| /* | 
 |  *  Kernel Probes (KProbes) | 
 |  *  arch/ia64/kernel/kprobes.c | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation; either version 2 of the License, or | 
 |  * (at your option) any later version. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write to the Free Software | 
 |  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
 |  * | 
 |  * Copyright (C) IBM Corporation, 2002, 2004 | 
 |  * Copyright (C) Intel Corporation, 2005 | 
 |  * | 
 |  * 2005-Apr     Rusty Lynch <rusty.lynch@intel.com> and Anil S Keshavamurthy | 
 |  *              <anil.s.keshavamurthy@intel.com> adapted from i386 | 
 |  */ | 
 |  | 
 | #include <linux/kprobes.h> | 
 | #include <linux/ptrace.h> | 
 | #include <linux/string.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/preempt.h> | 
 | #include <linux/moduleloader.h> | 
 | #include <linux/kdebug.h> | 
 |  | 
 | #include <asm/pgtable.h> | 
 | #include <asm/sections.h> | 
 | #include <asm/uaccess.h> | 
 |  | 
 | extern void jprobe_inst_return(void); | 
 |  | 
 | DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; | 
 | DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); | 
 |  | 
 | struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}}; | 
 |  | 
 | enum instruction_type {A, I, M, F, B, L, X, u}; | 
 | static enum instruction_type bundle_encoding[32][3] = { | 
 |   { M, I, I },				/* 00 */ | 
 |   { M, I, I },				/* 01 */ | 
 |   { M, I, I },				/* 02 */ | 
 |   { M, I, I },				/* 03 */ | 
 |   { M, L, X },				/* 04 */ | 
 |   { M, L, X },				/* 05 */ | 
 |   { u, u, u },  			/* 06 */ | 
 |   { u, u, u },  			/* 07 */ | 
 |   { M, M, I },				/* 08 */ | 
 |   { M, M, I },				/* 09 */ | 
 |   { M, M, I },				/* 0A */ | 
 |   { M, M, I },				/* 0B */ | 
 |   { M, F, I },				/* 0C */ | 
 |   { M, F, I },				/* 0D */ | 
 |   { M, M, F },				/* 0E */ | 
 |   { M, M, F },				/* 0F */ | 
 |   { M, I, B },				/* 10 */ | 
 |   { M, I, B },				/* 11 */ | 
 |   { M, B, B },				/* 12 */ | 
 |   { M, B, B },				/* 13 */ | 
 |   { u, u, u },  			/* 14 */ | 
 |   { u, u, u },  			/* 15 */ | 
 |   { B, B, B },				/* 16 */ | 
 |   { B, B, B },				/* 17 */ | 
 |   { M, M, B },				/* 18 */ | 
 |   { M, M, B },				/* 19 */ | 
 |   { u, u, u },  			/* 1A */ | 
 |   { u, u, u },  			/* 1B */ | 
 |   { M, F, B },				/* 1C */ | 
 |   { M, F, B },				/* 1D */ | 
 |   { u, u, u },  			/* 1E */ | 
 |   { u, u, u },  			/* 1F */ | 
 | }; | 
 |  | 
 | /* | 
 |  * In this function we check to see if the instruction | 
 |  * is IP relative instruction and update the kprobe | 
 |  * inst flag accordingly | 
 |  */ | 
 | static void __kprobes update_kprobe_inst_flag(uint template, uint  slot, | 
 | 					      uint major_opcode, | 
 | 					      unsigned long kprobe_inst, | 
 | 					      struct kprobe *p) | 
 | { | 
 | 	p->ainsn.inst_flag = 0; | 
 | 	p->ainsn.target_br_reg = 0; | 
 | 	p->ainsn.slot = slot; | 
 |  | 
 | 	/* Check for Break instruction | 
 | 	 * Bits 37:40 Major opcode to be zero | 
 | 	 * Bits 27:32 X6 to be zero | 
 | 	 * Bits 32:35 X3 to be zero | 
 | 	 */ | 
 | 	if ((!major_opcode) && (!((kprobe_inst >> 27) & 0x1FF)) ) { | 
 | 		/* is a break instruction */ | 
 | 	 	p->ainsn.inst_flag |= INST_FLAG_BREAK_INST; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (bundle_encoding[template][slot] == B) { | 
