blob: cf378a366e6969be24b005b03408f7238264c805 [file] [log] [blame]
Nicholas Flintham1e3d3112013-04-10 10:48:38 +01001/*
2 * linux/arch/arm/mm/dma-mapping.c
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12#include <linux/module.h>
13#include <linux/mm.h>
14#include <linux/gfp.h>
15#include <linux/errno.h>
16#include <linux/list.h>
17#include <linux/init.h>
18#include <linux/device.h>
19#include <linux/dma-mapping.h>
20#include <linux/dma-contiguous.h>
21#include <linux/highmem.h>
22#include <linux/memblock.h>
23#include <linux/slab.h>
24
25#include <asm/memory.h>
26#include <asm/highmem.h>
27#include <asm/cacheflush.h>
28#include <asm/tlbflush.h>
29#include <asm/sizes.h>
30#include <asm/mach/arch.h>
31#include <asm/mach/map.h>
32#include <asm/system_info.h>
33#include <asm/dma-contiguous.h>
34
35#include "mm.h"
36
37static u64 get_coherent_dma_mask(struct device *dev)
38{
39 u64 mask = (u64)arm_dma_limit;
40
41 if (dev) {
42 mask = dev->coherent_dma_mask;
43
44 if (mask == 0) {
45 dev_warn(dev, "coherent DMA mask is unset\n");
46 return 0;
47 }
48
49 if ((~mask) & (u64)arm_dma_limit) {
50 dev_warn(dev, "coherent DMA mask %#llx is smaller "
51 "than system GFP_DMA mask %#llx\n",
52 mask, (u64)arm_dma_limit);
53 return 0;
54 }
55 }
56
57 return mask;
58}
59
60static void __dma_clear_buffer(struct page *page, size_t size)
61{
62 void *ptr;
63 ptr = page_address(page);
64 memset(ptr, 0, size);
65 dmac_flush_range(ptr, ptr + size);
66 outer_flush_range(__pa(ptr), __pa(ptr) + size);
67}
68
69static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
70{
71 unsigned long order = get_order(size);
72 struct page *page, *p, *e;
73
74 page = alloc_pages(gfp, order);
75 if (!page)
76 return NULL;
77
78 split_page(page, order);
79 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
80 __free_page(p);
81
82 __dma_clear_buffer(page, size);
83
84 return page;
85}
86
87static void __dma_free_buffer(struct page *page, size_t size)
88{
89 struct page *e = page + (size >> PAGE_SHIFT);
90
91 while (page < e) {
92 __free_page(page);
93 page++;
94 }
95}
96
97#ifdef CONFIG_MMU
98
99#define CONSISTENT_OFFSET(x) (((unsigned long)(x) - consistent_base) >> PAGE_SHIFT)
100#define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - consistent_base) >> PMD_SHIFT)
101
102static pte_t **consistent_pte;
103
104#define DEFAULT_CONSISTENT_DMA_SIZE (7*SZ_2M)
105
106unsigned long consistent_base = CONSISTENT_END - DEFAULT_CONSISTENT_DMA_SIZE;
107
108void __init init_consistent_dma_size(unsigned long size)
109{
110 unsigned long base = CONSISTENT_END - ALIGN(size, SZ_2M);
111
112 BUG_ON(consistent_pte);
113 BUG_ON(base < VMALLOC_END);
114
115
116 if (base < consistent_base)
117 consistent_base = base;
118}
119
120#include "vmregion.h"
121
122static struct arm_vmregion_head consistent_head = {
123 .vm_lock = __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
124 .vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
125 .vm_end = CONSISTENT_END,
126};
127
128#ifdef CONFIG_HUGETLB_PAGE
129#error ARM Coherent DMA allocator does not (yet) support huge TLB
130#endif
131
132static int __init consistent_init(void)
133{
134 int ret = 0;
135 pgd_t *pgd;
136 pud_t *pud;
137 pmd_t *pmd;
138 pte_t *pte;
139 int i = 0;
140 unsigned long base = consistent_base;
141 unsigned long num_ptes = (CONSISTENT_END - base) >> PMD_SHIFT;
142
143 if (IS_ENABLED(CONFIG_CMA) && !IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU))
144 return 0;
145
146 consistent_pte = kmalloc(num_ptes * sizeof(pte_t), GFP_KERNEL);
