CTL_DIV_1 = 0,
66 DGT_CLK_CTL_DIV_2 = 1,
67 DGT_CLK_CTL_DIV_3 = 2,
68 DGT_CLK_CTL_DIV_4 = 3,
69};
70#define TIMER_STATUS 0x0088
71#define TIMER_ENABLE_EN 1
72#define TIMER_ENABLE_CLR_ON_MATCH_EN 2
73
74#define LOCAL_TIMER 0
75#define GLOBAL_TIMER 1
76
77static int global_timer_offset;
78static int msm_global_timer;
79
80#define NR_TIMERS ARRAY_SIZE(msm_clocks)
81
82unsigned int gpt_hz = 32768;
83unsigned int sclk_hz = 32768;
84
85static struct msm_clock *clockevent_to_clock(struct clock_event_device *evt);
86static irqreturn_t msm_timer_interrupt(int irq, void *dev_id);
87static cycle_t msm_gpt_read(struct clocksource *cs);
88static cycle_t msm_dgt_read(struct clocksource *cs);
89static void msm_timer_set_mode(enum clock_event_mode mode,
90 struct clock_event_device *evt);
91static int msm_timer_set_next_event(unsigned long cycles,
92 struct clock_event_device *evt);
93
94enum {
95 MSM_CLOCK_FLAGS_UNSTABLE_COUNT = 1U << 0,
96 MSM_CLOCK_FLAGS_ODD_MATCH_WRITE = 1U << 1,
97 MSM_CLOCK_FLAGS_DELAYED_WRITE_POST = 1U << 2,
98};
99
100struct msm_clock {
101 struct clock_event_device clockevent;
102 struct clocksource clocksource;
103 unsigned int irq;
104 void __iomem *regbase;
105 uint32_t freq;
106 uint32_t shift;
107 uint32_t flags;
108 uint32_t write_delay;
109 uint32_t rollover_offset;
110 uint32_t index;
111 void __iomem *global_counter;
112 void __iomem *local_counter;
113 uint32_t status_mask;
114 union {
115 struct clock_event_device *evt;
116 struct clock_event_device __percpu **percpu_evt;
117 };
118};
119
120enum {
121 MSM_CLOCK_GPT,
122 MSM_CLOCK_DGT,
123};
124
125struct msm_clock_percpu_data {
126 uint32_t last_set;
127 uint32_t sleep_offset;
128 uint32_t alarm_vtime;
129 uint32_t alarm;
130 uint32_t non_sleep_offset;
131 uint32_t in_sync;
132 cycle_t stopped_tick;
133 int stopped;
134 uint32_t last_sync_gpt;
135 u64 last_sync_jiffies;
136};
137
138struct msm_timer_sync_data_t {
139 struct msm_clock *clock;
140 uint32_t timeout;
141 int exit_sleep;
142};
143
144static struct msm_clock msm_clocks[] = {
145 [MSM_CLOCK_GPT] = {
146 .clockevent = {
147 .name = "gp_timer",
148 .features = CLOCK_EVT_FEAT_ONESHOT,
149 .shift = 32,
150 .rating = 200,
151 .set_next_event = msm_timer_set_next_event,
152 .set_mode = msm_timer_set_mode,
153 },
154 .clocksource = {
155 .name = "gp_timer",
156 .rating = 200,
157 .read = msm_gpt_read,
158 .mask = CLOCKSOURCE_MASK(32),
159 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
160 },
161 .irq = INT_GP_TIMER_EXP,
162 .regbase = MSM_TMR_BASE + 0x4,
163 .freq = 32768,
164 .index = MSM_CLOCK_GPT,
165 .write_delay = 9,
166 },
167 [MSM_CLOCK_DGT] = {
168 .clockevent = {
169 .name = "dg_timer",
170 .features = CLOCK_EVT_FEAT_ONESHOT,
171 .shift = 32,
172 .rating = DG_TIMER_RATING,
173 .set_next_event = msm_timer_set_next_event,
174 .set_mode = msm_timer_set_mode,
175 },
176 .clocksource = {
177 .name = "dg_timer",
178 .rating = DG_TIMER_RATING,
179 .read = msm_dgt_read,
180 .mask = CLOCKSOURCE_MASK(32),
181 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
182 },
183 .irq = INT_DEBUG_TIMER_EXP,
184 .regbase = MSM_TMR_BASE + 0x24,
185 .index = MSM_CLOCK_DGT,
186 .write_delay = 9,
187 }
188};
189
190static DEFINE_PER_CPU(struct msm_clock_percpu_data[NR_TIMERS],
191 msm_clocks_percpu);
192
193static DEFINE_PER_CPU(struct msm_clock *, msm_active_clock);
194
195static DEFINE_SPINLOCK(msm_fast_timer_lock);
196static int msm_fast_timer_enabled;
197
198static irqreturn_t msm_timer_interrupt(int irq, void *dev_id)
199{
200 struct clock_event_device *evt = *(struct clock_event_device **)dev_id;
201 if (evt->event_handler == NULL)
202 return IRQ_HANDLED;
203 evt->event_handler(evt);
204 return IRQ_HANDLED;
205}
206
207static uint32_t msm_read_timer_count(struct msm_clock *clock, int global)
208{
209 uint32_t t1, t2, t3;
210 int loop_count = 0;
211 void __iomem *addr = clock->regbase + TIMER_COUNT_VAL +
212 global*global_timer_offset;
213
214 if (!(clock->flags & MSM_CLOCK_FLAGS_UNSTABLE_COUNT))
215 return __raw_readl_no_log(addr);
216
217 t1 = __raw_readl_no_log(addr);
218 t2 = __raw_readl_no_log(addr);