 | 		switch (major_opcode) { | 
 | 		  case INDIRECT_CALL_OPCODE: | 
 | 	 		p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG; | 
 | 			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7); | 
 | 			break; | 
 | 		  case IP_RELATIVE_PREDICT_OPCODE: | 
 | 		  case IP_RELATIVE_BRANCH_OPCODE: | 
 | 			p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR; | 
 | 			break; | 
 | 		  case IP_RELATIVE_CALL_OPCODE: | 
 | 			p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR; | 
 | 			p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG; | 
 | 			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7); | 
 | 			break; | 
 | 		} | 
 | 	} else if (bundle_encoding[template][slot] == X) { | 
 | 		switch (major_opcode) { | 
 | 		  case LONG_CALL_OPCODE: | 
 | 			p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG; | 
 | 			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7); | 
 | 		  break; | 
 | 		} | 
 | 	} | 
 | 	return; | 
 | } | 
 |  | 
 | /* | 
 |  * In this function we check to see if the instruction | 
 |  * (qp) cmpx.crel.ctype p1,p2=r2,r3 | 
 |  * on which we are inserting kprobe is cmp instruction | 
 |  * with ctype as unc. | 
 |  */ | 
 | static uint __kprobes is_cmp_ctype_unc_inst(uint template, uint slot, | 
 | 					    uint major_opcode, | 
 | 					    unsigned long kprobe_inst) | 
 | { | 
 | 	cmp_inst_t cmp_inst; | 
 | 	uint ctype_unc = 0; | 
 |  | 
 | 	if (!((bundle_encoding[template][slot] == I) || | 
 | 		(bundle_encoding[template][slot] == M))) | 
 | 		goto out; | 
 |  | 
 | 	if (!((major_opcode == 0xC) || (major_opcode == 0xD) || | 
 | 		(major_opcode == 0xE))) | 
 | 		goto out; | 
 |  | 
 | 	cmp_inst.l = kprobe_inst; | 
 | 	if ((cmp_inst.f.x2 == 0) || (cmp_inst.f.x2 == 1)) { | 
 | 		/* Integer compare - Register Register (A6 type)*/ | 
 | 		if ((cmp_inst.f.tb == 0) && (cmp_inst.f.ta == 0) | 
 | 				&&(cmp_inst.f.c == 1)) | 
 | 			ctype_unc = 1; | 
 | 	} else if ((cmp_inst.f.x2 == 2)||(cmp_inst.f.x2 == 3)) { | 
 | 		/* Integer compare - Immediate Register (A8 type)*/ | 
 | 		if ((cmp_inst.f.ta == 0) &&(cmp_inst.f.c == 1)) | 
 | 			ctype_unc = 1; | 
 | 	} | 
 | out: | 
 | 	return ctype_unc; | 
 | } | 
 |  | 
 | /* | 
 |  * In this function we check to see if the instruction | 
 |  * on which we are inserting kprobe is supported. | 
 |  * Returns qp value if supported | 
 |  * Returns -EINVAL if unsupported | 
 |  */ | 
 | static int __kprobes unsupported_inst(uint template, uint  slot, | 
 | 				      uint major_opcode, | 
 | 				      unsigned long kprobe_inst, | 
 | 				      unsigned long addr) | 
 | { | 
 | 	int qp; | 
 |  | 
 | 	qp = kprobe_inst & 0x3f; | 
 | 	if (is_cmp_ctype_unc_inst(template, slot, major_opcode, kprobe_inst)) { | 
 | 		if (slot == 1 && qp)  { | 
 | 			printk(KERN_WARNING "Kprobes on cmp unc " | 
 | 					"instruction on slot 1 at <0x%lx> " | 
 | 					"is not supported\n", addr); | 
 | 			return -EINVAL; | 
 |  | 
 | 		} | 
 | 		qp = 0; | 
 | 	} | 
 | 	else if (bundle_encoding[template][slot] == I) { | 
 | 		if (major_opcode == 0) { | 
 | 			/* | 
 | 			 * Check for Integer speculation instruction | 
 | 			 * - Bit 33-35 to be equal to 0x1 | 
 | 			 */ | 
 | 			if (((kprobe_inst >> 33) & 0x7) == 1) { | 
 | 				printk(KERN_WARNING | 
