| /* Machine-dependent software floating-point definitions.  PPC version. | 
 |    Copyright (C) 1997 Free Software Foundation, Inc. | 
 |    This file is part of the GNU C Library. | 
 |  | 
 |    The GNU C Library is free software; you can redistribute it and/or | 
 |    modify it under the terms of the GNU Library General Public License as | 
 |    published by the Free Software Foundation; either version 2 of the | 
 |    License, or (at your option) any later version. | 
 |  | 
 |    The GNU C Library is distributed in the hope that it will be useful, | 
 |    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 |    Library General Public License for more details. | 
 |  | 
 |    You should have received a copy of the GNU Library General Public | 
 |    License along with the GNU C Library; see the file COPYING.LIB.  If | 
 |    not, write to the Free Software Foundation, Inc., | 
 |    59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
 |  | 
 |    Actually, this is a PPC (32bit) version, written based on the | 
 |    i386, sparc, and sparc64 versions, by me, | 
 |    Peter Maydell (pmaydell@chiark.greenend.org.uk). | 
 |    Comments are by and large also mine, although they may be inaccurate. | 
 |  | 
 |    In picking out asm fragments I've gone with the lowest common | 
 |    denominator, which also happens to be the hardware I have :-> | 
 |    That is, a SPARC without hardware multiply and divide. | 
 |  */ | 
 |  | 
 | /* basic word size definitions */ | 
 | #define _FP_W_TYPE_SIZE		32 | 
 | #define _FP_W_TYPE		unsigned long | 
 | #define _FP_WS_TYPE		signed long | 
 | #define _FP_I_TYPE		long | 
 |  | 
 | #define __ll_B			((UWtype) 1 << (W_TYPE_SIZE / 2)) | 
 | #define __ll_lowpart(t)		((UWtype) (t) & (__ll_B - 1)) | 
 | #define __ll_highpart(t)	((UWtype) (t) >> (W_TYPE_SIZE / 2)) | 
 |  | 
 | /* You can optionally code some things like addition in asm. For | 
 |  * example, i386 defines __FP_FRAC_ADD_2 as asm. If you don't | 
 |  * then you get a fragment of C code [if you change an #ifdef 0 | 
 |  * in op-2.h] or a call to add_ssaaaa (see below). | 
 |  * Good places to look for asm fragments to use are gcc and glibc. | 
 |  * gcc's longlong.h is useful. | 
 |  */ | 
 |  | 
 | /* We need to know how to multiply and divide. If the host word size | 
 |  * is >= 2*fracbits you can use FP_MUL_MEAT_n_imm(t,R,X,Y) which | 
 |  * codes the multiply with whatever gcc does to 'a * b'. | 
 |  * _FP_MUL_MEAT_n_wide(t,R,X,Y,f) is used when you have an asm | 
 |  * function that can multiply two 1W values and get a 2W result. | 
 |  * Otherwise you're stuck with _FP_MUL_MEAT_n_hard(t,R,X,Y) which | 