147 if (!consistent_pte) {
148 pr_err("%s: no memory\n", __func__);
149 return -ENOMEM;
150 }
151
152 pr_debug("DMA memory: 0x%08lx - 0x%08lx:\n", base, CONSISTENT_END);
153 consistent_head.vm_start = base;
154
155 do {
156 pgd = pgd_offset(&init_mm, base);
157
158 pud = pud_alloc(&init_mm, pgd, base);
159 if (!pud) {
160 printk(KERN_ERR "%s: no pud tables\n", __func__);
161 ret = -ENOMEM;
162 break;
163 }
164
165 pmd = pmd_alloc(&init_mm, pud, base);
166 if (!pmd) {
167 printk(KERN_ERR "%s: no pmd tables\n", __func__);
168 ret = -ENOMEM;
169 break;
170 }
171 WARN_ON(!pmd_none(*pmd));
172
173 pte = pte_alloc_kernel(pmd, base);
174 if (!pte) {
175 printk(KERN_ERR "%s: no pte tables\n", __func__);
176 ret = -ENOMEM;
177 break;
178 }
179
180 consistent_pte[i++] = pte;
181 base += PMD_SIZE;
182 } while (base < CONSISTENT_END);
183
184 return ret;
185}
186core_initcall(consistent_init);
187
188static void *__alloc_from_contiguous(struct device *dev, size_t size,
189 pgprot_t prot, struct page **ret_page);
190
191static struct arm_vmregion_head coherent_head = {
192 .vm_lock = __SPIN_LOCK_UNLOCKED(&coherent_head.vm_lock),
193 .vm_list = LIST_HEAD_INIT(coherent_head.vm_list),
194};
195
196size_t coherent_pool_size = DEFAULT_CONSISTENT_DMA_SIZE / 8;
197
198static int __init early_coherent_pool(char *p)
199{
200 coherent_pool_size = memparse(p, &p);
201 return 0;
202}
203early_param("coherent_pool", early_coherent_pool);
204
205static int __init coherent_init(void)
206{
207 pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
208 size_t size = coherent_pool_size;
209 struct page *page;
210 void *ptr;
211
212 if (!IS_ENABLED(CONFIG_CMA))
213 return 0;
214
215 ptr = __alloc_from_contiguous(NULL, size, prot, &page);
216 if (ptr) {
217 coherent_head.vm_start = (unsigned long) ptr;
218 coherent_head.vm_end = (unsigned long) ptr + size;
219 printk(KERN_INFO "DMA: preallocated %u KiB pool for atomic coherent allocations\n",
220 (unsigned)size / 1024);
221 return 0;
222 }
223 printk(KERN_ERR "DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
224 (unsigned)size / 1024);
225 return -ENOMEM;
226}
227postcore_initcall(coherent_init);
228
229struct dma_contig_early_reserve {
230 phys_addr_t base;
231 unsigned long size;
232};
233
234static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
235
236static int dma_mmu_remap_num __initdata;
237
238void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
239{
240 dma_mmu_remap[dma_mmu_remap_num].base = base;
241 dma_mmu_remap[dma_mmu_remap_num].size = size;
242 dma_mmu_remap_num++;
243}
244
245void __init dma_contiguous_remap(void)
246{
247 int i;
248 for (i = 0; i < dma_mmu_remap_num; i++) {
249 phys_addr_t start = dma_mmu_remap[i].base;
250 phys_addr_t end = start + dma_mmu_remap[i].size;
251 struct map_desc map;
252 unsigned long addr;
253
254 if (end > arm_lowmem_limit)
255 end = arm_lowmem_limit;
256 if (start >= end)
257 return;
258
259 map.pfn = __phys_to_pfn(start);
260 map.virtual = __phys_to_virt(start);
261 map.length = end - start;
262 map.type = MT_MEMORY_DMA_READY;
263
264 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
265 addr += PGDIR_SIZE)
266 pmd_clear(pmd_off_k(addr));
267
268 iotable_init(&map, 1);
269 }
270}
271
272static void *
273__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
274 const void *caller)
275{
276 struct arm_vmregion *c;
277 size_t align;
278 int bit;
279
280 if (!consistent_pte) {
281 printk(KERN_ERR "%s: not initialised\n", __func__);
282 dump_stack();
283 return NULL;
284 }