 | 					"Kprobes on speculation inst at <0x%lx> not supported\n", | 
 | 						addr); | 
 | 				return -EINVAL; | 
 | 			} | 
 | 			/* | 
 | 			 * IP relative mov instruction | 
 | 			 *  - Bit 27-35 to be equal to 0x30 | 
 | 			 */ | 
 | 			if (((kprobe_inst >> 27) & 0x1FF) == 0x30) { | 
 | 				printk(KERN_WARNING | 
 | 					"Kprobes on \"mov r1=ip\" at <0x%lx> not supported\n", | 
 | 						addr); | 
 | 				return -EINVAL; | 
 |  | 
 | 			} | 
 | 		} | 
 | 		else if ((major_opcode == 5) &&	!(kprobe_inst & (0xFUl << 33)) && | 
 | 				(kprobe_inst & (0x1UL << 12))) { | 
 | 			/* test bit instructions, tbit,tnat,tf | 
 | 			 * bit 33-36 to be equal to 0 | 
 | 			 * bit 12 to be equal to 1 | 
 | 			 */ | 
 | 			if (slot == 1 && qp) { | 
 | 				printk(KERN_WARNING "Kprobes on test bit " | 
 | 						"instruction on slot at <0x%lx> " | 
 | 						"is not supported\n", addr); | 
 | 				return -EINVAL; | 
 | 			} | 
 | 			qp = 0; | 
 | 		} | 
 | 	} | 
 | 	else if (bundle_encoding[template][slot] == B) { | 
 | 		if (major_opcode == 7) { | 
 | 			/* IP-Relative Predict major code is 7 */ | 
 | 			printk(KERN_WARNING "Kprobes on IP-Relative" | 
 | 					"Predict is not supported\n"); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		else if (major_opcode == 2) { | 
 | 			/* Indirect Predict, major code is 2 | 
 | 			 * bit 27-32 to be equal to 10 or 11 | 
 | 			 */ | 
 | 			int x6=(kprobe_inst >> 27) & 0x3F; | 
 | 			if ((x6 == 0x10) || (x6 == 0x11)) { | 
 | 				printk(KERN_WARNING "Kprobes on " | 
 | 					"Indirect Predict is not supported\n"); | 
 | 				return -EINVAL; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	/* kernel does not use float instruction, here for safety kprobe | 
 | 	 * will judge whether it is fcmp/flass/float approximation instruction | 
 | 	 */ | 
 | 	else if (unlikely(bundle_encoding[template][slot] == F)) { | 
 | 		if ((major_opcode == 4 || major_opcode == 5) && | 
 | 				(kprobe_inst  & (0x1 << 12))) { | 
 | 			/* fcmp/fclass unc instruction */ | 
 | 			if (slot == 1 && qp) { | 
 | 				printk(KERN_WARNING "Kprobes on fcmp/fclass " | 
 | 					"instruction on slot at <0x%lx> " | 
 | 					"is not supported\n", addr); | 
 | 				return -EINVAL; | 
 |  | 
 | 			} | 
 | 			qp = 0; | 
 | 		} | 
 | 		if ((major_opcode == 0 || major_opcode == 1) && | 
 | 			(kprobe_inst & (0x1UL << 33))) { | 
 | 			/* float Approximation instruction */ | 
 | 			if (slot == 1 && qp) { | 
 | 				printk(KERN_WARNING "Kprobes on float Approx " | 
 | 					"instr at <0x%lx> is not supported\n", | 
 | 						addr); | 
 | 				return -EINVAL; | 
 | 			} | 
 | 			qp = 0; | 
 | 		} | 
 | 	} | 
 | 	return qp; | 
 | } | 
 |  | 
 | /* | 
 |  * In this function we override the bundle with | 
 |  * the break instruction at the given slot. | 
 |  */ | 
 | static void __kprobes prepare_break_inst(uint template, uint  slot, | 
 | 					 uint major_opcode, | 
 | 					 unsigned long kprobe_inst, | 
 | 					 struct kprobe *p, | 
 | 					 int qp) | 
 | { | 
 | 	unsigned long break_inst = BREAK_INST; | 
 | 	bundle_t *bundle = &p->opcode.bundle; | 
 |  | 
 | 	/* | 
 | 	 * Copy the original kprobe_inst qualifying predicate(qp) | 
 | 	 * to the break instruction | 
 | 	 */ | 
 | 	break_inst |= qp; | 
 |  | 
 | 	switch (slot) { | 
 | 	  case 0: | 
 | 		bundle->quad0.slot0 = break_inst; | 
