| /* | 
 |  *  linux/arch/i386/mm/fault.c | 
 |  * | 
 |  *  Copyright (C) 1995  Linus Torvalds | 
 |  */ | 
 |  | 
 | #include <linux/signal.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/string.h> | 
 | #include <linux/types.h> | 
 | #include <linux/ptrace.h> | 
 | #include <linux/mman.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/init.h> | 
 | #include <linux/tty.h> | 
 | #include <linux/vt_kern.h>		/* For unblank_screen() */ | 
 | #include <linux/highmem.h> | 
 | #include <linux/bootmem.h>		/* for max_low_pfn */ | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/module.h> | 
 | #include <linux/kprobes.h> | 
 | #include <linux/uaccess.h> | 
 | #include <linux/kdebug.h> | 
 | #include <linux/kprobes.h> | 
 |  | 
 | #include <asm/system.h> | 
 | #include <asm/desc.h> | 
 | #include <asm/segment.h> | 
 |  | 
 | extern void die(const char *,struct pt_regs *,long); | 
 |  | 
 | #ifdef CONFIG_KPROBES | 
 | static inline int notify_page_fault(struct pt_regs *regs) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	/* kprobe_running() needs smp_processor_id() */ | 
 | 	if (!user_mode_vm(regs)) { | 
 | 		preempt_disable(); | 
 | 		if (kprobe_running() && kprobe_fault_handler(regs, 14)) | 
 | 			ret = 1; | 
 | 		preempt_enable(); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 | #else | 
 | static inline int notify_page_fault(struct pt_regs *regs) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Return EIP plus the CS segment base.  The segment limit is also | 
 |  * adjusted, clamped to the kernel/user address space (whichever is | 
 |  * appropriate), and returned in *eip_limit. | 
 |  * | 
 |  * The segment is checked, because it might have been changed by another | 
 |  * task between the original faulting instruction and here. | 
 |  * | 
 |  * If CS is no longer a valid code segment, or if EIP is beyond the | 
 |  * limit, or if it is a kernel address when CS is not a kernel segment, | 
 |  * then the returned value will be greater than *eip_limit. | 
 |  *  | 
 |  * This is slow, but is very rarely executed. | 
 |  */ | 
 | static inline unsigned long get_segment_eip(struct pt_regs *regs, | 
 | 					    unsigned long *eip_limit) | 
 | { | 
 | 	unsigned long eip = regs->eip; | 
 | 	unsigned seg = regs->xcs & 0xffff; | 
 | 	u32 seg_ar, seg_limit, base, *desc; | 
 |  | 
 | 	/* Unlikely, but must come before segment checks. */ | 
 | 	if (unlikely(regs->eflags & VM_MASK)) { | 
 | 		base = seg << 4; | 
 | 		*eip_limit = base + 0xffff; | 
 | 		return base + (eip & 0xffff); | 
 | 	} | 
 |  | 
 | 	/* The standard kernel/user address space limit. */ | 
 | 	*eip_limit = user_mode(regs) ? USER_DS.seg : KERNEL_DS.seg; | 
 | 	 | 
 | 	/* By far the most common cases. */ | 
 | 	if (likely(SEGMENT_IS_FLAT_CODE(seg))) | 
 | 		return eip; | 
 |  | 
 | 	/* Check the segment exists, is within the current LDT/GDT size, | 
 | 	   that kernel/user (ring 0..3) has the appropriate privilege, | 
 | 	   that it's a code segment, and get the limit. */ | 
 | 	__asm__ ("larl %3,%0; lsll %3,%1" | 