285
286 bit = fls(size - 1);
287 if (bit > SECTION_SHIFT)
288 bit = SECTION_SHIFT;
289 align = 1 << bit;
290
291 c = arm_vmregion_alloc(&consistent_head, align, size,
292 gfp & ~(__GFP_DMA | __GFP_HIGHMEM), caller);
293 if (c) {
294 pte_t *pte;
295 int idx = CONSISTENT_PTE_INDEX(c->vm_start);
296 u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
297
298 pte = consistent_pte[idx] + off;
299 c->vm_pages = page;
300
301 do {
302 BUG_ON(!pte_none(*pte));
303
304 set_pte_ext(pte, mk_pte(page, prot), 0);
305 page++;
306 pte++;
307 off++;
308 if (off >= PTRS_PER_PTE) {
309 off = 0;
310 pte = consistent_pte[++idx];
311 }
312 } while (size -= PAGE_SIZE);
313
314 dsb();
315
316 return (void *)c->vm_start;
317 }
318 return NULL;
319}
320
321static void __dma_free_remap(void *cpu_addr, size_t size)
322{
323 struct arm_vmregion *c;
324 unsigned long addr;
325 pte_t *ptep;
326 int idx;
327 u32 off;
328
329 c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
330 if (!c) {
331 printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
332 __func__, cpu_addr);
333 dump_stack();
334 return;
335 }
336
337 if ((c->vm_end - c->vm_start) != size) {
338 printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
339 __func__, c->vm_end - c->vm_start, size);
340 dump_stack();
341 size = c->vm_end - c->vm_start;
342 }
343
344 idx = CONSISTENT_PTE_INDEX(c->vm_start);
345 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
346 ptep = consistent_pte[idx] + off;
347 addr = c->vm_start;
348 do {
349 pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
350
351 ptep++;
352 addr += PAGE_SIZE;
353 off++;
354 if (off >= PTRS_PER_PTE) {
355 off = 0;
356 ptep = consistent_pte[++idx];
357 }
358
359 if (pte_none(pte) || !pte_present(pte))
360 printk(KERN_CRIT "%s: bad page in kernel page table\n",
361 __func__);
362 } while (size -= PAGE_SIZE);
363
364 flush_tlb_kernel_range(c->vm_start, c->vm_end);
365
366 arm_vmregion_free(&consistent_head, c);
367}
368
369static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
370 void *data)
371{
372 struct page *page = virt_to_page(addr);
373 pgprot_t prot = *(pgprot_t *)data;
374
375 set_pte_ext(pte, mk_pte(page, prot), 0);
376 return 0;
377}
378
379static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
380{
381 unsigned long start = (unsigned long) page_address(page);
382 unsigned end = start + size;
383
384 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
385 dsb();
386 flush_tlb_kernel_range(start, end);
387}
388
389static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
390 pgprot_t prot, struct page **ret_page,
391 const void *caller)
392{
393 struct page *page;
394 void *ptr;
395 page = __dma_alloc_buffer(dev, size, gfp);
396 if (!page)
397 return NULL;
398
399 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
400 if (!ptr) {
401 __dma_free_buffer(page, size);
402 return NULL;
403 }
404
405 *ret_page = page;
406 return ptr;
407}
408
409static void *__alloc_from_pool(struct device *dev, size_t size,
410 struct page **ret_page, const void *caller)
411{
412 struct arm_vmregion *c;
413 size_t align;
414
415 if (!coherent_head.vm_start) {
416 printk(KERN_ERR "%s: coherent pool not initialised!\n",
417 __func__);
418 dump_stack();
419 return NULL;
420 }
421
422 align = PAGE_SIZE << get_order(size);
423 c = arm_vmregion_alloc(&coherent_head, align, size, 0, caller);
424 if (c) {
425 void *ptr = (void *)c->vm_start;
426 struct page *page = virt_to_page(ptr);
427 *ret_page = page;
428 return ptr;
429 }
430 return NULL;
431}
432