 | 		break; | 
 | 	  case 1: | 
 | 		bundle->quad0.slot1_p0 = break_inst; | 
 | 		bundle->quad1.slot1_p1 = break_inst >> (64-46); | 
 | 		break; | 
 | 	  case 2: | 
 | 		bundle->quad1.slot2 = break_inst; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Update the instruction flag, so that we can | 
 | 	 * emulate the instruction properly after we | 
 | 	 * single step on original instruction | 
 | 	 */ | 
 | 	update_kprobe_inst_flag(template, slot, major_opcode, kprobe_inst, p); | 
 | } | 
 |  | 
 | static void __kprobes get_kprobe_inst(bundle_t *bundle, uint slot, | 
 | 	       	unsigned long *kprobe_inst, uint *major_opcode) | 
 | { | 
 | 	unsigned long kprobe_inst_p0, kprobe_inst_p1; | 
 | 	unsigned int template; | 
 |  | 
 | 	template = bundle->quad0.template; | 
 |  | 
 | 	switch (slot) { | 
 | 	  case 0: | 
 | 		*major_opcode = (bundle->quad0.slot0 >> SLOT0_OPCODE_SHIFT); | 
 | 		*kprobe_inst = bundle->quad0.slot0; | 
 | 		  break; | 
 | 	  case 1: | 
 | 		*major_opcode = (bundle->quad1.slot1_p1 >> SLOT1_p1_OPCODE_SHIFT); | 
 | 		kprobe_inst_p0 = bundle->quad0.slot1_p0; | 
 | 		kprobe_inst_p1 = bundle->quad1.slot1_p1; | 
 | 		*kprobe_inst = kprobe_inst_p0 | (kprobe_inst_p1 << (64-46)); | 
 | 		break; | 
 | 	  case 2: | 
 | 		*major_opcode = (bundle->quad1.slot2 >> SLOT2_OPCODE_SHIFT); | 
 | 		*kprobe_inst = bundle->quad1.slot2; | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | /* Returns non-zero if the addr is in the Interrupt Vector Table */ | 
 | static int __kprobes in_ivt_functions(unsigned long addr) | 
 | { | 
 | 	return (addr >= (unsigned long)__start_ivt_text | 
 | 		&& addr < (unsigned long)__end_ivt_text); | 
 | } | 
 |  | 
 | static int __kprobes valid_kprobe_addr(int template, int slot, | 
 | 				       unsigned long addr) | 
 | { | 
 | 	if ((slot > 2) || ((bundle_encoding[template][1] == L) && slot > 1)) { | 
 | 		printk(KERN_WARNING "Attempting to insert unaligned kprobe " | 
 | 				"at 0x%lx\n", addr); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (in_ivt_functions(addr)) { | 
 | 		printk(KERN_WARNING "Kprobes can't be inserted inside " | 
 | 				"IVT functions at 0x%lx\n", addr); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) | 
 | { | 
 | 	unsigned int i; | 
 | 	i = atomic_add_return(1, &kcb->prev_kprobe_index); | 
 | 	kcb->prev_kprobe[i-1].kp = kprobe_running(); | 
 | 	kcb->prev_kprobe[i-1].status = kcb->kprobe_status; | 
 | } | 
 |  | 
 | static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) | 
 | { | 
 | 	unsigned int i; | 
 | 	i = atomic_sub_return(1, &kcb->prev_kprobe_index); | 
 | 	__get_cpu_var(current_kprobe) = kcb->prev_kprobe[i].kp; | 
 | 	kcb->kprobe_status = kcb->prev_kprobe[i].status; | 
 | } | 
 |  | 
 | static void __kprobes set_current_kprobe(struct kprobe *p, | 
 | 			struct kprobe_ctlblk *kcb) | 
 | { | 
 | 	__get_cpu_var(current_kprobe) = p; | 
 | } | 
 |  | 
 | static void kretprobe_trampoline(void) | 
 | { | 
 | } | 
 |  | 
 | /* | 
 |  * At this point the target function has been tricked into | 
 |  * returning into our trampoline.  Lookup the associated instance | 
 |  * and then: | 
 |  *    - call the handler function | 
 |  *    - cleanup by marking the instance as unused | 
 |  *    - long jump back to the original return address | 
 |  */ | 