 | 		 : "=&r" (seg_ar), "=r" (seg_limit) : "0" (0), "rm" (seg)); | 
 | 	if ((~seg_ar & 0x9800) || eip > seg_limit) { | 
 | 		*eip_limit = 0; | 
 | 		return 1;	 /* So that returned eip > *eip_limit. */ | 
 | 	} | 
 |  | 
 | 	/* Get the GDT/LDT descriptor base.  | 
 | 	   When you look for races in this code remember that | 
 | 	   LDT and other horrors are only used in user space. */ | 
 | 	if (seg & (1<<2)) { | 
 | 		/* Must lock the LDT while reading it. */ | 
 | 		mutex_lock(¤t->mm->context.lock); | 
 | 		desc = current->mm->context.ldt; | 
 | 		desc = (void *)desc + (seg & ~7); | 
 | 	} else { | 
 | 		/* Must disable preemption while reading the GDT. */ | 
 |  		desc = (u32 *)get_cpu_gdt_table(get_cpu()); | 
 | 		desc = (void *)desc + (seg & ~7); | 
 | 	} | 
 |  | 
 | 	/* Decode the code segment base from the descriptor */ | 
 | 	base = get_desc_base((unsigned long *)desc); | 
 |  | 
 | 	if (seg & (1<<2)) {  | 
 | 		mutex_unlock(¤t->mm->context.lock); | 
 | 	} else | 
 | 		put_cpu(); | 
 |  | 
 | 	/* Adjust EIP and segment limit, and clamp at the kernel limit. | 
 | 	   It's legitimate for segments to wrap at 0xffffffff. */ | 
 | 	seg_limit += base; | 
 | 	if (seg_limit < *eip_limit && seg_limit >= base) | 
 | 		*eip_limit = seg_limit; | 
 | 	return eip + base; | 
 | } | 
 |  | 
 | /*  | 
 |  * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. | 
 |  * Check that here and ignore it. | 
 |  */ | 
 | static int __is_prefetch(struct pt_regs *regs, unsigned long addr) | 
 | {  | 
 | 	unsigned long limit; | 
 | 	unsigned char *instr = (unsigned char *)get_segment_eip (regs, &limit); | 
 | 	int scan_more = 1; | 
 | 	int prefetch = 0;  | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; scan_more && i < 15; i++) {  | 
 | 		unsigned char opcode; | 
 | 		unsigned char instr_hi; | 
 | 		unsigned char instr_lo; | 
 |  | 
 | 		if (instr > (unsigned char *)limit) | 
 | 			break; | 
 | 		if (probe_kernel_address(instr, opcode)) | 
 | 			break;  | 
 |  | 
 | 		instr_hi = opcode & 0xf0;  | 
 | 		instr_lo = opcode & 0x0f;  | 
 | 		instr++; | 
 |  | 
 | 		switch (instr_hi) {  | 
 | 		case 0x20: | 
 | 		case 0x30: | 
 | 			/* Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. */ | 
 | 			scan_more = ((instr_lo & 7) == 0x6); | 
 | 			break; | 
 | 			 | 
 | 		case 0x60: | 
 | 			/* 0x64 thru 0x67 are valid prefixes in all modes. */ | 
 | 			scan_more = (instr_lo & 0xC) == 0x4; | 
 | 			break;		 | 
 | 		case 0xF0: | 
 | 			/* 0xF0, 0xF2, and 0xF3 are valid prefixes */ | 
 | 			scan_more = !instr_lo || (instr_lo>>1) == 1; | 
 | 			break;			 | 
 | 		case 0x00: | 
 | 			/* Prefetch instruction is 0x0F0D or 0x0F18 */ | 
 | 			scan_more = 0; | 
 | 			if (instr > (unsigned char *)limit) | 
 | 				break; | 
 | 			if (probe_kernel_address(instr, opcode)) | 
 | 				break; | 
 | 			prefetch = (instr_lo == 0xF) && | 
 | 				(opcode == 0x0D || opcode == 0x18); | 
 | 			break;			 | 
 | 		default: | 
 | 			scan_more = 0; | 
 | 			break; | 
 | 		}  | 
 | 	} | 
 | 	return prefetch; | 
 | } | 
 |  | 