433static int __free_from_pool(void *cpu_addr, size_t size)
434{
435 unsigned long start = (unsigned long)cpu_addr;
436 unsigned long end = start + size;
437 struct arm_vmregion *c;
438
439 if (start < coherent_head.vm_start || end > coherent_head.vm_end)
440 return 0;
441
442 c = arm_vmregion_find_remove(&coherent_head, (unsigned long)start);
443
444 if ((c->vm_end - c->vm_start) != size) {
445 printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
446 __func__, c->vm_end - c->vm_start, size);
447 dump_stack();
448 size = c->vm_end - c->vm_start;
449 }
450
451 arm_vmregion_free(&coherent_head, c);
452 return 1;
453}
454
455static void *__alloc_from_contiguous(struct device *dev, size_t size,
456 pgprot_t prot, struct page **ret_page)
457{
458 unsigned long order = get_order(size);
459 size_t count = size >> PAGE_SHIFT;
460 struct page *page;
461
462 page = dma_alloc_from_contiguous(dev, count, order);
463 if (!page)
464 return NULL;
465
466 __dma_clear_buffer(page, size);
467 __dma_remap(page, size, prot);
468
469 *ret_page = page;
470 return page_address(page);
471}
472
473static void __free_from_contiguous(struct device *dev, struct page *page,
474 size_t size)
475{
476 __dma_remap(page, size, pgprot_kernel);
477 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
478}
479
480#define nommu() 0
481
482#else
483
484#define nommu() 1
485
486#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL
487#define __alloc_from_pool(dev, size, ret_page, c) NULL
488#define __alloc_from_contiguous(dev, size, prot, ret) NULL
489#define __free_from_pool(cpu_addr, size) 0
490#define __free_from_contiguous(dev, page, size) do { } while (0)
491#define __dma_free_remap(cpu_addr, size) do { } while (0)
492
493#endif
494
495static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
496 struct page **ret_page)
497{
498 struct page *page;
499 page = __dma_alloc_buffer(dev, size, gfp);
500 if (!page)
501 return NULL;
502
503 *ret_page = page;
504 return page_address(page);
505}
506
507
508
509static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
510 gfp_t gfp, pgprot_t prot, const void *caller)
511{
512 u64 mask = get_coherent_dma_mask(dev);
513 struct page *page;
514 void *addr;
515
516#ifdef CONFIG_DMA_API_DEBUG
517 u64 limit = (mask + 1) & ~mask;
518 if (limit && size >= limit) {
519 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
520 size, mask);
521 return NULL;
522 }
523#endif
524
525 if (!mask)
526 return NULL;
527
528 if (mask < 0xffffffffULL)
529 gfp |= GFP_DMA;
530
531 gfp &= ~(__GFP_COMP);
532
533 *handle = ~0;
534 size = PAGE_ALIGN(size);
535
536 if (arch_is_coherent() || nommu())
537 addr = __alloc_simple_buffer(dev, size, gfp, &page);
538 else if (!IS_ENABLED(CONFIG_CMA))
539 addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
540 else if (gfp & GFP_ATOMIC)
541 addr = __alloc_from_pool(dev, size, &page, caller);
542 else
543 addr = __alloc_from_contiguous(dev, size, prot, &page);
544
545 if (addr)
546 *handle = pfn_to_dma(dev, page_to_pfn(page));
547
548 return addr;
549}
550
551void *dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle,
552 gfp_t gfp)
553{
554 void *memory;
555
556 if (dma_alloc_from_coherent(dev, size, handle, &memory))
557 return memory;
558
559 return __dma_alloc(dev, size, handle, gfp,
560 pgprot_dmacoherent(pgprot_kernel),
561 __builtin_return_address(0));
562}
563EXPORT_SYMBOL(dma_alloc_coherent);
564
565void *
566dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
567{
568 return __dma_alloc(dev, size, handle, gfp,