 | int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs) | 
 | { | 
 | 	struct kretprobe_instance *ri = NULL; | 
 | 	struct hlist_head *head, empty_rp; | 
 | 	struct hlist_node *node, *tmp; | 
 | 	unsigned long flags, orig_ret_address = 0; | 
 | 	unsigned long trampoline_address = | 
 | 		((struct fnptr *)kretprobe_trampoline)->ip; | 
 |  | 
 | 	INIT_HLIST_HEAD(&empty_rp); | 
 | 	spin_lock_irqsave(&kretprobe_lock, flags); | 
 | 	head = kretprobe_inst_table_head(current); | 
 |  | 
 | 	/* | 
 | 	 * It is possible to have multiple instances associated with a given | 
 | 	 * task either because an multiple functions in the call path | 
 | 	 * have a return probe installed on them, and/or more then one return | 
 | 	 * return probe was registered for a target function. | 
 | 	 * | 
 | 	 * We can handle this because: | 
 | 	 *     - instances are always inserted at the head of the list | 
 | 	 *     - when multiple return probes are registered for the same | 
 | 	 *       function, the first instance's ret_addr will point to the | 
 | 	 *       real return address, and all the rest will point to | 
 | 	 *       kretprobe_trampoline | 
 | 	 */ | 
 | 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { | 
 | 		if (ri->task != current) | 
 | 			/* another task is sharing our hash bucket */ | 
 | 			continue; | 
 |  | 
 | 		orig_ret_address = (unsigned long)ri->ret_addr; | 
 | 		if (orig_ret_address != trampoline_address) | 
 | 			/* | 
 | 			 * This is the real return address. Any other | 
 | 			 * instances associated with this task are for | 
 | 			 * other calls deeper on the call stack | 
 | 			 */ | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	regs->cr_iip = orig_ret_address; | 
 |  | 
 | 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { | 
 | 		if (ri->task != current) | 
 | 			/* another task is sharing our hash bucket */ | 
 | 			continue; | 
 |  | 
 | 		if (ri->rp && ri->rp->handler) | 
 | 			ri->rp->handler(ri, regs); | 
 |  | 
 | 		orig_ret_address = (unsigned long)ri->ret_addr; | 
 | 		recycle_rp_inst(ri, &empty_rp); | 
 |  | 
 | 		if (orig_ret_address != trampoline_address) | 
 | 			/* | 
 | 			 * This is the real return address. Any other | 
 | 			 * instances associated with this task are for | 
 | 			 * other calls deeper on the call stack | 
 | 			 */ | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	kretprobe_assert(ri, orig_ret_address, trampoline_address); | 
 |  | 
 | 	reset_current_kprobe(); | 
 | 	spin_unlock_irqrestore(&kretprobe_lock, flags); | 
 | 	preempt_enable_no_resched(); | 
 |  | 
 | 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) { | 
 | 		hlist_del(&ri->hlist); | 
 | 		kfree(ri); | 
 | 	} | 
 | 	/* | 
 | 	 * By returning a non-zero value, we are telling | 
 | 	 * kprobe_handler() that we don't want the post_handler | 
 | 	 * to run (and have re-enabled preemption) | 
 | 	 */ | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* Called with kretprobe_lock held */ | 
 | void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, | 
 | 				      struct pt_regs *regs) | 
 | { | 
 | 	ri->ret_addr = (kprobe_opcode_t *)regs->b0; | 
 |  | 
 | 	/* Replace the return addr with trampoline addr */ | 
 | 	regs->b0 = ((struct fnptr *)kretprobe_trampoline)->ip; | 
 | } | 
 |  | 