 |  * does bitshifting to avoid overflow. | 
 |  * For division there is FP_DIV_MEAT_n_imm(t,R,X,Y,f) for word size | 
 |  * >= 2*fracbits, where f is either _FP_DIV_HELP_imm or | 
 |  * _FP_DIV_HELP_ldiv (see op-1.h). | 
 |  * _FP_DIV_MEAT_udiv() is if you have asm to do 2W/1W => (1W, 1W). | 
 |  * [GCC and glibc have longlong.h which has the asm macro udiv_qrnnd | 
 |  * to do this.] | 
 |  * In general, 'n' is the number of words required to hold the type, | 
 |  * and 't' is either S, D or Q for single/double/quad. | 
 |  *           -- PMM | 
 |  */ | 
 | /* Example: SPARC64: | 
 |  * #define _FP_MUL_MEAT_S(R,X,Y)	_FP_MUL_MEAT_1_imm(S,R,X,Y) | 
 |  * #define _FP_MUL_MEAT_D(R,X,Y)	_FP_MUL_MEAT_1_wide(D,R,X,Y,umul_ppmm) | 
 |  * #define _FP_MUL_MEAT_Q(R,X,Y)	_FP_MUL_MEAT_2_wide(Q,R,X,Y,umul_ppmm) | 
 |  * | 
 |  * #define _FP_DIV_MEAT_S(R,X,Y)	_FP_DIV_MEAT_1_imm(S,R,X,Y,_FP_DIV_HELP_imm) | 
 |  * #define _FP_DIV_MEAT_D(R,X,Y)	_FP_DIV_MEAT_1_udiv(D,R,X,Y) | 
 |  * #define _FP_DIV_MEAT_Q(R,X,Y)	_FP_DIV_MEAT_2_udiv_64(Q,R,X,Y) | 
 |  * | 
 |  * Example: i386: | 
 |  * #define _FP_MUL_MEAT_S(R,X,Y)   _FP_MUL_MEAT_1_wide(S,R,X,Y,_i386_mul_32_64) | 
 |  * #define _FP_MUL_MEAT_D(R,X,Y)   _FP_MUL_MEAT_2_wide(D,R,X,Y,_i386_mul_32_64) | 
 |  * | 
 |  * #define _FP_DIV_MEAT_S(R,X,Y)   _FP_DIV_MEAT_1_udiv(S,R,X,Y,_i386_div_64_32) | 
 |  * #define _FP_DIV_MEAT_D(R,X,Y)   _FP_DIV_MEAT_2_udiv_64(D,R,X,Y) | 
 |  */ | 
 |  | 
 | #define _FP_MUL_MEAT_S(R,X,Y)   _FP_MUL_MEAT_1_wide(S,R,X,Y,umul_ppmm) | 
 | #define _FP_MUL_MEAT_D(R,X,Y)   _FP_MUL_MEAT_2_wide(D,R,X,Y,umul_ppmm) | 
 |  | 
 | #define _FP_DIV_MEAT_S(R,X,Y)   _FP_DIV_MEAT_1_udiv(S,R,X,Y) | 
 | #define _FP_DIV_MEAT_D(R,X,Y)   _FP_DIV_MEAT_2_udiv_64(D,R,X,Y) | 
 |  | 
 | /* These macros define what NaN looks like. They're supposed to expand to | 
 |  * a comma-separated set of 32bit unsigned ints that encode NaN. | 
 |  */ | 
 | #define _FP_NANFRAC_S		_FP_QNANBIT_S | 
 | #define _FP_NANFRAC_D		_FP_QNANBIT_D, 0 | 
 | #define _FP_NANFRAC_Q           _FP_QNANBIT_Q, 0, 0, 0 | 
 |  | 
 | #define _FP_KEEPNANFRACP 1 | 
 |  | 
 | /* This macro appears to be called when both X and Y are NaNs, and | 
 |  * has to choose one and copy it to R. i386 goes for the larger of the | 
 |  * two, sparc64 just picks Y. I don't understand this at all so I'll | 
 |  * go with sparc64 because it's shorter :->   -- PMM | 
 |  */ | 
 | #define _FP_CHOOSENAN(fs, wc, R, X, Y)			\ | 
 |   do {							\ | 
 |     R##_s = Y##_s;					\ | 
 |     _FP_FRAC_COPY_##wc(R,Y);				\ | 
 |     R##_c = FP_CLS_NAN;					\ | 
 |   } while (0) | 