569 pgprot_writecombine(pgprot_kernel),
570 __builtin_return_address(0));
571}
572EXPORT_SYMBOL(dma_alloc_writecombine);
573
574static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
575 void *cpu_addr, dma_addr_t dma_addr, size_t size)
576{
577 int ret = -ENXIO;
578#ifdef CONFIG_MMU
579 unsigned long pfn = dma_to_pfn(dev, dma_addr);
580 ret = remap_pfn_range(vma, vma->vm_start,
581 pfn + vma->vm_pgoff,
582 vma->vm_end - vma->vm_start,
583 vma->vm_page_prot);
584#endif
585
586 return ret;
587}
588
589int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
590 void *cpu_addr, dma_addr_t dma_addr, size_t size)
591{
592 vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot);
593 return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
594}
595EXPORT_SYMBOL(dma_mmap_coherent);
596
597int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
598 void *cpu_addr, dma_addr_t dma_addr, size_t size)
599{
600 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
601 return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
602}
603EXPORT_SYMBOL(dma_mmap_writecombine);
604
605
606void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
607{
608 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
609
610 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
611 return;
612
613 size = PAGE_ALIGN(size);
614
615 if (arch_is_coherent() || nommu()) {
616 __dma_free_buffer(page, size);
617 } else if (!IS_ENABLED(CONFIG_CMA)) {
618 __dma_free_remap(cpu_addr, size);
619 __dma_free_buffer(page, size);
620 } else {
621 if (__free_from_pool(cpu_addr, size))
622 return;
623 WARN_ON(irqs_disabled());
624 __free_from_contiguous(dev, page, size);
625 }
626}
627EXPORT_SYMBOL(dma_free_coherent);
628
629void ___dma_single_cpu_to_dev(const void *kaddr, size_t size,
630 enum dma_data_direction dir)
631{
632#ifdef CONFIG_OUTER_CACHE
633 unsigned long paddr;
634
635 BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
636#endif
637
638 dmac_map_area(kaddr, size, dir);
639
640#ifdef CONFIG_OUTER_CACHE
641 paddr = __pa(kaddr);
642 if (dir == DMA_FROM_DEVICE) {
643 outer_inv_range(paddr, paddr + size);
644 } else {
645 outer_clean_range(paddr, paddr + size);
646 }
647#endif
648
649}
650EXPORT_SYMBOL(___dma_single_cpu_to_dev);
651
652void ___dma_single_dev_to_cpu(const void *kaddr, size_t size,
653 enum dma_data_direction dir)
654{
655#ifdef CONFIG_OUTER_CACHE
656 BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
657
658
659
660 if (dir != DMA_TO_DEVICE) {
661 unsigned long paddr = __pa(kaddr);
662 outer_inv_range(paddr, paddr + size);
663 }
664#endif
665 dmac_unmap_area(kaddr, size, dir);
666}
667EXPORT_SYMBOL(___dma_single_dev_to_cpu);
668
669static void dma_cache_maint_page(struct page *page, unsigned long offset,
670 size_t size, enum dma_data_direction dir,
671 void (*op)(const void *, size_t, int))
672{
673 size_t left = size;
674 do {
675 size_t len = left;
676 void *vaddr;
677
678 if (PageHighMem(page)) {
679 if (len + offset > PAGE_SIZE) {
680 if (offset >= PAGE_SIZE) {
681 page += offset / PAGE_SIZE;
682 offset %= PAGE_SIZE;
683 }
684 len = PAGE_SIZE - offset;
685 }
686 vaddr = kmap_high_get(page);
687 if (vaddr) {
688 vaddr += offset;
689 op(vaddr, len, dir);
690 kunmap_high(page);
691 } else if (cache_is_vipt()) {
692
693 vaddr = kmap_atomic(page);
694 op(vaddr + offset, len, dir);
695 kunmap_atomic(vaddr);
696 }
697 } else {
698 vaddr = page_address(page) + offset;
699 op(vaddr, len, dir);
700 }
701 offset = 0;
702 page++;
703 left -= len;
704 } while (left);
705}
706
