blob: 9f2e2e71b5d793dad32c8e72b642a203477b7c06 [file] [log] [blame]
Nicholas Flintham1e3d3112013-04-10 10:48:38 +01001/*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59
16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * The full GNU General Public License is included in this distribution in the
19 * file called COPYING.
20 */
21#ifndef LINUX_DMAENGINE_H
22#define LINUX_DMAENGINE_H
23
24#include <linux/device.h>
25#include <linux/uio.h>
26#include <linux/bug.h>
27#include <linux/scatterlist.h>
28#include <linux/bitmap.h>
29#include <linux/types.h>
30#include <asm/page.h>
31
32typedef s32 dma_cookie_t;
33#define DMA_MIN_COOKIE 1
34#define DMA_MAX_COOKIE INT_MAX
35
36#define dma_submit_error(cookie) ((cookie) < 0 ? 1 : 0)
37
38enum dma_status {
39 DMA_SUCCESS,
40 DMA_IN_PROGRESS,
41 DMA_PAUSED,
42 DMA_ERROR,
43};
44
45enum dma_transaction_type {
46 DMA_MEMCPY,
47 DMA_XOR,
48 DMA_PQ,
49 DMA_XOR_VAL,
50 DMA_PQ_VAL,
51 DMA_MEMSET,
52 DMA_INTERRUPT,
53 DMA_SG,
54 DMA_PRIVATE,
55 DMA_ASYNC_TX,
56 DMA_SLAVE,
57 DMA_CYCLIC,
58 DMA_INTERLEAVE,
59 DMA_TX_TYPE_END,
60};
61
62enum dma_transfer_direction {
63 DMA_MEM_TO_MEM,
64 DMA_MEM_TO_DEV,
65 DMA_DEV_TO_MEM,
66 DMA_DEV_TO_DEV,
67 DMA_TRANS_NONE,
68};
69
70
71struct data_chunk {
72 size_t size;
73 size_t icg;
74};
75
76struct dma_interleaved_template {
77 dma_addr_t src_start;
78 dma_addr_t dst_start;
79 enum dma_transfer_direction dir;
80 bool src_inc;
81 bool dst_inc;
82 bool src_sgl;
83 bool dst_sgl;
84 size_t numf;
85 size_t frame_size;
86 struct data_chunk sgl[0];
87};
88
89enum dma_ctrl_flags {
90 DMA_PREP_INTERRUPT = (1 << 0),
91 DMA_CTRL_ACK = (1 << 1),
92 DMA_COMPL_SKIP_SRC_UNMAP = (1 << 2),
93 DMA_COMPL_SKIP_DEST_UNMAP = (1 << 3),
94 DMA_COMPL_SRC_UNMAP_SINGLE = (1 << 4),
95 DMA_COMPL_DEST_UNMAP_SINGLE = (1 << 5),
96 DMA_PREP_PQ_DISABLE_P = (1 << 6),
97 DMA_PREP_PQ_DISABLE_Q = (1 << 7),
98 DMA_PREP_CONTINUE = (1 << 8),
99 DMA_PREP_FENCE = (1 << 9),
100};
101
102enum dma_ctrl_cmd {
103 DMA_TERMINATE_ALL,
104 DMA_PAUSE,
105 DMA_RESUME,
106 DMA_SLAVE_CONFIG,
107 FSLDMA_EXTERNAL_START,
108};
109
110enum sum_check_bits {
111 SUM_CHECK_P = 0,
112 SUM_CHECK_Q = 1,
113};
114
115enum sum_check_flags {
116 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
117 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
118};
119
120
121typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
122
123
124struct dma_chan_percpu {
125
126 unsigned long memcpy_count;
127 unsigned long bytes_transferred;
128};
129
130struct dma_chan {
131 struct dma_device *device;
132 dma_cookie_t cookie;
133 dma_cookie_t completed_cookie;
134
135
136 int chan_id;
137 struct dma_chan_dev *dev;
138
139 struct list_head device_node;
140 struct dma_chan_percpu __percpu *local;
141 int client_count;
142 int table_count;
143 void *private;
144};
145
146struct dma_chan_dev {
147 struct dma_chan *chan;
148 struct device device;
149 int dev_id;
150 atomic_t *idr_ref;
151};
152
153enum dma_slave_buswidth {
154 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
155 DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
156 DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
157 DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
158 DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
159};
160
161/**
162 * struct dma_slave_config - dma slave channel runtime config
163 * @direction: whether the data shall go in or out on this slave
164 * channel, right now. DMA_TO_DEVICE and DMA_FROM_DEVICE are
165 * legal values, DMA_BIDIRECTIONAL is not acceptable since we
166 * need to differentiate source and target addresses.