 |  | 
 |  | 
 | extern void fp_unpack_d(long *, unsigned long *, unsigned long *, | 
 | 			long *, long *, void *); | 
 | extern int  fp_pack_d(void *, long, unsigned long, unsigned long, long, long); | 
 | extern int  fp_pack_ds(void *, long, unsigned long, unsigned long, long, long); | 
 |  | 
 | #define __FP_UNPACK_RAW_1(fs, X, val)			\ | 
 |   do {							\ | 
 |     union _FP_UNION_##fs *_flo =			\ | 
 |     	(union _FP_UNION_##fs *)val;			\ | 
 | 							\ | 
 |     X##_f = _flo->bits.frac;				\ | 
 |     X##_e = _flo->bits.exp;				\ | 
 |     X##_s = _flo->bits.sign;				\ | 
 |   } while (0) | 
 |  | 
 | #define __FP_UNPACK_RAW_2(fs, X, val)			\ | 
 |   do {							\ | 
 |     union _FP_UNION_##fs *_flo =			\ | 
 |     	(union _FP_UNION_##fs *)val;			\ | 
 | 							\ | 
 |     X##_f0 = _flo->bits.frac0;				\ | 
 |     X##_f1 = _flo->bits.frac1;				\ | 
 |     X##_e  = _flo->bits.exp;				\ | 
 |     X##_s  = _flo->bits.sign;				\ | 
 |   } while (0) | 
 |  | 
 | #define __FP_UNPACK_S(X,val)		\ | 
 |   do {					\ | 
 |     __FP_UNPACK_RAW_1(S,X,val);		\ | 
 |     _FP_UNPACK_CANONICAL(S,1,X);	\ | 
 |   } while (0) | 
 |  | 
 | #define __FP_UNPACK_D(X,val)		\ | 
 | 	fp_unpack_d(&X##_s, &X##_f1, &X##_f0, &X##_e, &X##_c, val) | 
 |  | 
 | #define __FP_PACK_RAW_1(fs, val, X)			\ | 
 |   do {							\ | 
 |     union _FP_UNION_##fs *_flo =			\ | 
 |     	(union _FP_UNION_##fs *)val;			\ | 
 | 							\ | 
 |     _flo->bits.frac = X##_f;				\ | 
 |     _flo->bits.exp  = X##_e;				\ | 
 |     _flo->bits.sign = X##_s;				\ | 
 |   } while (0) | 
 |  | 
 | #define __FP_PACK_RAW_2(fs, val, X)			\ | 
 |   do {							\ | 
 |     union _FP_UNION_##fs *_flo =			\ | 
 |     	(union _FP_UNION_##fs *)val;			\ | 
 | 							\ | 
 |     _flo->bits.frac0 = X##_f0;				\ | 
 |     _flo->bits.frac1 = X##_f1;				\ | 
 |     _flo->bits.exp   = X##_e;				\ | 
 |     _flo->bits.sign  = X##_s;				\ | 
 |   } while (0) | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/sched.h> | 
 |  | 
 | #define __FPU_FPSCR	(current->thread.fpscr.val) | 
 |  | 
 | /* We only actually write to the destination register | 
 |  * if exceptions signalled (if any) will not trap. | 
 |  */ | 
 | #define __FPU_ENABLED_EXC \ | 
 | ({						\ | 
 | 	(__FPU_FPSCR >> 3) & 0x1f;	\ | 
 | }) | 
 |  | 
 | #define __FPU_TRAP_P(bits) \ | 
 | 	((__FPU_ENABLED_EXC & (bits)) != 0) | 
 |  | 
 | #define __FP_PACK_S(val,X)			\ | 
 | ({  int __exc = _FP_PACK_CANONICAL(S,1,X);	\ | 
 |     if(!__exc || !__FPU_TRAP_P(__exc))		\ | 
 |         __FP_PACK_RAW_1(S,val,X);		\ | 
 |     __exc;					\ | 
 | }) | 
 |  | 
 | #define __FP_PACK_D(val,X)			\ | 