219 if ((t2-t1) <= 1)
220 return t2;
221 while (1) {
222 t1 = __raw_readl_no_log(addr);
223 t2 = __raw_readl_no_log(addr);
224 t3 = __raw_readl_no_log(addr);
225 cpu_relax();
226 if ((t3-t2) <= 1)
227 return t3;
228 if ((t2-t1) <= 1)
229 return t2;
230 if ((t2 >= t1) && (t3 >= t2))
231 return t2;
232 if (++loop_count == 5) {
233 pr_err("msm_read_timer_count timer %s did not "
234 "stabilize: %u -> %u -> %u\n",
235 clock->clockevent.name, t1, t2, t3);
236 return t3;
237 }
238 }
239}
240
241static cycle_t msm_gpt_read(struct clocksource *cs)
242{
243 struct msm_clock *clock = &msm_clocks[MSM_CLOCK_GPT];
244 struct msm_clock_percpu_data *clock_state =
245 &per_cpu(msm_clocks_percpu, 0)[MSM_CLOCK_GPT];
246
247 if (clock_state->stopped)
248 return clock_state->stopped_tick;
249
250 return msm_read_timer_count(clock, GLOBAL_TIMER) +
251 clock_state->sleep_offset;
252}
253
254static cycle_t msm_dgt_read(struct clocksource *cs)
255{
256 struct msm_clock *clock = &msm_clocks[MSM_CLOCK_DGT];
257 struct msm_clock_percpu_data *clock_state =
258 &per_cpu(msm_clocks_percpu, 0)[MSM_CLOCK_DGT];
259
260 if (clock_state->stopped)
261 return clock_state->stopped_tick >> clock->shift;
262
263 return (msm_read_timer_count(clock, GLOBAL_TIMER) +
264 clock_state->sleep_offset) >> clock->shift;
265}
266
267static struct msm_clock *clockevent_to_clock(struct clock_event_device *evt)
268{
269 int i;
270
271 if (!is_smp())
272 return container_of(evt, struct msm_clock, clockevent);
273
274 for (i = 0; i < NR_TIMERS; i++)
275 if (evt == &(msm_clocks[i].clockevent))
276 return &msm_clocks[i];
277 return &msm_clocks[msm_global_timer];
278}
279
280static int msm_timer_set_next_event(unsigned long cycles,
281 struct clock_event_device *evt)
282{
283 int i;
284 struct msm_clock *clock;
285 struct msm_clock_percpu_data *clock_state;
286 uint32_t now;
287 uint32_t alarm;
288 int late;
289
290 clock = clockevent_to_clock(evt);
291 clock_state = &__get_cpu_var(msm_clocks_percpu)[clock->index];
292 if (clock_state->stopped)
293 return 0;
294 now = msm_read_timer_count(clock, LOCAL_TIMER);
295 alarm = now + (cycles << clock->shift);
296 if (clock->flags & MSM_CLOCK_FLAGS_ODD_MATCH_WRITE)
297 while (now == clock_state->last_set)
298 now = msm_read_timer_count(clock, LOCAL_TIMER);
299
300 clock_state->alarm = alarm;
301 __raw_writel(alarm, clock->regbase + TIMER_MATCH_VAL);
302
303 if (clock->flags & MSM_CLOCK_FLAGS_DELAYED_WRITE_POST) {
304 for (i = 0; i < 4; i++)
305 __raw_readl_no_log(clock->regbase + TIMER_COUNT_VAL);
306 }
307 now = msm_read_timer_count(clock, LOCAL_TIMER);
308 clock_state->last_set = now;
309 clock_state->alarm_vtime = alarm + clock_state->sleep_offset;
310 late = now - alarm;
311 if (late >= (int)(-clock->write_delay << clock->shift) &&
312 late < clock->freq*5)
313 return -ETIME;
314
315 return 0;
316}
317
318static void msm_timer_set_mode(enum clock_event_mode mode,
319 struct clock_event_device *evt)
320{
321 struct msm_clock *clock;
322 struct msm_clock **cur_clock;
323 struct msm_clock_percpu_data *clock_state, *gpt_state;
324 unsigned long irq_flags;
325 struct irq_chip *chip;
326
327 clock = clockevent_to_clock(evt);
328 clock_state = &__get_cpu_var(msm_clocks_percpu)[clock->index];
329 gpt_state = &__get_cpu_var(msm_clocks_percpu)[MSM_CLOCK_GPT];
330
331 local_irq_save(irq_flags);
332
333 switch (mode) {
334 case CLOCK_EVT_MODE_RESUME:
335 case CLOCK_EVT_MODE_PERIODIC:
336 break;
337 case CLOCK_EVT_MODE_ONESHOT:
338 clock_state->stopped = 0;
339 clock_state->sleep_offset =
340 -msm_read_timer_count(clock, LOCAL_TIMER) +
341 clock_state->stopped_tick;
342 get_cpu_var(msm_active_clock) = clock;
343 put_cpu_var(msm_active_clock);
344 __raw_writel(TIMER_ENABLE_EN, clock->regbase + TIMER_ENABLE);
345 chip = irq_get_chip(clock->irq);
346 if (chip && chip->irq_unmask)
347 chip->irq_unmask(irq_get_irq_data(clock->irq));
348 if (clock != &msm_clocks[MSM_CLOCK_GPT])
349 __raw_writel(TIMER_ENABLE_EN,
350 msm_clocks[MSM_CLOCK_GPT].regbase +
351 TIMER_ENABLE);
352 break;
353 case CLOCK_EVT_MODE_UNUSED:
354 case CLOCK_EVT_MODE_SHUTDOWN:
355 cur_clock = &get_cpu_var(msm_active_clock);
356 if (*cur_clock == clock)
357 *cur_clock = NULL;
358 put_cpu_var(msm_active_clock);
359 clock_state->in_sync = 0;
360 clock_state->stopped = 1;
361 clock_state->stopped_tick =
362 msm_read_timer_count(clock, LOCAL_TIMER) +
363 clock_state->sleep_offset;
364 __raw_writel(0, clock->regbase + TIMER_MATCH_VAL);
365 chip = irq_get_chip(clock->irq);
366 if (chip && chip->irq_mask)
367 chip->irq_mask(irq_get_irq_data(clock->irq));
368
369 if (!is_smp() || clock != &msm_clocks[MSM_CLOCK_DGT]
370 || smp_processor_id())
371 __raw_writel(0, clock->regbase + TIMER_ENABLE);
372
373 if (msm_global_timer == MSM_CLOCK_DGT &&
374 clock != &msm_clocks[MSM_CLOCK_GPT]) {
375 gpt_state->in_sync = 0;
376 __raw_writel(0, msm_clocks[MSM_CLOCK_GPT].regbase +
377 TIMER_ENABLE);
378 }
379 break;
380 }
381 wmb();
382 local_irq_restore(irq_flags);
383}
384
385void __iomem *msm_timer_get_timer0_base(void)
386{
387 return MSM_TMR_BASE + global_timer_offset;
388}
389
390#define MPM_SCLK_COUNT_VAL 0x0024
391
392#ifdef CONFIG_PM
393static void (*msm_timer_sync_timeout)(void);
394#if defined(CONFIG_MSM_DIRECT_SCLK_ACCESS)
395uint32_t msm_timer_get_sclk_ticks(void)
396{
397 uint32_t t1, t2;
398 int loop_count = 10;
399 int loop_zero_count = 3;
400 int tmp = USEC_PER_SEC;
401 do_div(tmp, sclk_hz);
402 tmp /= (loop_zero_count-1);
403
404 while (loop_zero_count--) {
405 t1 = __raw_readl_no_log(MSM_RPM_MPM_BASE + MPM_SCLK_COUNT_VAL);
406 do {
407 udelay(1);
408 t2 = t1;
409 t1 = __raw_readl_no_log(
410 MSM_RPM_MPM_BASE + MPM_SCLK_COUNT_VAL);
411 } while ((t2 != t1) && --loop_count);
412
413 if (!loop_count) {
414 printk(KERN_EMERG "SCLK did not stabilize\n");
415 return 0;
416 }
417
418 if (t1)
419 break;
420
421 udelay(tmp);
422 }
423
424 if (!loop_zero_count) {
425 printk(KERN_EMERG "SCLK reads zero\n");
426 return 0;
427 }
428
429 return t1;
430}
431
432static uint32_t msm_timer_do_sync_to_sclk(
433 void (*time_start)(struct msm_timer_sync_data_t *data),
434 bool (*time_expired)(struct msm_timer_sync_data_t *data),
435 void (*update)(struct msm_timer_sync_data_t *, uint32_t, uint32_t),
436 struct msm_timer_sync_data_t *data)
437{
438 unsigned t1 = msm_timer_get_sclk_ticks();
439
440 if (t1 && update != NULL)
441 update(data, t1, sclk_hz);
442 return t1;
443}
444#elif defined(CONFIG_MSM_N_WAY_SMSM)
445
446#define MASTER_BITS_PER_CPU 1
447#define MASTER_TIME_PENDING \
448 (0x01UL << (MASTER_BITS_PER_CPU * SMSM_APPS_STATE))
449
450#define SLAVE_TIME_REQUEST 0x0400
451#define SLAVE_TIME_POLL 0x0800
452#define SLAVE_TIME_INIT 0x1000
453
454static uint32_t msm_timer_do_sync_to_sclk(
455 void (*time_start)(struct msm_timer_sync_data_t *data),
456 bool (*time_expired)(struct msm_timer_sync_data_t *data),
457 void (*update)(struct msm_timer_sync_data_t *, uint32_t, uint32_t),
458 struct msm_timer_sync_data_t *data)
459{
460 uint32_t *smem_clock;
461 uint32_t smem_clock_val;
462 uint32_t state;
463
464 smem_clock = smem_alloc(SMEM_SMEM_SLOW_CLOCK_VALUE, sizeof(uint32_t));
465 if (smem_clock == NULL) {
466 printk(KERN_ERR "no smem clock\n");
467 return 0;
468 }
469
470 state = smsm_get_state(SMSM_MODEM_STATE);
471 if ((state & SMSM_INIT) == 0) {
472 printk(KERN_ERR "smsm not initialized\n");
473 return 0;
474 }
475
476 time_start(data);
477 while ((state = smsm_get_state(SMSM_TIME_MASTER_DEM)) &
478 MASTER_TIME_PENDING) {
479 if (time_expired(data)) {
480 printk(KERN_EMERG "get_smem_clock: timeout 1 still "
481 "invalid state %x\n", state);
482 msm_timer_sync_timeout();
483 }
484 }
485
486 smsm_change_state(SMSM_APPS_DEM, SLAVE_TIME_POLL | SLAVE_TIME_INIT,
487 SLAVE_TIME_REQUEST);
488
489 time_start(data);
490 while (!((state = smsm_get_state(SMSM_TIME_MASTER_DEM)) &
491 MASTER_TIME_PENDING)) {
492 if (time_expired(data)) {
493 printk(KERN_EMERG "get_smem_clock: timeout 2 still "
494 "invalid state %x\n", state);
495 msm_timer_sync_timeout();
496 }
497 }
498
499 smsm_change_state(SMSM_APPS_DEM, SLAVE_TIME_REQUEST, SLAVE_TIME_POLL);
500
501 time_start(data);
502 do {
503 smem_clock_val = *smem_clock;