167 * @src_addr: this is the physical address where DMA slave data
168 * should be read (RX), if the source is memory this argument is
169 * ignored.
170 * @dst_addr: this is the physical address where DMA slave data
171 * should be written (TX), if the source is memory this argument
172 * is ignored.
173 * @src_addr_width: this is the width in bytes of the source (RX)
174 * register where DMA data shall be read. If the source
175 * is memory this may be ignored depending on architecture.
176 * Legal values: 1, 2, 4, 8.
177 * @dst_addr_width: same as src_addr_width but for destination
178 * target (TX) mutatis mutandis.
179 * @src_maxburst: the maximum number of words (note: words, as in
180 * units of the src_addr_width member, not bytes) that can be sent
181 * in one burst to the device. Typically something like half the
182 * FIFO depth on I/O peripherals so you don't overflow it. This
183 * may or may not be applicable on memory sources.
184 * @dst_maxburst: same as src_maxburst but for destination target
185 * mutatis mutandis.
186 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
187 * with 'true' if peripheral should be flow controller. Direction will be
188 * selected at Runtime.
189 *
190 * This struct is passed in as configuration data to a DMA engine
191 * in order to set up a certain channel for DMA transport at runtime.
192 * The DMA device/engine has to provide support for an additional
193 * command in the channel config interface, DMA_SLAVE_CONFIG
194 * and this struct will then be passed in as an argument to the
195 * DMA engine device_control() function.
196 *
197 * The rationale for adding configuration information to this struct
198 * is as follows: if it is likely that most DMA slave controllers in
199 * the world will support the configuration option, then make it
200 * generic. If not: if it is fixed so that it be sent in static from
201 * the platform data, then prefer to do that. Else, if it is neither
202 * fixed at runtime, nor generic enough (such as bus mastership on
203 * some CPU family and whatnot) then create a custom slave config
204 * struct and pass that, then make this config a member of that
205 * struct, if applicable.
206 */
207struct dma_slave_config {
208 enum dma_transfer_direction direction;
209 dma_addr_t src_addr;
210 dma_addr_t dst_addr;
211 enum dma_slave_buswidth src_addr_width;
212 enum dma_slave_buswidth dst_addr_width;
213 u32 src_maxburst;
214 u32 dst_maxburst;
215 bool device_fc;
216};
217
218static inline const char *dma_chan_name(struct dma_chan *chan)
219{
220 return dev_name(&chan->dev->device);
221}
222
223void dma_chan_cleanup(struct kref *kref);
224
225typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
226
227typedef void (*dma_async_tx_callback)(void *dma_async_param);
228struct dma_async_tx_descriptor {
229 dma_cookie_t cookie;
230 enum dma_ctrl_flags flags;
231 dma_addr_t phys;
232 struct dma_chan *chan;
233 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
234 dma_async_tx_callback callback;
235 void *callback_param;
236#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
237 struct dma_async_tx_descriptor *next;
238 struct dma_async_tx_descriptor *parent;
239 spinlock_t lock;
240#endif
241};
242
243#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
244static inline void txd_lock(struct dma_async_tx_descriptor *txd)
245{
246}
247static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
248{
249}
250static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
251{
252 BUG();
253}
254static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
255{
256}
257static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
258{
259}
260static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
261{
262 return NULL;
263}
264static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
265{
266 return NULL;
267}
268
269#else
270static inline void txd_lock(struct dma_async_tx_descriptor *txd)
271{
272 spin_lock_bh(&txd->lock);
273}
274static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
275{
276 spin_unlock_bh(&txd->lock);
277}
278static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
279{
280 txd->next = next;
281 next->parent = txd;
282}
283static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
284{
285 txd->parent = NULL;
286}
287static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
288{
289 txd->next = NULL;
290}