 | 	fp_pack_d(val, X##_s, X##_f1, X##_f0, X##_e, X##_c) | 
 |  | 
 | #define __FP_PACK_DS(val,X)			\ | 
 | 	fp_pack_ds(val, X##_s, X##_f1, X##_f0, X##_e, X##_c) | 
 |  | 
 | /* Obtain the current rounding mode. */ | 
 | #define FP_ROUNDMODE			\ | 
 | ({					\ | 
 | 	__FPU_FPSCR & 0x3;		\ | 
 | }) | 
 |  | 
 | /* the asm fragments go here: all these are taken from glibc-2.0.5's | 
 |  * stdlib/longlong.h | 
 |  */ | 
 |  | 
 | #include <linux/types.h> | 
 | #include <asm/byteorder.h> | 
 |  | 
 | /* add_ssaaaa is used in op-2.h and should be equivalent to | 
 |  * #define add_ssaaaa(sh,sl,ah,al,bh,bl) (sh = ah+bh+ (( sl = al+bl) < al)) | 
 |  * add_ssaaaa(high_sum, low_sum, high_addend_1, low_addend_1, | 
 |  * high_addend_2, low_addend_2) adds two UWtype integers, composed by | 
 |  * HIGH_ADDEND_1 and LOW_ADDEND_1, and HIGH_ADDEND_2 and LOW_ADDEND_2 | 
 |  * respectively.  The result is placed in HIGH_SUM and LOW_SUM.  Overflow | 
 |  * (i.e. carry out) is not stored anywhere, and is lost. | 
 |  */ | 
 | #define add_ssaaaa(sh, sl, ah, al, bh, bl)				\ | 
 |   do {									\ | 
 |     if (__builtin_constant_p (bh) && (bh) == 0)				\ | 
 |       __asm__ ("{a%I4|add%I4c} %1,%3,%4\n\t{aze|addze} %0,%2"		\ | 
 | 	     : "=r" ((USItype)(sh)),					\ | 
 | 	       "=&r" ((USItype)(sl))					\ | 
 | 	     : "%r" ((USItype)(ah)),					\ | 
 | 	       "%r" ((USItype)(al)),					\ | 
 | 	       "rI" ((USItype)(bl)));					\ | 
 |     else if (__builtin_constant_p (bh) && (bh) ==~(USItype) 0)		\ | 
 |       __asm__ ("{a%I4|add%I4c} %1,%3,%4\n\t{ame|addme} %0,%2"		\ | 
 | 	     : "=r" ((USItype)(sh)),					\ | 
 | 	       "=&r" ((USItype)(sl))					\ | 
 | 	     : "%r" ((USItype)(ah)),					\ | 
 | 	       "%r" ((USItype)(al)),					\ | 
 | 	       "rI" ((USItype)(bl)));					\ | 
 |     else								\ | 
 |       __asm__ ("{a%I5|add%I5c} %1,%4,%5\n\t{ae|adde} %0,%2,%3"		\ | 
 | 	     : "=r" ((USItype)(sh)),					\ | 
 | 	       "=&r" ((USItype)(sl))					\ | 
 | 	     : "%r" ((USItype)(ah)),					\ | 
 | 	       "r" ((USItype)(bh)),					\ | 
 | 	       "%r" ((USItype)(al)),					\ | 
 | 	       "rI" ((USItype)(bl)));					\ | 
 |   } while (0) | 
 |  | 
 | /* sub_ddmmss is used in op-2.h and udivmodti4.c and should be equivalent to | 
 |  * #define sub_ddmmss(sh, sl, ah, al, bh, bl) (sh = ah-bh - ((sl = al-bl) > al)) | 
 |  * sub_ddmmss(high_difference, low_difference, high_minuend, low_minuend, | 
 |  * high_subtrahend, low_subtrahend) subtracts two two-word UWtype integers, | 
 |  * composed by HIGH_MINUEND_1 and LOW_MINUEND_1, and HIGH_SUBTRAHEND_2 and | 
 |  * LOW_SUBTRAHEND_2 respectively.  The result is placed in HIGH_DIFFERENCE | 