504 } while (smem_clock_val == 0 && !time_expired(data));
505
506 state = smsm_get_state(SMSM_TIME_MASTER_DEM);
507
508 if (smem_clock_val) {
509 if (update != NULL)
510 update(data, smem_clock_val, sclk_hz);
511
512 if (msm_timer_debug_mask & MSM_TIMER_DEBUG_SYNC)
513 printk(KERN_INFO
514 "get_smem_clock: state %x clock %u\n",
515 state, smem_clock_val);
516 } else {
517 printk(KERN_EMERG
518 "get_smem_clock: timeout state %x clock %u\n",
519 state, smem_clock_val);
520 msm_timer_sync_timeout();
521 }
522
523 smsm_change_state(SMSM_APPS_DEM, SLAVE_TIME_REQUEST | SLAVE_TIME_POLL,
524 SLAVE_TIME_INIT);
525 return smem_clock_val;
526}
527#else
528static uint32_t msm_timer_do_sync_to_sclk(
529 void (*time_start)(struct msm_timer_sync_data_t *data),
530 bool (*time_expired)(struct msm_timer_sync_data_t *data),
531 void (*update)(struct msm_timer_sync_data_t *, uint32_t, uint32_t),
532 struct msm_timer_sync_data_t *data)
533{
534 uint32_t *smem_clock;
535 uint32_t smem_clock_val;
536 uint32_t last_state;
537 uint32_t state;
538
539 smem_clock = smem_alloc(SMEM_SMEM_SLOW_CLOCK_VALUE,
540 sizeof(uint32_t));
541
542 if (smem_clock == NULL) {
543 printk(KERN_ERR "no smem clock\n");
544 return 0;
545 }
546
547 last_state = state = smsm_get_state(SMSM_MODEM_STATE);
548 smem_clock_val = *smem_clock;
549 if (smem_clock_val) {
550 printk(KERN_INFO "get_smem_clock: invalid start state %x "
551 "clock %u\n", state, smem_clock_val);
552 smsm_change_state(SMSM_APPS_STATE,
553 SMSM_TIMEWAIT, SMSM_TIMEINIT);
554
555 time_start(data);
556 while (*smem_clock != 0 && !time_expired(data))
557 ;
558
559 smem_clock_val = *smem_clock;
560 if (smem_clock_val) {
561 printk(KERN_EMERG "get_smem_clock: timeout still "
562 "invalid state %x clock %u\n",
563 state, smem_clock_val);
564 msm_timer_sync_timeout();
565 }
566 }
567
568 time_start(data);
569 smsm_change_state(SMSM_APPS_STATE, SMSM_TIMEINIT, SMSM_TIMEWAIT);
570 do {
571 smem_clock_val = *smem_clock;
572 state = smsm_get_state(SMSM_MODEM_STATE);
573 if (state != last_state) {
574 last_state = state;
575 if (msm_timer_debug_mask & MSM_TIMER_DEBUG_SYNC)
576 printk(KERN_INFO
577 "get_smem_clock: state %x clock %u\n",
578 state, smem_clock_val);
579 }
580 } while (smem_clock_val == 0 && !time_expired(data));
581
582 if (smem_clock_val) {
583 if (update != NULL)
584 update(data, smem_clock_val, sclk_hz);
585 } else {
586 printk(KERN_EMERG
587 "get_smem_clock: timeout state %x clock %u\n",
588 state, smem_clock_val);
589 msm_timer_sync_timeout();
590 }
591
592 smsm_change_state(SMSM_APPS_STATE, SMSM_TIMEWAIT, SMSM_TIMEINIT);
593 return smem_clock_val;
594}
595#endif
596
597static void msm_timer_sync_to_sclk_time_start(
598 struct msm_timer_sync_data_t *data)
599{
600
601 uint32_t delta = data->clock->freq << data->clock->shift << 1;
602 data->timeout = msm_read_timer_count(data->clock, LOCAL_TIMER) + delta;
603}
604
605static bool msm_timer_sync_to_sclk_time_expired(
606 struct msm_timer_sync_data_t *data)
607{
608 uint32_t delta = msm_read_timer_count(data->clock, LOCAL_TIMER) -
609 data->timeout;
610 return ((int32_t) delta) > 0;
611}
612
613static void msm_timer_sync_update(struct msm_timer_sync_data_t *data,
614 uint32_t src_clk_val, uint32_t src_clk_freq)
615{
616 struct msm_clock *dst_clk = data->clock;
617 struct msm_clock_percpu_data *dst_clk_state =
618 &__get_cpu_var(msm_clocks_percpu)[dst_clk->index];
619 uint32_t dst_clk_val = msm_read_timer_count(dst_clk, LOCAL_TIMER);
620 uint32_t new_offset;
621
622 if ((dst_clk->freq << dst_clk->shift) == src_clk_freq) {
623 new_offset = src_clk_val - dst_clk_val;
624 } else {
625 uint64_t temp;
626
627 temp = src_clk_val;
628 temp *= dst_clk->freq << dst_clk->shift;
629 do_div(temp, src_clk_freq);
630
631 new_offset = (uint32_t)(temp) - dst_clk_val;
632 }
633
634 if (dst_clk_state->sleep_offset + dst_clk_state->non_sleep_offset !=
635 new_offset) {
636 if (data->exit_sleep)
637 dst_clk_state->sleep_offset =
638 new_offset - dst_clk_state->non_sleep_offset;
639 else
640 dst_clk_state->non_sleep_offset =
641 new_offset - dst_clk_state->sleep_offset;
642