 | static inline int is_prefetch(struct pt_regs *regs, unsigned long addr, | 
 | 			      unsigned long error_code) | 
 | { | 
 | 	if (unlikely(boot_cpu_data.x86_vendor == X86_VENDOR_AMD && | 
 | 		     boot_cpu_data.x86 >= 6)) { | 
 | 		/* Catch an obscure case of prefetch inside an NX page. */ | 
 | 		if (nx_enabled && (error_code & 16)) | 
 | 			return 0; | 
 | 		return __is_prefetch(regs, addr); | 
 | 	} | 
 | 	return 0; | 
 | }  | 
 |  | 
 | static noinline void force_sig_info_fault(int si_signo, int si_code, | 
 | 	unsigned long address, struct task_struct *tsk) | 
 | { | 
 | 	siginfo_t info; | 
 |  | 
 | 	info.si_signo = si_signo; | 
 | 	info.si_errno = 0; | 
 | 	info.si_code = si_code; | 
 | 	info.si_addr = (void __user *)address; | 
 | 	force_sig_info(si_signo, &info, tsk); | 
 | } | 
 |  | 
 | fastcall void do_invalid_op(struct pt_regs *, unsigned long); | 
 |  | 
 | static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address) | 
 | { | 
 | 	unsigned index = pgd_index(address); | 
 | 	pgd_t *pgd_k; | 
 | 	pud_t *pud, *pud_k; | 
 | 	pmd_t *pmd, *pmd_k; | 
 |  | 
 | 	pgd += index; | 
 | 	pgd_k = init_mm.pgd + index; | 
 |  | 
 | 	if (!pgd_present(*pgd_k)) | 
 | 		return NULL; | 
 |  | 
 | 	/* | 
 | 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE | 
 | 	 * and redundant with the set_pmd() on non-PAE. As would | 
 | 	 * set_pud. | 
 | 	 */ | 
 |  | 
 | 	pud = pud_offset(pgd, address); | 
 | 	pud_k = pud_offset(pgd_k, address); | 
 | 	if (!pud_present(*pud_k)) | 
 | 		return NULL; | 
 |  | 
 | 	pmd = pmd_offset(pud, address); | 
 | 	pmd_k = pmd_offset(pud_k, address); | 
 | 	if (!pmd_present(*pmd_k)) | 
 | 		return NULL; | 
 | 	if (!pmd_present(*pmd)) { | 
 | 		set_pmd(pmd, *pmd_k); | 
 | 		arch_flush_lazy_mmu_mode(); | 
 | 	} else | 
 | 		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k)); | 
 | 	return pmd_k; | 
 | } | 
 |  | 
 | /* | 
 |  * Handle a fault on the vmalloc or module mapping area | 
 |  * | 
 |  * This assumes no large pages in there. | 
 |  */ | 
 | static inline int vmalloc_fault(unsigned long address) | 
 | { | 
 | 	unsigned long pgd_paddr; | 
 | 	pmd_t *pmd_k; | 
 | 	pte_t *pte_k; | 
 | 	/* | 
 | 	 * Synchronize this task's top level page-table | 
 | 	 * with the 'reference' page table. | 
 | 	 * | 
 | 	 * Do _not_ use "current" here. We might be inside | 
 | 	 * an interrupt in the middle of a task switch.. | 
 | 	 */ | 
 | 	pgd_paddr = read_cr3(); | 
 | 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address); | 
 | 	if (!pmd_k) | 
 | 		return -1; | 
 | 	pte_k = pte_offset_kernel(pmd_k, address); | 
 | 	if (!pte_present(*pte_k)) | 
 | 		return -1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int show_unhandled_signals = 1; | 
 |  | 
 | /* | 
 |  * This routine handles page faults.  It determines the address, | 
 |  * and the problem, and then passes it off to one of the appropriate | 
 |  * routines. | 
 |  * | 
 |  * error_code: | 
 |  *	bit 0 == 0 means no page found, 1 means protection fault | 
 |  *	bit 1 == 0 means read, 1 means write | 