 |  * and LOW_DIFFERENCE.  Overflow (i.e. carry out) is not stored anywhere, | 
 |  * and is lost. | 
 |  */ | 
 | #define sub_ddmmss(sh, sl, ah, al, bh, bl)				\ | 
 |   do {									\ | 
 |     if (__builtin_constant_p (ah) && (ah) == 0)				\ | 
 |       __asm__ ("{sf%I3|subf%I3c} %1,%4,%3\n\t{sfze|subfze} %0,%2"	\ | 
 | 	       : "=r" ((USItype)(sh)),					\ | 
 | 		 "=&r" ((USItype)(sl))					\ | 
 | 	       : "r" ((USItype)(bh)),					\ | 
 | 		 "rI" ((USItype)(al)),					\ | 
 | 		 "r" ((USItype)(bl)));					\ | 
 |     else if (__builtin_constant_p (ah) && (ah) ==~(USItype) 0)		\ | 
 |       __asm__ ("{sf%I3|subf%I3c} %1,%4,%3\n\t{sfme|subfme} %0,%2"	\ | 
 | 	       : "=r" ((USItype)(sh)),					\ | 
 | 		 "=&r" ((USItype)(sl))					\ | 
 | 	       : "r" ((USItype)(bh)),					\ | 
 | 		 "rI" ((USItype)(al)),					\ | 
 | 		 "r" ((USItype)(bl)));					\ | 
 |     else if (__builtin_constant_p (bh) && (bh) == 0)			\ | 
 |       __asm__ ("{sf%I3|subf%I3c} %1,%4,%3\n\t{ame|addme} %0,%2"		\ | 
 | 	       : "=r" ((USItype)(sh)),					\ | 
 | 		 "=&r" ((USItype)(sl))					\ | 
 | 	       : "r" ((USItype)(ah)),					\ | 
 | 		 "rI" ((USItype)(al)),					\ | 
 | 		 "r" ((USItype)(bl)));					\ | 
 |     else if (__builtin_constant_p (bh) && (bh) ==~(USItype) 0)		\ | 
 |       __asm__ ("{sf%I3|subf%I3c} %1,%4,%3\n\t{aze|addze} %0,%2"		\ | 
 | 	       : "=r" ((USItype)(sh)),					\ | 
 | 		 "=&r" ((USItype)(sl))					\ | 
 | 	       : "r" ((USItype)(ah)),					\ | 
 | 		 "rI" ((USItype)(al)),					\ | 
 | 		 "r" ((USItype)(bl)));					\ | 
 |     else								\ | 
 |       __asm__ ("{sf%I4|subf%I4c} %1,%5,%4\n\t{sfe|subfe} %0,%3,%2"	\ | 
 | 	       : "=r" ((USItype)(sh)),					\ | 
 | 		 "=&r" ((USItype)(sl))					\ | 
 | 	       : "r" ((USItype)(ah)),					\ | 
 | 		 "r" ((USItype)(bh)),					\ | 
 | 		 "rI" ((USItype)(al)),					\ | 
 | 		 "r" ((USItype)(bl)));					\ | 
 |   } while (0) | 
 |  | 
 | /* asm fragments for mul and div */ | 
 |  | 
 | /* umul_ppmm(high_prod, low_prod, multipler, multiplicand) multiplies two | 
 |  * UWtype integers MULTIPLER and MULTIPLICAND, and generates a two UWtype | 
 |  * word product in HIGH_PROD and LOW_PROD. | 
 |  */ | 
 | #define umul_ppmm(ph, pl, m0, m1)					\ | 
 |   do {									\ | 
 |     USItype __m0 = (m0), __m1 = (m1);					\ | 
 |     __asm__ ("mulhwu %0,%1,%2"						\ | 
 | 	     : "=r" ((USItype)(ph))					\ | 
 | 	     : "%r" (__m0),						\ | 
 |                "r" (__m1));						\ | 
 |     (pl) = __m0 * __m1;							\ | 
 |   } while (0) | 
 |  | 
 | /* udiv_qrnnd(quotient, remainder, high_numerator, low_numerator, | 