 | int __kprobes arch_prepare_kprobe(struct kprobe *p) | 
 | { | 
 | 	unsigned long addr = (unsigned long) p->addr; | 
 | 	unsigned long *kprobe_addr = (unsigned long *)(addr & ~0xFULL); | 
 | 	unsigned long kprobe_inst=0; | 
 | 	unsigned int slot = addr & 0xf, template, major_opcode = 0; | 
 | 	bundle_t *bundle; | 
 | 	int qp; | 
 |  | 
 | 	bundle = &((kprobe_opcode_t *)kprobe_addr)->bundle; | 
 | 	template = bundle->quad0.template; | 
 |  | 
 | 	if(valid_kprobe_addr(template, slot, addr)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */ | 
 | 	if (slot == 1 && bundle_encoding[template][1] == L) | 
 | 		slot++; | 
 |  | 
 | 	/* Get kprobe_inst and major_opcode from the bundle */ | 
 | 	get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode); | 
 |  | 
 | 	qp = unsupported_inst(template, slot, major_opcode, kprobe_inst, addr); | 
 | 	if (qp < 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	p->ainsn.insn = get_insn_slot(); | 
 | 	if (!p->ainsn.insn) | 
 | 		return -ENOMEM; | 
 | 	memcpy(&p->opcode, kprobe_addr, sizeof(kprobe_opcode_t)); | 
 | 	memcpy(p->ainsn.insn, kprobe_addr, sizeof(kprobe_opcode_t)); | 
 |  | 
 | 	prepare_break_inst(template, slot, major_opcode, kprobe_inst, p, qp); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void __kprobes arch_arm_kprobe(struct kprobe *p) | 
 | { | 
 | 	unsigned long arm_addr; | 
 | 	bundle_t *src, *dest; | 
 |  | 
 | 	arm_addr = ((unsigned long)p->addr) & ~0xFUL; | 
 | 	dest = &((kprobe_opcode_t *)arm_addr)->bundle; | 
 | 	src = &p->opcode.bundle; | 
 |  | 
 | 	flush_icache_range((unsigned long)p->ainsn.insn, | 
 | 			(unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t)); | 
 | 	switch (p->ainsn.slot) { | 
 | 		case 0: | 
 | 			dest->quad0.slot0 = src->quad0.slot0; | 
 | 			break; | 
 | 		case 1: | 
 | 			dest->quad1.slot1_p1 = src->quad1.slot1_p1; | 
 | 			break; | 
 | 		case 2: | 
 | 			dest->quad1.slot2 = src->quad1.slot2; | 
 | 			break; | 
 | 	} | 
 | 	flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t)); | 
 | } | 
 |  | 
 | void __kprobes arch_disarm_kprobe(struct kprobe *p) | 
 | { | 
 | 	unsigned long arm_addr; | 
 | 	bundle_t *src, *dest; | 
 |  | 
 | 	arm_addr = ((unsigned long)p->addr) & ~0xFUL; | 
 | 	dest = &((kprobe_opcode_t *)arm_addr)->bundle; | 
 | 	/* p->ainsn.insn contains the original unaltered kprobe_opcode_t */ | 
 | 	src = &p->ainsn.insn->bundle; | 
 | 	switch (p->ainsn.slot) { | 
 | 		case 0: | 
 | 			dest->quad0.slot0 = src->quad0.slot0; | 
 | 			break; | 
 | 		case 1: | 
 | 			dest->quad1.slot1_p1 = src->quad1.slot1_p1; | 
 | 			break; | 
 | 		case 2: | 
 | 			dest->quad1.slot2 = src->quad1.slot2; | 
 | 			break; | 
 | 	} | 
 | 	flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t)); | 
 | } | 
 |  | 
 | void __kprobes arch_remove_kprobe(struct kprobe *p) | 
 | { | 
 | 	mutex_lock(&kprobe_mutex); | 
 | 	free_insn_slot(p->ainsn.insn, 0); | 
 | 	mutex_unlock(&kprobe_mutex); | 
 | } | 
 | /* | 
 |  * We are resuming execution after a single step fault, so the pt_regs | 
 |  * structure reflects the register state after we executed the instruction | 
 |  * located in the kprobe (p->ainsn.insn.bundle).  We still need to adjust | 
 |  * the ip to point back to the original stack address. To set the IP address | 