 |  *	bit 2 == 0 means kernel, 1 means user-mode | 
 |  *	bit 3 == 1 means use of reserved bit detected | 
 |  *	bit 4 == 1 means fault was an instruction fetch | 
 |  */ | 
 | fastcall void __kprobes do_page_fault(struct pt_regs *regs, | 
 | 				      unsigned long error_code) | 
 | { | 
 | 	struct task_struct *tsk; | 
 | 	struct mm_struct *mm; | 
 | 	struct vm_area_struct * vma; | 
 | 	unsigned long address; | 
 | 	int write, si_code; | 
 | 	int fault; | 
 |  | 
 | 	/* | 
 | 	 * We can fault from pretty much anywhere, with unknown IRQ state. | 
 | 	 */ | 
 | 	trace_hardirqs_fixup(); | 
 |  | 
 | 	/* get the address */ | 
 |         address = read_cr2(); | 
 |  | 
 | 	tsk = current; | 
 |  | 
 | 	si_code = SEGV_MAPERR; | 
 |  | 
 | 	/* | 
 | 	 * We fault-in kernel-space virtual memory on-demand. The | 
 | 	 * 'reference' page table is init_mm.pgd. | 
 | 	 * | 
 | 	 * NOTE! We MUST NOT take any locks for this case. We may | 
 | 	 * be in an interrupt or a critical region, and should | 
 | 	 * only copy the information from the master page table, | 
 | 	 * nothing more. | 
 | 	 * | 
 | 	 * This verifies that the fault happens in kernel space | 
 | 	 * (error_code & 4) == 0, and that the fault was not a | 
 | 	 * protection error (error_code & 9) == 0. | 
 | 	 */ | 
 | 	if (unlikely(address >= TASK_SIZE)) { | 
 | 		if (!(error_code & 0x0000000d) && vmalloc_fault(address) >= 0) | 
 | 			return; | 
 | 		if (notify_page_fault(regs)) | 
 | 			return; | 
 | 		/* | 
 | 		 * Don't take the mm semaphore here. If we fixup a prefetch | 
 | 		 * fault we could otherwise deadlock. | 
 | 		 */ | 
 | 		goto bad_area_nosemaphore; | 
 | 	} | 
 |  | 
 | 	if (notify_page_fault(regs)) | 
 | 		return; | 
 |  | 
 | 	/* It's safe to allow irq's after cr2 has been saved and the vmalloc | 
 | 	   fault has been handled. */ | 
 | 	if (regs->eflags & (X86_EFLAGS_IF|VM_MASK)) | 
 | 		local_irq_enable(); | 
 |  | 
 | 	mm = tsk->mm; | 
 |  | 
 | 	/* | 
 | 	 * If we're in an interrupt, have no user context or are running in an | 
 | 	 * atomic region then we must not take the fault.. | 
 | 	 */ | 
 | 	if (in_atomic() || !mm) | 
 | 		goto bad_area_nosemaphore; | 
 |  | 
 | 	/* When running in the kernel we expect faults to occur only to | 
 | 	 * addresses in user space.  All other faults represent errors in the | 
 | 	 * kernel and should generate an OOPS.  Unfortunately, in the case of an | 
 | 	 * erroneous fault occurring in a code path which already holds mmap_sem | 
 | 	 * we will deadlock attempting to validate the fault against the | 
 | 	 * address space.  Luckily the kernel only validly references user | 
 | 	 * space from well defined areas of code, which are listed in the | 
 | 	 * exceptions table. | 
 | 	 * | 
 | 	 * As the vast majority of faults will be valid we will only perform | 
 | 	 * the source reference check when there is a possibility of a deadlock. | 
 | 	 * Attempt to lock the address space, if we cannot we then validate the | 
 | 	 * source.  If this is invalid we can skip the address space check, | 