 |  * denominator) divides a UDWtype, composed by the UWtype integers | 
 |  * HIGH_NUMERATOR and LOW_NUMERATOR, by DENOMINATOR and places the quotient | 
 |  * in QUOTIENT and the remainder in REMAINDER.  HIGH_NUMERATOR must be less | 
 |  * than DENOMINATOR for correct operation.  If, in addition, the most | 
 |  * significant bit of DENOMINATOR must be 1, then the pre-processor symbol | 
 |  * UDIV_NEEDS_NORMALIZATION is defined to 1. | 
 |  */ | 
 | #define udiv_qrnnd(q, r, n1, n0, d)					\ | 
 |   do {									\ | 
 |     UWtype __d1, __d0, __q1, __q0, __r1, __r0, __m;			\ | 
 |     __d1 = __ll_highpart (d);						\ | 
 |     __d0 = __ll_lowpart (d);						\ | 
 | 									\ | 
 |     __r1 = (n1) % __d1;							\ | 
 |     __q1 = (n1) / __d1;							\ | 
 |     __m = (UWtype) __q1 * __d0;						\ | 
 |     __r1 = __r1 * __ll_B | __ll_highpart (n0);				\ | 
 |     if (__r1 < __m)							\ | 
 |       {									\ | 
 | 	__q1--, __r1 += (d);						\ | 
 | 	if (__r1 >= (d)) /* we didn't get carry when adding to __r1 */	\ | 
 | 	  if (__r1 < __m)						\ | 
 | 	    __q1--, __r1 += (d);					\ | 
 |       }									\ | 
 |     __r1 -= __m;							\ | 
 | 									\ | 
 |     __r0 = __r1 % __d1;							\ | 
 |     __q0 = __r1 / __d1;							\ | 
 |     __m = (UWtype) __q0 * __d0;						\ | 
 |     __r0 = __r0 * __ll_B | __ll_lowpart (n0);				\ | 
 |     if (__r0 < __m)							\ | 
 |       {									\ | 
 | 	__q0--, __r0 += (d);						\ | 
 | 	if (__r0 >= (d))						\ | 
 | 	  if (__r0 < __m)						\ | 
 | 	    __q0--, __r0 += (d);					\ | 
 |       }									\ | 
 |     __r0 -= __m;							\ | 
 | 									\ | 
 |     (q) = (UWtype) __q1 * __ll_B | __q0;				\ | 
 |     (r) = __r0;								\ | 
 |   } while (0) | 
 |  | 
 | #define UDIV_NEEDS_NORMALIZATION 1 | 
 |  | 
 | #define abort()								\ | 
 | 	return 0 | 
 |  | 
 | #ifdef __BIG_ENDIAN | 
 | #define __BYTE_ORDER __BIG_ENDIAN | 
 | #else | 
 | #define __BYTE_ORDER __LITTLE_ENDIAN | 
 | #endif | 
 |  | 
 | /* Exception flags. */ | 
 | #define EFLAG_INVALID		(1 << (31 - 2)) | 
 | #define EFLAG_OVERFLOW		(1 << (31 - 3)) | 
 | #define EFLAG_UNDERFLOW		(1 << (31 - 4)) | 
 | #define EFLAG_DIVZERO		(1 << (31 - 5)) | 
 | #define EFLAG_INEXACT		(1 << (31 - 6)) | 
 |  | 
 | #define EFLAG_VXSNAN		(1 << (31 - 7)) | 
 | #define EFLAG_VXISI		(1 << (31 - 8)) | 
 | #define EFLAG_VXIDI		(1 << (31 - 9)) | 
 | #define EFLAG_VXZDZ		(1 << (31 - 10)) | 
 | #define EFLAG_VXIMZ		(1 << (31 - 11)) | 
 | #define EFLAG_VXVC		(1 << (31 - 12)) | 
 | #define EFLAG_VXSOFT		(1 << (31 - 21)) | 
 | #define EFLAG_VXSQRT		(1 << (31 - 22)) | 
 | #define EFLAG_VXCVI		(1 << (31 - 23)) |