 |  * to original stack address, handle the case where we need to fixup the | 
 |  * relative IP address and/or fixup branch register. | 
 |  */ | 
 | static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs) | 
 | { | 
 | 	unsigned long bundle_addr = (unsigned long) (&p->ainsn.insn->bundle); | 
 | 	unsigned long resume_addr = (unsigned long)p->addr & ~0xFULL; | 
 | 	unsigned long template; | 
 | 	int slot = ((unsigned long)p->addr & 0xf); | 
 |  | 
 | 	template = p->ainsn.insn->bundle.quad0.template; | 
 |  | 
 | 	if (slot == 1 && bundle_encoding[template][1] == L) | 
 | 		slot = 2; | 
 |  | 
 | 	if (p->ainsn.inst_flag) { | 
 |  | 
 | 		if (p->ainsn.inst_flag & INST_FLAG_FIX_RELATIVE_IP_ADDR) { | 
 | 			/* Fix relative IP address */ | 
 | 			regs->cr_iip = (regs->cr_iip - bundle_addr) + | 
 | 					resume_addr; | 
 | 		} | 
 |  | 
 | 		if (p->ainsn.inst_flag & INST_FLAG_FIX_BRANCH_REG) { | 
 | 		/* | 
 | 		 * Fix target branch register, software convention is | 
 | 		 * to use either b0 or b6 or b7, so just checking | 
 | 		 * only those registers | 
 | 		 */ | 
 | 			switch (p->ainsn.target_br_reg) { | 
 | 			case 0: | 
 | 				if ((regs->b0 == bundle_addr) || | 
 | 					(regs->b0 == bundle_addr + 0x10)) { | 
 | 					regs->b0 = (regs->b0 - bundle_addr) + | 
 | 						resume_addr; | 
 | 				} | 
 | 				break; | 
 | 			case 6: | 
 | 				if ((regs->b6 == bundle_addr) || | 
 | 					(regs->b6 == bundle_addr + 0x10)) { | 
 | 					regs->b6 = (regs->b6 - bundle_addr) + | 
 | 						resume_addr; | 
 | 				} | 
 | 				break; | 
 | 			case 7: | 
 | 				if ((regs->b7 == bundle_addr) || | 
 | 					(regs->b7 == bundle_addr + 0x10)) { | 
 | 					regs->b7 = (regs->b7 - bundle_addr) + | 
 | 						resume_addr; | 
 | 				} | 
 | 				break; | 
 | 			} /* end switch */ | 
 | 		} | 
 | 		goto turn_ss_off; | 
 | 	} | 
 |  | 
 | 	if (slot == 2) { | 
 | 		if (regs->cr_iip == bundle_addr + 0x10) { | 
 | 			regs->cr_iip = resume_addr + 0x10; | 
 | 		} | 
 | 	} else { | 
 | 		if (regs->cr_iip == bundle_addr) { | 
 | 			regs->cr_iip = resume_addr; | 
 | 		} | 
 | 	} | 
 |  | 
 | turn_ss_off: | 
 | 	/* Turn off Single Step bit */ | 
 | 	ia64_psr(regs)->ss = 0; | 
 | } | 
 |  | 
 | static void __kprobes prepare_ss(struct kprobe *p, struct pt_regs *regs) | 
 | { | 
 | 	unsigned long bundle_addr = (unsigned long) &p->ainsn.insn->bundle; | 
 | 	unsigned long slot = (unsigned long)p->addr & 0xf; | 
 |  | 
 | 	/* single step inline if break instruction */ | 
 | 	if (p->ainsn.inst_flag == INST_FLAG_BREAK_INST) | 
 | 		regs->cr_iip = (unsigned long)p->addr & ~0xFULL; | 
 | 	else | 
 | 		regs->cr_iip = bundle_addr & ~0xFULL; | 
 |  | 
 | 	if (slot > 2) | 
 | 		slot = 0; | 
 |  | 
 | 	ia64_psr(regs)->ri = slot; | 
 |  | 
 | 	/* turn on single stepping */ | 
 | 	ia64_psr(regs)->ss = 1; | 
 | } | 
 |  | 
 | static int __kprobes is_ia64_break_inst(struct pt_regs *regs) | 
 | { | 
 | 	unsigned int slot = ia64_psr(regs)->ri; | 
 | 	unsigned int template, major_opcode; | 
 | 	unsigned long kprobe_inst; | 
 | 	unsigned long *kprobe_addr = (unsigned long *)regs->cr_iip; | 
 | 	bundle_t bundle; | 
 |  | 
 | 	memcpy(&bundle, kprobe_addr, sizeof(bundle_t)); | 
 | 	template = bundle.quad0.template; | 
 |  | 
 | 	/* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */ | 
 | 	if (slot == 1 && bundle_encoding[template][1] == L) | 