 | 	 * thus avoiding the deadlock. | 
 | 	 */ | 
 | 	if (!down_read_trylock(&mm->mmap_sem)) { | 
 | 		if ((error_code & 4) == 0 && | 
 | 		    !search_exception_tables(regs->eip)) | 
 | 			goto bad_area_nosemaphore; | 
 | 		down_read(&mm->mmap_sem); | 
 | 	} | 
 |  | 
 | 	vma = find_vma(mm, address); | 
 | 	if (!vma) | 
 | 		goto bad_area; | 
 | 	if (vma->vm_start <= address) | 
 | 		goto good_area; | 
 | 	if (!(vma->vm_flags & VM_GROWSDOWN)) | 
 | 		goto bad_area; | 
 | 	if (error_code & 4) { | 
 | 		/* | 
 | 		 * Accessing the stack below %esp is always a bug. | 
 | 		 * The large cushion allows instructions like enter | 
 | 		 * and pusha to work.  ("enter $65535,$31" pushes | 
 | 		 * 32 pointers and then decrements %esp by 65535.) | 
 | 		 */ | 
 | 		if (address + 65536 + 32 * sizeof(unsigned long) < regs->esp) | 
 | 			goto bad_area; | 
 | 	} | 
 | 	if (expand_stack(vma, address)) | 
 | 		goto bad_area; | 
 | /* | 
 |  * Ok, we have a good vm_area for this memory access, so | 
 |  * we can handle it.. | 
 |  */ | 
 | good_area: | 
 | 	si_code = SEGV_ACCERR; | 
 | 	write = 0; | 
 | 	switch (error_code & 3) { | 
 | 		default:	/* 3: write, present */ | 
 | 				/* fall through */ | 
 | 		case 2:		/* write, not present */ | 
 | 			if (!(vma->vm_flags & VM_WRITE)) | 
 | 				goto bad_area; | 
 | 			write++; | 
 | 			break; | 
 | 		case 1:		/* read, present */ | 
 | 			goto bad_area; | 
 | 		case 0:		/* read, not present */ | 
 | 			if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) | 
 | 				goto bad_area; | 
 | 	} | 
 |  | 
 |  survive: | 
 | 	/* | 
 | 	 * If for any reason at all we couldn't handle the fault, | 
 | 	 * make sure we exit gracefully rather than endlessly redo | 
 | 	 * the fault. | 
 | 	 */ | 
 | 	fault = handle_mm_fault(mm, vma, address, write); | 
 | 	if (unlikely(fault & VM_FAULT_ERROR)) { | 
 | 		if (fault & VM_FAULT_OOM) | 
 | 			goto out_of_memory; | 
 | 		else if (fault & VM_FAULT_SIGBUS) | 
 | 			goto do_sigbus; | 
 | 		BUG(); | 
 | 	} | 
 | 	if (fault & VM_FAULT_MAJOR) | 
 | 		tsk->maj_flt++; | 
 | 	else | 
 | 		tsk->min_flt++; | 
 |  | 
 | 	/* | 
 | 	 * Did it hit the DOS screen memory VA from vm86 mode? | 
 | 	 */ | 
 | 	if (regs->eflags & VM_MASK) { | 
 | 		unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT; | 
 | 		if (bit < 32) | 
 | 			tsk->thread.screen_bitmap |= 1 << bit; | 
 | 	} | 
 | 	up_read(&mm->mmap_sem); | 
 | 	return; | 
 |  | 
 | /* | 
 |  * Something tried to access memory that isn't in our memory map.. | 
 |  * Fix it, but check if it's kernel or user first.. | 
 |  */ | 
 | bad_area: | 
 | 	up_read(&mm->mmap_sem); | 
 |  | 
 | bad_area_nosemaphore: | 
 | 	/* User mode accesses just cause a SIGSEGV */ | 
 | 	if (error_code & 4) { | 
 | 		/* | 
 | 		 * It's possible to have interrupts off here. | 
 | 		 */ | 
 | 		local_irq_enable(); | 
 |  | 
 | 		/*  | 
 | 		 * Valid to do another page fault here because this one came  | 
 | 		 * from user space. | 
 | 		 */ | 
 | 		if (is_prefetch(regs, address, error_code)) | 
 | 			return; | 