643 if (msm_timer_debug_mask & MSM_TIMER_DEBUG_SYNC)
644 printk(KERN_INFO "sync clock %s: "
645 "src %u, new offset %u + %u\n",
646 dst_clk->clocksource.name, src_clk_val,
647 dst_clk_state->sleep_offset,
648 dst_clk_state->non_sleep_offset);
649 }
650}
651
652static void msm_timer_sync_gpt_to_sclk(int exit_sleep)
653{
654 struct msm_clock *gpt_clk = &msm_clocks[MSM_CLOCK_GPT];
655 struct msm_clock_percpu_data *gpt_clk_state =
656 &__get_cpu_var(msm_clocks_percpu)[MSM_CLOCK_GPT];
657 struct msm_timer_sync_data_t data;
658 uint32_t ret;
659
660 if (gpt_clk_state->in_sync)
661 return;
662
663 data.clock = gpt_clk;
664 data.timeout = 0;
665 data.exit_sleep = exit_sleep;
666
667 ret = msm_timer_do_sync_to_sclk(
668 msm_timer_sync_to_sclk_time_start,
669 msm_timer_sync_to_sclk_time_expired,
670 msm_timer_sync_update,
671 &data);
672
673 if (ret)
674 gpt_clk_state->in_sync = 1;
675}
676
677static void msm_timer_sync_to_gpt(struct msm_clock *clock, int exit_sleep)
678{
679 struct msm_clock *gpt_clk = &msm_clocks[MSM_CLOCK_GPT];
680 struct msm_clock_percpu_data *gpt_clk_state =
681 &__get_cpu_var(msm_clocks_percpu)[MSM_CLOCK_GPT];
682 struct msm_clock_percpu_data *clock_state =
683 &__get_cpu_var(msm_clocks_percpu)[clock->index];
684 struct msm_timer_sync_data_t data;
685 uint32_t gpt_clk_val;
686 u64 gpt_period = (1ULL << 32) * HZ;
687 u64 now = get_jiffies_64();
688
689 do_div(gpt_period, gpt_hz);
690
691 BUG_ON(clock == gpt_clk);
692
693 if (clock_state->in_sync &&
694 (now - clock_state->last_sync_jiffies < (gpt_period >> 1)))
695 return;
696
697 gpt_clk_val = msm_read_timer_count(gpt_clk, LOCAL_TIMER)
698 + gpt_clk_state->sleep_offset + gpt_clk_state->non_sleep_offset;
699
700 if (exit_sleep && gpt_clk_val < clock_state->last_sync_gpt)
701 clock_state->non_sleep_offset -= clock->rollover_offset;
702
703 data.clock = clock;
704 data.timeout = 0;
705 data.exit_sleep = exit_sleep;
706
707 msm_timer_sync_update(&data, gpt_clk_val, gpt_hz);
708
709 clock_state->in_sync = 1;
710 clock_state->last_sync_gpt = gpt_clk_val;
711 clock_state->last_sync_jiffies = now;
712}
713
714static void msm_timer_reactivate_alarm(struct msm_clock *clock)
715{
716 struct msm_clock_percpu_data *clock_state =
717 &__get_cpu_var(msm_clocks_percpu)[clock->index];
718 long alarm_delta = clock_state->alarm_vtime -
719 clock_state->sleep_offset -
720 msm_read_timer_count(clock, LOCAL_TIMER);
721 alarm_delta >>= clock->shift;
722 if (alarm_delta < (long)clock->write_delay + 4)
723 alarm_delta = clock->write_delay + 4;
724 while (msm_timer_set_next_event(alarm_delta, &clock->clockevent))
725 ;
726}
727
728int64_t msm_timer_enter_idle(void)
729{
730 struct msm_clock *gpt_clk = &msm_clocks[MSM_CLOCK_GPT];
731 struct msm_clock *clock = __get_cpu_var(msm_active_clock);
732 struct msm_clock_percpu_data *clock_state =
733 &__get_cpu_var(msm_clocks_percpu)[clock->index];
734 uint32_t alarm;
735 uint32_t count;
736 int32_t delta;
737
738 BUG_ON(clock != &msm_clocks[MSM_CLOCK_GPT] &&
739 clock != &msm_clocks[MSM_CLOCK_DGT]);
740
741 if (msm_fast_timer_enabled)
742 return 0;
743
744 msm_timer_sync_gpt_to_sclk(0);
745 if (clock != gpt_clk)
746 msm_timer_sync_to_gpt(clock, 0);
747
748 count = msm_read_timer_count(clock, LOCAL_TIMER);
749 if (clock_state->stopped++ == 0)
750 clock_state->stopped_tick = count + clock_state->sleep_offset;
751 alarm = clock_state->alarm;
752 delta = alarm - count;
753 if (delta <= -(int32_t)((clock->freq << clock->shift) >> 10)) {
754
755 printk(KERN_ERR "msm_timer_enter_idle: timer late %d, "
756 "reprogram it\n", delta);
757 msm_timer_reactivate_alarm(clock);
758 }
759 if (delta <= 0)
760 return 0;
761 return clocksource_cyc2ns((alarm - count) >> clock->shift,
762 clock->clocksource.mult,
763 clock->clocksource.shift);
764}
765
766void msm_timer_exit_idle(int low_power)
767{
768 struct msm_clock *gpt_clk = &msm_clocks[MSM_CLOCK_GPT];
769 struct msm_clock *clock = __get_cpu_var(msm_active_clock);
770 struct msm_clock_percpu_data *gpt_clk_state =
771 &__get_cpu_var(msm_clocks_percpu)[MSM_CLOCK_GPT];
772 struct msm_clock_percpu_data *clock_state =