291static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
292{
293 return txd->parent;
294}
295static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
296{
297 return txd->next;
298}
299#endif
300
301struct dma_tx_state {
302 dma_cookie_t last;
303 dma_cookie_t used;
304 u32 residue;
305};
306
307struct dma_device {
308
309 unsigned int chancnt;
310 unsigned int privatecnt;
311 struct list_head channels;
312 struct list_head global_node;
313 dma_cap_mask_t cap_mask;
314 unsigned short max_xor;
315 unsigned short max_pq;
316 u8 copy_align;
317 u8 xor_align;
318 u8 pq_align;
319 u8 fill_align;
320 #define DMA_HAS_PQ_CONTINUE (1 << 15)
321
322 int dev_id;
323 struct device *dev;
324
325 int (*device_alloc_chan_resources)(struct dma_chan *chan);
326 void (*device_free_chan_resources)(struct dma_chan *chan);
327
328 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
329 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
330 size_t len, unsigned long flags);
331 struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
332 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
333 unsigned int src_cnt, size_t len, unsigned long flags);
334 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
335 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
336 size_t len, enum sum_check_flags *result, unsigned long flags);
337 struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
338 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
339 unsigned int src_cnt, const unsigned char *scf,
340 size_t len, unsigned long flags);
341 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
342 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
343 unsigned int src_cnt, const unsigned char *scf, size_t len,
344 enum sum_check_flags *pqres, unsigned long flags);
345 struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
346 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
347 unsigned long flags);
348 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
349 struct dma_chan *chan, unsigned long flags);
350 struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
351 struct dma_chan *chan,
352 struct scatterlist *dst_sg, unsigned int dst_nents,
353 struct scatterlist *src_sg, unsigned int src_nents,
354 unsigned long flags);
355
356 struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
357 struct dma_chan *chan, struct scatterlist *sgl,
358 unsigned int sg_len, enum dma_transfer_direction direction,
359 unsigned long flags, void *context);
360 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
361 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
362 size_t period_len, enum dma_transfer_direction direction,
363 void *context);
364 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
365 struct dma_chan *chan, struct dma_interleaved_template *xt,
366 unsigned long flags);
367 int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
368 unsigned long arg);
369
370 enum dma_status (*device_tx_status)(struct dma_chan *chan,
371 dma_cookie_t cookie,
372 struct dma_tx_state *txstate);
373 void (*device_issue_pending)(struct dma_chan *chan);
374};
375
376static inline int dmaengine_device_control(struct dma_chan *chan,
377 enum dma_ctrl_cmd cmd,
378 unsigned long arg)
379{
380 return chan->device->device_control(chan, cmd, arg);
381}
382
383static inline int dmaengine_slave_config(struct dma_chan *chan,
384 struct dma_slave_config *config)
385{
386 return dmaengine_device_control(chan, DMA_SLAVE_CONFIG,
387 (unsigned long)config);
388}
389
390static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
391 struct dma_chan *chan, void *buf, size_t len,
392 enum dma_transfer_direction dir, unsigned long flags)
393{
394 struct scatterlist sg;
395 sg_init_one(&sg, buf, len);
396
397 return chan->device->device_prep_slave_sg(chan, &sg, 1,
398 dir, flags, NULL);
399}
400
401static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
402 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
403 enum dma_transfer_direction dir, unsigned long flags)
404{
405 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
406 dir, flags, NULL);
407}
408
409static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
410 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
411 size_t period_len, enum dma_transfer_direction dir)
412{
413 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
414 period_len, dir, NULL);
415}
416