 |  | 
 | 		if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) && | 
 | 		    printk_ratelimit()) { | 
 | 			printk("%s%s[%d]: segfault at %08lx eip %08lx " | 
 | 			    "esp %08lx error %lx\n", | 
 | 			    task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG, | 
 | 			    tsk->comm, task_pid_nr(tsk), address, regs->eip, | 
 | 			    regs->esp, error_code); | 
 | 		} | 
 | 		tsk->thread.cr2 = address; | 
 | 		/* Kernel addresses are always protection faults */ | 
 | 		tsk->thread.error_code = error_code | (address >= TASK_SIZE); | 
 | 		tsk->thread.trap_no = 14; | 
 | 		force_sig_info_fault(SIGSEGV, si_code, address, tsk); | 
 | 		return; | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_X86_F00F_BUG | 
 | 	/* | 
 | 	 * Pentium F0 0F C7 C8 bug workaround. | 
 | 	 */ | 
 | 	if (boot_cpu_data.f00f_bug) { | 
 | 		unsigned long nr; | 
 | 		 | 
 | 		nr = (address - idt_descr.address) >> 3; | 
 |  | 
 | 		if (nr == 6) { | 
 | 			do_invalid_op(regs, 0); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 | #endif | 
 |  | 
 | no_context: | 
 | 	/* Are we prepared to handle this kernel fault?  */ | 
 | 	if (fixup_exception(regs)) | 
 | 		return; | 
 |  | 
 | 	/*  | 
 | 	 * Valid to do another page fault here, because if this fault | 
 | 	 * had been triggered by is_prefetch fixup_exception would have  | 
 | 	 * handled it. | 
 | 	 */ | 
 |  	if (is_prefetch(regs, address, error_code)) | 
 |  		return; | 
 |  | 
 | /* | 
 |  * Oops. The kernel tried to access some bad page. We'll have to | 
 |  * terminate things with extreme prejudice. | 
 |  */ | 
 |  | 
 | 	bust_spinlocks(1); | 
 |  | 
 | 	if (oops_may_print()) { | 
 | 		__typeof__(pte_val(__pte(0))) page; | 
 |  | 
 | #ifdef CONFIG_X86_PAE | 
 | 		if (error_code & 16) { | 
 | 			pte_t *pte = lookup_address(address); | 
 |  | 
 | 			if (pte && pte_present(*pte) && !pte_exec_kernel(*pte)) | 
 | 				printk(KERN_CRIT "kernel tried to execute " | 
 | 					"NX-protected page - exploit attempt? " | 
 | 					"(uid: %d)\n", current->uid); | 
 | 		} | 
 | #endif | 
 | 		if (address < PAGE_SIZE) | 
 | 			printk(KERN_ALERT "BUG: unable to handle kernel NULL " | 
 | 					"pointer dereference"); | 
 | 		else | 
 | 			printk(KERN_ALERT "BUG: unable to handle kernel paging" | 
 | 					" request"); | 
 | 		printk(" at virtual address %08lx\n",address); | 
 | 		printk(KERN_ALERT "printing eip: %08lx ", regs->eip); | 
 |  | 
 | 		page = read_cr3(); | 
 | 		page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT]; | 
 | #ifdef CONFIG_X86_PAE | 
 | 		printk("*pdpt = %016Lx ", page); | 
 | 		if ((page >> PAGE_SHIFT) < max_low_pfn | 
 | 		    && page & _PAGE_PRESENT) { | 
 | 			page &= PAGE_MASK; | 
 | 			page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT) | 
 | 			                                         & (PTRS_PER_PMD - 1)]; | 
 | 			printk(KERN_CONT "*pde = %016Lx ", page); | 
 | 			page &= ~_PAGE_NX; | 
 | 		} | 
 | #else | 
 | 		printk("*pde = %08lx ", page); | 
 | #endif | 
 |  | 
 | 		/* | 
 | 		 * We must not directly access the pte in the highpte | 