707void ___dma_page_cpu_to_dev(struct page *page, unsigned long off,
708 size_t size, enum dma_data_direction dir)
709{
710 unsigned long paddr;
711
712 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
713
714 paddr = page_to_phys(page) + off;
715 if (dir == DMA_FROM_DEVICE) {
716 outer_inv_range(paddr, paddr + size);
717 } else {
718 outer_clean_range(paddr, paddr + size);
719 }
720
721}
722EXPORT_SYMBOL(___dma_page_cpu_to_dev);
723
724void ___dma_page_dev_to_cpu(struct page *page, unsigned long off,
725 size_t size, enum dma_data_direction dir)
726{
727 unsigned long paddr = page_to_phys(page) + off;
728
729
730
731 if (dir != DMA_TO_DEVICE)
732 outer_inv_range(paddr, paddr + size);
733
734 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
735
736 if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
737 set_bit(PG_dcache_clean, &page->flags);
738}
739EXPORT_SYMBOL(___dma_page_dev_to_cpu);
740
741int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
742 enum dma_data_direction dir)
743{
744 struct scatterlist *s;
745 int i, j;
746
747 BUG_ON(!valid_dma_direction(dir));
748
749 for_each_sg(sg, s, nents, i) {
750 s->dma_address = __dma_map_page(dev, sg_page(s), s->offset,
751 s->length, dir);
752 if (dma_mapping_error(dev, s->dma_address))
753 goto bad_mapping;
754 }
755 debug_dma_map_sg(dev, sg, nents, nents, dir);
756 return nents;
757
758 bad_mapping:
759 for_each_sg(sg, s, i, j)
760 __dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
761 return 0;
762}
763EXPORT_SYMBOL(dma_map_sg);
764
765void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
766 enum dma_data_direction dir)
767{
768 struct scatterlist *s;
769 int i;
770
771 debug_dma_unmap_sg(dev, sg, nents, dir);
772
773 for_each_sg(sg, s, nents, i)
774 __dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
775}
776EXPORT_SYMBOL(dma_unmap_sg);
777
778void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
779 int nents, enum dma_data_direction dir)
780{
781 struct scatterlist *s;
782 int i;
783
784 for_each_sg(sg, s, nents, i) {
785 if (!dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
786 sg_dma_len(s), dir))
787 continue;
788
789 __dma_page_dev_to_cpu(sg_page(s), s->offset,
790 s->length, dir);
791 }
792
793 debug_dma_sync_sg_for_cpu(dev, sg, nents, dir);
794}
795EXPORT_SYMBOL(dma_sync_sg_for_cpu);
796
797void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
798 int nents, enum dma_data_direction dir)
799{
800 struct scatterlist *s;
801 int i;
802
803 for_each_sg(sg, s, nents, i) {
804 if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
805 sg_dma_len(s), dir))
806 continue;
807
808 __dma_page_cpu_to_dev(sg_page(s), s->offset,
809 s->length, dir);
810 }
811
812 debug_dma_sync_sg_for_device(dev, sg, nents, dir);
813}
814EXPORT_SYMBOL(dma_sync_sg_for_device);
815
816int dma_supported(struct device *dev, u64 mask)
817{
818 if (mask < (u64)arm_dma_limit)
819 return 0;
820 return 1;
821}
822EXPORT_SYMBOL(dma_supported);
823
824int dma_set_mask(struct device *dev, u64 dma_mask)
825{
826 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
827 return -EIO;
828
829#ifndef CONFIG_DMABOUNCE
830 *dev->dma_mask = dma_mask;
831#endif
832
833 return 0;
834}
835EXPORT_SYMBOL(dma_set_mask);
836
837#define PREALLOC_DMA_DEBUG_ENTRIES 4096
838
839static int __init dma_debug_do_init(void)
840{
841#ifdef CONFIG_MMU
842 arm_vmregion_create_proc("dma-mappings", &consistent_head);
843#endif
844 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
845 return 0;
846}
847fs_initcall(dma_debug_do_init);