417static inline int dmaengine_terminate_all(struct dma_chan *chan)
418{
419 return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0);
420}
421
422static inline int dmaengine_pause(struct dma_chan *chan)
423{
424 return dmaengine_device_control(chan, DMA_PAUSE, 0);
425}
426
427static inline int dmaengine_resume(struct dma_chan *chan)
428{
429 return dmaengine_device_control(chan, DMA_RESUME, 0);
430}
431
432static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
433{
434 return desc->tx_submit(desc);
435}
436
437static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
438{
439 size_t mask;
440
441 if (!align)
442 return true;
443 mask = (1 << align) - 1;
444 if (mask & (off1 | off2 | len))
445 return false;
446 return true;
447}
448
449static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
450 size_t off2, size_t len)
451{
452 return dmaengine_check_align(dev->copy_align, off1, off2, len);
453}
454
455static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
456 size_t off2, size_t len)
457{
458 return dmaengine_check_align(dev->xor_align, off1, off2, len);
459}
460
461static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
462 size_t off2, size_t len)
463{
464 return dmaengine_check_align(dev->pq_align, off1, off2, len);
465}
466
467static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
468 size_t off2, size_t len)
469{
470 return dmaengine_check_align(dev->fill_align, off1, off2, len);
471}
472
473static inline void
474dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
475{
476 dma->max_pq = maxpq;
477 if (has_pq_continue)
478 dma->max_pq |= DMA_HAS_PQ_CONTINUE;
479}
480
481static inline bool dmaf_continue(enum dma_ctrl_flags flags)
482{
483 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
484}
485
486static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
487{
488 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
489
490 return (flags & mask) == mask;
491}
492
493static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
494{
495 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
496}
497
498static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
499{
500 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
501}
502
503static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
504{
505 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
506 return dma_dev_to_maxpq(dma);
507 else if (dmaf_p_disabled_continue(flags))
508 return dma_dev_to_maxpq(dma) - 1;
509 else if (dmaf_continue(flags))
510 return dma_dev_to_maxpq(dma) - 3;
511 BUG();
512}
513
514
515#ifdef CONFIG_DMA_ENGINE
516void dmaengine_get(void);
517void dmaengine_put(void);
518#else
519static inline void dmaengine_get(void)
520{
521}
522static inline void dmaengine_put(void)
523{
524}
525#endif
526
527#ifdef CONFIG_NET_DMA
528#define net_dmaengine_get() dmaengine_get()
529#define net_dmaengine_put() dmaengine_put()
530#else
531static inline void net_dmaengine_get(void)
532{
533}
534static inline void net_dmaengine_put(void)
535{
536}
537#endif
538
539#ifdef CONFIG_ASYNC_TX_DMA
540#define async_dmaengine_get() dmaengine_get()
541#define async_dmaengine_put() dmaengine_put()
542#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
543#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
544#else
545#define async_dma_find_channel(type) dma_find_channel(type)
546#endif
547#else
548static inline void async_dmaengine_get(void)
549{
550}
551static inline void async_dmaengine_put(void)
552{
553}
554static inline struct dma_chan *
555async_dma_find_channel(enum dma_transaction_type type)
556{
557 return NULL;
558}
559#endif
560
561dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan,
562 void *dest, void *src, size_t len);
563dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan,
564 struct page *page, unsigned int offset, void *kdata, size_t len);
565dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan,
566 struct page *dest_pg, unsigned int dest_off, struct page *src_pg,
567 unsigned int src_off, size_t len);
568void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
569 struct dma_chan *chan);
570
571static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
572{
573 tx->flags |= DMA_CTRL_ACK;
574}
575
576static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
577{
578 tx->flags &= ~DMA_CTRL_ACK;
579}
580
581static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
582{
583 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