773 &__get_cpu_var(msm_clocks_percpu)[clock->index];
774 uint32_t enabled;
775
776 BUG_ON(clock != &msm_clocks[MSM_CLOCK_GPT] &&
777 clock != &msm_clocks[MSM_CLOCK_DGT]);
778
779 if (!low_power)
780 goto exit_idle_exit;
781
782 enabled = __raw_readl(gpt_clk->regbase + TIMER_ENABLE) &
783 TIMER_ENABLE_EN;
784 if (!enabled)
785 __raw_writel(TIMER_ENABLE_EN, gpt_clk->regbase + TIMER_ENABLE);
786
787#if defined(CONFIG_ARCH_MSM_SCORPION) || defined(CONFIG_ARCH_MSM_KRAIT)
788 gpt_clk_state->in_sync = 0;
789#else
790 gpt_clk_state->in_sync = gpt_clk_state->in_sync && enabled;
791#endif
792
793 wmb();
794 msm_timer_sync_gpt_to_sclk(1);
795
796 if (clock == gpt_clk)
797 goto exit_idle_alarm;
798
799 enabled = __raw_readl(clock->regbase + TIMER_ENABLE) & TIMER_ENABLE_EN;
800 if (!enabled)
801 __raw_writel(TIMER_ENABLE_EN, clock->regbase + TIMER_ENABLE);
802
803#if defined(CONFIG_ARCH_MSM_SCORPION) || defined(CONFIG_ARCH_MSM_KRAIT)
804 clock_state->in_sync = 0;
805#else
806 clock_state->in_sync = clock_state->in_sync && enabled;
807#endif
808
809 wmb();
810 msm_timer_sync_to_gpt(clock, 1);
811
812exit_idle_alarm:
813 msm_timer_reactivate_alarm(clock);
814
815exit_idle_exit:
816 clock_state->stopped--;
817}
818
819static void msm_timer_get_sclk_time_start(
820 struct msm_timer_sync_data_t *data)
821{
822 data->timeout = 200000;
823}
824
825static bool msm_timer_get_sclk_time_expired(
826 struct msm_timer_sync_data_t *data)
827{
828 udelay(10);
829 return --data->timeout <= 0;
830}
831
832int64_t msm_timer_get_sclk_time(int64_t *period)
833{
834 struct msm_timer_sync_data_t data;
835 uint32_t clock_value;
836 int64_t tmp;
837
838 memset(&data, 0, sizeof(data));
839 clock_value = msm_timer_do_sync_to_sclk(
840 msm_timer_get_sclk_time_start,
841 msm_timer_get_sclk_time_expired,
842 NULL,
843 &data);
844
845 if (!clock_value)
846 return 0;
847
848 if (period) {
849 tmp = 1LL << 32;
850 tmp *= NSEC_PER_SEC;
851 do_div(tmp, sclk_hz);
852 *period = tmp;
853 }
854
855 tmp = (int64_t)clock_value;
856 tmp *= NSEC_PER_SEC;
857 do_div(tmp, sclk_hz);
858 return tmp;
859}
860
861int __init msm_timer_init_time_sync(void (*timeout)(void))
862{
863#if defined(CONFIG_MSM_N_WAY_SMSM) && !defined(CONFIG_MSM_DIRECT_SCLK_ACCESS)
864 int ret = smsm_change_intr_mask(SMSM_TIME_MASTER_DEM, 0xFFFFFFFF, 0);
865
866 if (ret) {
867 printk(KERN_ERR "%s: failed to clear interrupt mask, %d\n",
868 __func__, ret);
869 return ret;
870 }
871
872 smsm_change_state(SMSM_APPS_DEM,
873 SLAVE_TIME_REQUEST | SLAVE_TIME_POLL, SLAVE_TIME_INIT);
874#endif
875
876 BUG_ON(timeout == NULL);
877 msm_timer_sync_timeout = timeout;
878
879 return 0;
880}
881
882#endif
883
884static u32 notrace msm_read_sched_clock(void)
885{
886 struct msm_clock *clock = &msm_clocks[msm_global_timer];
887 struct clocksource *cs = &clock->clocksource;
888 return cs->read(NULL);
889}
890
891int read_current_timer(unsigned long *timer_val)
892{
893 struct msm_clock *dgt = &msm_clocks[MSM_CLOCK_DGT];
894 *timer_val = msm_read_timer_count(dgt, GLOBAL_TIMER);
895 return 0;
896}
897
898static void __init msm_sched_clock_init(void)
899{
900 struct msm_clock *clock = &msm_clocks[msm_global_timer];
901
902 setup_sched_clock(msm_read_sched_clock, 32 - clock->shift, clock->freq);
903}
904
905void msm_enable_fast_timer(void)
906{
907 u32 max;
908 unsigned long irq_flags;
909 struct msm_clock *dgt = &msm_clocks[MSM_CLOCK_DGT];
910 struct msm_clock *clock = __get_cpu_var(msm_active_clock);
911
912 spin_lock_irqsave(&msm_fast_timer_lock, irq_flags);
913 if (msm_fast_timer_enabled++)
914 goto done;
915 if (clock == &msm_clocks[MSM_CLOCK_DGT]) {
916 pr_warning("msm_enable_fast_timer: timer already in use, "
917 "returned time will jump when hardware timer wraps\n");
918 goto done;
919 }
920 max = (dgt->clockevent.mult >> (dgt->clockevent.shift - 32)) - 1;
921 writel(max, dgt->regbase + TIMER_MATCH_VAL);
922 writel(TIMER_ENABLE_EN | TIMER_ENABLE_CLR_ON_MATCH_EN,
923 dgt->regbase + TIMER_ENABLE);
924done:
925 spin_unlock_irqrestore(&msm_fast_timer_lock, irq_flags);
926}
927
928void msm_disable_fast_timer(void)
929{