 | 		 * case if the page table is located in highmem. | 
 | 		 * And let's rather not kmap-atomic the pte, just in case | 
 | 		 * it's allocated already. | 
 | 		 */ | 
 | 		if ((page >> PAGE_SHIFT) < max_low_pfn | 
 | 		    && (page & _PAGE_PRESENT) | 
 | 		    && !(page & _PAGE_PSE)) { | 
 | 			page &= PAGE_MASK; | 
 | 			page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT) | 
 | 			                                         & (PTRS_PER_PTE - 1)]; | 
 | 			printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page); | 
 | 		} | 
 |  | 
 | 		printk("\n"); | 
 | 	} | 
 |  | 
 | 	tsk->thread.cr2 = address; | 
 | 	tsk->thread.trap_no = 14; | 
 | 	tsk->thread.error_code = error_code; | 
 | 	die("Oops", regs, error_code); | 
 | 	bust_spinlocks(0); | 
 | 	do_exit(SIGKILL); | 
 |  | 
 | /* | 
 |  * We ran out of memory, or some other thing happened to us that made | 
 |  * us unable to handle the page fault gracefully. | 
 |  */ | 
 | out_of_memory: | 
 | 	up_read(&mm->mmap_sem); | 
 | 	if (is_global_init(tsk)) { | 
 | 		yield(); | 
 | 		down_read(&mm->mmap_sem); | 
 | 		goto survive; | 
 | 	} | 
 | 	printk("VM: killing process %s\n", tsk->comm); | 
 | 	if (error_code & 4) | 
 | 		do_group_exit(SIGKILL); | 
 | 	goto no_context; | 
 |  | 
 | do_sigbus: | 
 | 	up_read(&mm->mmap_sem); | 
 |  | 
 | 	/* Kernel mode? Handle exceptions or die */ | 
 | 	if (!(error_code & 4)) | 
 | 		goto no_context; | 
 |  | 
 | 	/* User space => ok to do another page fault */ | 
 | 	if (is_prefetch(regs, address, error_code)) | 
 | 		return; | 
 |  | 
 | 	tsk->thread.cr2 = address; | 
 | 	tsk->thread.error_code = error_code; | 
 | 	tsk->thread.trap_no = 14; | 
 | 	force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk); | 
 | } | 
 |  | 
 | void vmalloc_sync_all(void) | 
 | { | 
 | 	/* | 
 | 	 * Note that races in the updates of insync and start aren't | 
 | 	 * problematic: insync can only get set bits added, and updates to | 
 | 	 * start are only improving performance (without affecting correctness | 
 | 	 * if undone). | 
 | 	 */ | 
 | 	static DECLARE_BITMAP(insync, PTRS_PER_PGD); | 
 | 	static unsigned long start = TASK_SIZE; | 
 | 	unsigned long address; | 
 |  | 
 | 	if (SHARED_KERNEL_PMD) | 
 | 		return; | 
 |  | 
 | 	BUILD_BUG_ON(TASK_SIZE & ~PGDIR_MASK); | 
 | 	for (address = start; address >= TASK_SIZE; address += PGDIR_SIZE) { | 
 | 		if (!test_bit(pgd_index(address), insync)) { | 
 | 			unsigned long flags; | 
 | 			struct page *page; | 
 |  | 
 | 			spin_lock_irqsave(&pgd_lock, flags); | 
 | 			for (page = pgd_list; page; page = | 
 | 					(struct page *)page->index) | 
 | 				if (!vmalloc_sync_one(page_address(page), | 
 | 								address)) { | 
 | 					BUG_ON(page != pgd_list); | 
 | 					break; | 
 | 				} | 
 | 			spin_unlock_irqrestore(&pgd_lock, flags); | 
 | 			if (!page) | 
 | 				set_bit(pgd_index(address), insync); | 
 | 		} | 
 | 		if (address == start && test_bit(pgd_index(address), insync)) | 
 | 			start = address + PGDIR_SIZE; | 
 | 	} | 
 | } |