584}
585
586#define first_dma_cap(mask) __first_dma_cap(&(mask))
587static inline int __first_dma_cap(const dma_cap_mask_t *srcp)
588{
589 return min_t(int, DMA_TX_TYPE_END,
590 find_first_bit(srcp->bits, DMA_TX_TYPE_END));
591}
592
593#define next_dma_cap(n, mask) __next_dma_cap((n), &(mask))
594static inline int __next_dma_cap(int n, const dma_cap_mask_t *srcp)
595{
596 return min_t(int, DMA_TX_TYPE_END,
597 find_next_bit(srcp->bits, DMA_TX_TYPE_END, n+1));
598}
599
600#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
601static inline void
602__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
603{
604 set_bit(tx_type, dstp->bits);
605}
606
607#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
608static inline void
609__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
610{
611 clear_bit(tx_type, dstp->bits);
612}
613
614#define dma_cap_zero(mask) __dma_cap_zero(&(mask))
615static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
616{
617 bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
618}
619
620#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
621static inline int
622__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
623{
624 return test_bit(tx_type, srcp->bits);
625}
626
627#define for_each_dma_cap_mask(cap, mask) \
628 for ((cap) = first_dma_cap(mask); \
629 (cap) < DMA_TX_TYPE_END; \
630 (cap) = next_dma_cap((cap), (mask)))
631
632static inline void dma_async_issue_pending(struct dma_chan *chan)
633{
634 chan->device->device_issue_pending(chan);
635}
636
637#define dma_async_memcpy_issue_pending(chan) dma_async_issue_pending(chan)
638
639static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
640 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
641{
642 struct dma_tx_state state;
643 enum dma_status status;
644
645 status = chan->device->device_tx_status(chan, cookie, &state);
646 if (last)
647 *last = state.last;
648 if (used)
649 *used = state.used;
650 return status;
651}
652
653#define dma_async_memcpy_complete(chan, cookie, last, used)\
654 dma_async_is_tx_complete(chan, cookie, last, used)
655
656static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
657 dma_cookie_t last_complete, dma_cookie_t last_used)
658{
659 if (last_complete <= last_used) {
660 if ((cookie <= last_complete) || (cookie > last_used))
661 return DMA_SUCCESS;
662 } else {
663 if ((cookie <= last_complete) && (cookie > last_used))
664 return DMA_SUCCESS;
665 }
666 return DMA_IN_PROGRESS;
667}
668
669static inline void
670dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
671{
672 if (st) {
673 st->last = last;
674 st->used = used;
675 st->residue = residue;
676 }
677}
678
679enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
680#ifdef CONFIG_DMA_ENGINE
681enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
682void dma_issue_pending_all(void);
683struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param);
684void dma_release_channel(struct dma_chan *chan);
685#else
686static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
687{
688 return DMA_SUCCESS;
689}
690static inline void dma_issue_pending_all(void)
691{
692}
693static inline struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask,
694 dma_filter_fn fn, void *fn_param)
695{
696 return NULL;
697}
698static inline void dma_release_channel(struct dma_chan *chan)
699{
700}
701#endif
702
703
704int dma_async_device_register(struct dma_device *device);
705void dma_async_device_unregister(struct dma_device *device);
706void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
707struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
708struct dma_chan *net_dma_find_channel(void);
709#define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
710
711
712struct dma_page_list {
713 char __user *base_address;
714 int nr_pages;
715 struct page **pages;
716};
717
718struct dma_pinned_list {
719 int nr_iovecs;
720 struct dma_page_list page_list[0];
721};
722
723struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len);
724void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list);
725
726dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov,
727 struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len);
728dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov,
729 struct dma_pinned_list *pinned_list, struct page *page,
730 unsigned int offset, size_t len);
731
732#endif