930 unsigned long irq_flags;
931 struct msm_clock *dgt = &msm_clocks[MSM_CLOCK_DGT];
932 struct msm_clock *clock = __get_cpu_var(msm_active_clock);
933
934 spin_lock_irqsave(&msm_fast_timer_lock, irq_flags);
935 if (!WARN(!msm_fast_timer_enabled, "msm_disable_fast_timer undeflow")
936 && !(--msm_fast_timer_enabled)
937 && (clock != &msm_clocks[MSM_CLOCK_DGT]))
938 writel(0, dgt->regbase + TIMER_ENABLE);
939 spin_unlock_irqrestore(&msm_fast_timer_lock, irq_flags);
940}
941
942u32 msm_read_fast_timer(void)
943{
944 cycle_t ticks;
945 struct msm_clock *dgt = &msm_clocks[MSM_CLOCK_DGT];
946
947 ticks = msm_read_timer_count(dgt, LOCAL_TIMER) >> (dgt->shift);
948 return clocksource_cyc2ns(ticks, dgt->clocksource.mult,
949 dgt->clocksource.shift);
950}
951
952#ifdef CONFIG_LOCAL_TIMERS
953int __cpuinit local_timer_setup(struct clock_event_device *evt)
954{
955 static DEFINE_PER_CPU(bool, first_boot) = true;
956 struct msm_clock *clock = &msm_clocks[msm_global_timer];
957
958
959 if (!smp_processor_id())
960 return 0;
961
962 if (cpu_is_msm8x60() || cpu_is_msm8960() || cpu_is_apq8064() ||
963 cpu_is_msm8930() || cpu_is_msm8930aa() || cpu_is_msm8627() ||
964 cpu_is_apq8064ab())
965 __raw_writel(DGT_CLK_CTL_DIV_4, MSM_TMR_BASE + DGT_CLK_CTL);
966
967 if (__get_cpu_var(first_boot)) {
968 __raw_writel(0, clock->regbase + TIMER_ENABLE);
969 __raw_writel(0, clock->regbase + TIMER_CLEAR);
970 __raw_writel(~0, clock->regbase + TIMER_MATCH_VAL);
971 __get_cpu_var(first_boot) = false;
972 if (clock->status_mask)
973 while (__raw_readl(MSM_TMR_BASE + TIMER_STATUS) &
974 clock->status_mask)
975 ;
976 }
977 evt->irq = clock->irq;
978 evt->name = "local_timer";
979 evt->features = CLOCK_EVT_FEAT_ONESHOT;
980 evt->rating = clock->clockevent.rating;
981 evt->set_mode = msm_timer_set_mode;
982 evt->set_next_event = msm_timer_set_next_event;
983 evt->shift = clock->clockevent.shift;
984 evt->mult = div_sc(clock->freq, NSEC_PER_SEC, evt->shift);
985 evt->max_delta_ns =
986 clockevent_delta2ns(0xf0000000 >> clock->shift, evt);
987 evt->min_delta_ns = clockevent_delta2ns(4, evt);
988
989 *__this_cpu_ptr(clock->percpu_evt) = evt;
990
991 clockevents_register_device(evt);
992 enable_percpu_irq(evt->irq, IRQ_TYPE_EDGE_RISING);
993
994 return 0;
995}
996
997void local_timer_stop(struct clock_event_device *evt)
998{
999 evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
1000 disable_percpu_irq(evt->irq);
1001}
1002
1003static struct local_timer_ops msm_lt_ops = {
1004 local_timer_setup,
1005 local_timer_stop,
1006};
1007#endif
1008
1009static void __init msm_timer_init(void)
1010{
1011 int i;
1012 int res;
1013 struct irq_chip *chip;
1014 struct msm_clock *dgt = &msm_clocks[MSM_CLOCK_DGT];
1015 struct msm_clock *gpt = &msm_clocks[MSM_CLOCK_GPT];
1016
1017 if (cpu_is_msm7x01() || cpu_is_msm7x25() || cpu_is_msm7x27() ||
1018 cpu_is_msm7x25a() || cpu_is_msm7x27a() || cpu_is_msm7x25aa() ||
1019 cpu_is_msm7x27aa() || cpu_is_msm8625() || cpu_is_msm7x25ab()) {
1020 dgt->shift = MSM_DGT_SHIFT;
1021 dgt->freq = 19200000 >> MSM_DGT_SHIFT;
1022 dgt->clockevent.shift = 32 + MSM_DGT_SHIFT;
1023 dgt->clocksource.mask = CLOCKSOURCE_MASK(32 - MSM_DGT_SHIFT);
1024 gpt->regbase = MSM_TMR_BASE;
1025 dgt->regbase = MSM_TMR_BASE + 0x10;
1026 gpt->flags |= MSM_CLOCK_FLAGS_UNSTABLE_COUNT
1027 | MSM_CLOCK_FLAGS_ODD_MATCH_WRITE
1028 | MSM_CLOCK_FLAGS_DELAYED_WRITE_POST;
1029 if (cpu_is_msm8625()) {
1030 dgt->irq = MSM8625_INT_DEBUG_TIMER_EXP;
1031 gpt->irq = MSM8625_INT_GP_TIMER_EXP;
1032 global_timer_offset = MSM_TMR0_BASE - MSM_TMR_BASE;
1033 }
1034 } else if (cpu_is_qsd8x50()) {
1035 dgt->freq = 4800000;
1036 gpt->regbase = MSM_TMR_BASE;
1037 dgt->regbase = MSM_TMR_BASE + 0x10;
1038 } else if (cpu_is_fsm9xxx())
1039 dgt->freq = 4800000;
1040 else if (cpu_is_msm7x30() || cpu_is_msm8x55()) {
1041 gpt->status_mask = BIT(10);
1042 dgt->status_mask = BIT(2);
1043 dgt->freq = 6144000;
1044 } else if (cpu_is_msm8x60()) {
1045 global_timer_offset = MSM_TMR0_BASE - MSM_TMR_BASE;
1046 gpt->status_mask = BIT(10);
1047 dgt->status_mask = BIT(2);
1048 dgt->freq = 6750000;
1049 __raw_writel(DGT_CLK_CTL_DIV_4, MSM_TMR_BASE + DGT_CLK_CTL);
1050 } else if (cpu_is_msm9615()) {
1051 dgt->freq = 6750000;
1052 __raw_writel(DGT_CLK_CTL_DIV_4, MSM_TMR_BASE + DGT_CLK_CTL);
1053 gpt->status_mask = BIT(10);
1054 dgt->status_mask = BIT(2);
1055 gpt->freq = 32765;
1056 gpt_hz = 32765;
1057 sclk_hz = 32765;
1058 gpt->flags |= MSM_CLOCK_FLAGS_UNSTABLE_COUNT;
1059 dgt->flags |= MSM_CLOCK_FLAGS_UNSTABLE_COUNT;
1060 } else if (cpu_is_msm8960() || cpu_is_apq8064() || cpu_is_msm8930() ||
1061 cpu_is_msm8930aa() || cpu_is_msm8627() ||
1062 cpu_is_apq8064ab()) {
1063 global_timer_offset = MSM_TMR0_BASE - MSM_TMR_BASE;
1064 dgt->freq = 6750000;
1065 __raw_writel(DGT_CLK_CTL_DIV_4, MSM_TMR_BASE + DGT_CLK_CTL);
1066 gpt->status_mask = BIT(10);
1067 dgt->status_mask = BIT(2);
1068 gpt->freq = 32765;
1069 gpt_hz = 32765;
1070 sclk_hz = 32765;
1071 if (!cpu_is_msm8930() && !cpu_is_msm8930aa() &&
1072 !cpu_is_msm8627()) {
1073 gpt->flags |= MSM_CLOCK_FLAGS_UNSTABLE_COUNT;
1074 dgt->flags |= MSM_CLOCK_FLAGS_UNSTABLE_COUNT;
1075 }
1076 } else {
1077 WARN(1, "Timer running on unknown hardware. Configure this! "
1078 "Assuming default configuration.\n");
1079 dgt->freq = 6750000;
1080 }
1081
1082 if (msm_clocks[MSM_CLOCK_GPT].clocksource.rating > DG_TIMER_RATING)
1083 msm_global_timer = MSM_CLOCK_GPT;
1084 else
1085 msm_global_timer = MSM_CLOCK_DGT;
1086
1087 for (i = 0; i < ARRAY_SIZE(msm_clocks); i++) {
1088 struct msm_clock *clock = &msm_clocks[i];
1089 struct clock_event_device *ce = &clock->clockevent;
1090 struct clocksource *cs = &clock->clocksource;
1091 __raw_writel(0, clock->regbase + TIMER_ENABLE);
1092 __raw_writel(0, clock->regbase + TIMER_CLEAR);
1093 __raw_writel(~0, clock->regbase + TIMER_MATCH_VAL);
1094
1095 if ((clock->freq << clock->shift) == gpt_hz) {
1096 clock->rollover_offset = 0;
1097 } else {
1098 uint64_t temp;
1099
1100 temp = clock->freq << clock->shift;
1101 temp <<= 32;
1102 do_div(temp, gpt_hz);
1103
1104 clock->rollover_offset = (uint32_t) temp;
1105 }
1106
1107 ce->mult = div_sc(clock->freq, NSEC_PER_SEC, ce->shift);
1108
1109 ce->max_delta_ns =
1110 clockevent_delta2ns(0xf0000000 >> clock->shift, ce);
1111
1112 ce->min_delta_ns =
1113 clockevent_delta2ns(clock->write_delay + 4, ce);
1114 ce->cpumask = cpumask_of(0);
1115
1116 res = clocksource_register_hz(cs, clock->freq);
1117 if (res)
1118 printk(KERN_ERR "msm_timer_init: clocksource_register "
1119 "failed for %s\n", cs->name);
1120
1121 ce->irq = clock->irq;
1122 if (cpu_is_msm8x60() || cpu_is_msm8960() || cpu_is_apq8064() ||
1123 cpu_is_msm8930() || cpu_is_msm8930aa() ||
1124 cpu_is_msm9615() || cpu_is_msm8625() ||
1125 cpu_is_msm8627() || cpu_is_apq8064ab()) {
1126 clock->percpu_evt = alloc_percpu(struct clock_event_device *);
1127 if (!clock->percpu_evt) {
1128 pr_err("msm_timer_init: memory allocation "
1129 "failed for %s\n", ce->name);
1130 continue;
1131 }
1132
1133 *__this_cpu_ptr(clock->percpu_evt) = ce;
1134 res = request_percpu_irq(ce->irq, msm_timer_interrupt,
1135 ce->name, clock->percpu_evt);
1136 if (!res)
1137 enable_percpu_irq(ce->irq,
1138 IRQ_TYPE_EDGE_RISING);
1139 } else {
1140 clock->evt = ce;
1141 res = request_irq(ce->irq, msm_timer_interrupt,
1142 IRQF_TIMER | IRQF_NOBALANCING | IRQF_TRIGGER_RISING,
1143 ce->name, &clock->evt);
1144 }
1145
1146 if (res)
1147 pr_err("msm_timer_init: request_irq failed for %s\n",
1148 ce->name);
1149
1150 chip = irq_get_chip(clock->irq);
1151 if (chip && chip->irq_mask)
1152 chip->irq_mask(irq_get_irq_data(clock->irq));
1153
1154 if (clock->status_mask)
1155 while (__raw_readl(MSM_TMR_BASE + TIMER_STATUS) &
1156 clock->status_mask)
1157 ;
1158
1159 clockevents_register_device(ce);
1160 }
1161 msm_sched_clock_init();
1162
1163#ifdef ARCH_HAS_READ_CURRENT_TIMER
1164 if (is_smp()) {
1165 __raw_writel(1,
1166 msm_clocks[MSM_CLOCK_DGT].regbase + TIMER_ENABLE);
1167 set_delay_fn(read_current_timer_delay_loop);
1168 }
1169#endif
1170
1171#ifdef CONFIG_LOCAL_TIMERS
1172 local_timer_register(&msm_lt_ops);
1173#endif
1174}
1175
1176struct sys_timer msm_timer = {
1177 .init = msm_timer_init
1178};