 | 		slot++; | 
 |  | 
 | 	/* Get Kprobe probe instruction at given slot*/ | 
 | 	get_kprobe_inst(&bundle, slot, &kprobe_inst, &major_opcode); | 
 |  | 
 | 	/* For break instruction, | 
 | 	 * Bits 37:40 Major opcode to be zero | 
 | 	 * Bits 27:32 X6 to be zero | 
 | 	 * Bits 32:35 X3 to be zero | 
 | 	 */ | 
 | 	if (major_opcode || ((kprobe_inst >> 27) & 0x1FF) ) { | 
 | 		/* Not a break instruction */ | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Is a break instruction */ | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int __kprobes pre_kprobes_handler(struct die_args *args) | 
 | { | 
 | 	struct kprobe *p; | 
 | 	int ret = 0; | 
 | 	struct pt_regs *regs = args->regs; | 
 | 	kprobe_opcode_t *addr = (kprobe_opcode_t *)instruction_pointer(regs); | 
 | 	struct kprobe_ctlblk *kcb; | 
 |  | 
 | 	/* | 
 | 	 * We don't want to be preempted for the entire | 
 | 	 * duration of kprobe processing | 
 | 	 */ | 
 | 	preempt_disable(); | 
 | 	kcb = get_kprobe_ctlblk(); | 
 |  | 
 | 	/* Handle recursion cases */ | 
 | 	if (kprobe_running()) { | 
 | 		p = get_kprobe(addr); | 
 | 		if (p) { | 
 | 			if ((kcb->kprobe_status == KPROBE_HIT_SS) && | 
 | 	 		     (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)) { | 
 | 				ia64_psr(regs)->ss = 0; | 
 | 				goto no_kprobe; | 
 | 			} | 
 | 			/* We have reentered the pre_kprobe_handler(), since | 
 | 			 * another probe was hit while within the handler. | 
 | 			 * We here save the original kprobes variables and | 
 | 			 * just single step on the instruction of the new probe | 
 | 			 * without calling any user handlers. | 
 | 			 */ | 
 | 			save_previous_kprobe(kcb); | 
 | 			set_current_kprobe(p, kcb); | 
 | 			kprobes_inc_nmissed_count(p); | 
 | 			prepare_ss(p, regs); | 
 | 			kcb->kprobe_status = KPROBE_REENTER; | 
 | 			return 1; | 
 | 		} else if (args->err == __IA64_BREAK_JPROBE) { | 
 | 			/* | 
 | 			 * jprobe instrumented function just completed | 
 | 			 */ | 
 | 			p = __get_cpu_var(current_kprobe); | 
 | 			if (p->break_handler && p->break_handler(p, regs)) { | 
 | 				goto ss_probe; | 
 | 			} | 
 | 		} else if (!is_ia64_break_inst(regs)) { | 
 | 			/* The breakpoint instruction was removed by | 
 | 			 * another cpu right after we hit, no further | 
 | 			 * handling of this interrupt is appropriate | 
 | 			 */ | 
 | 			ret = 1; | 
 | 			goto no_kprobe; | 
 | 		} else { | 
 | 			/* Not our break */ | 
 | 			goto no_kprobe; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	p = get_kprobe(addr); | 
 | 	if (!p) { | 
 | 		if (!is_ia64_break_inst(regs)) { | 
 | 			/* | 
 | 			 * The breakpoint instruction was removed right | 
 | 			 * after we hit it.  Another cpu has removed | 
 | 			 * either a probepoint or a debugger breakpoint | 
 | 			 * at this address.  In either case, no further | 
 | 			 * handling of this interrupt is appropriate. | 
 | 			 */ | 
 | 			ret = 1; | 
 |  | 
 | 		} | 
 |  | 
 | 		/* Not one of our break, let kernel handle it */ | 
 | 		goto no_kprobe; | 
 | 	} | 
 |  | 
 | 	set_current_kprobe(p, kcb); | 
 | 	kcb->kprobe_status = KPROBE_HIT_ACTIVE; | 
 |  | 
 | 	if (p->pre_handler && p->pre_handler(p, regs)) | 
 | 		/* | 
 | 		 * Our pre-handler is specifically requesting that we just | 
 | 		 * do a return.  This is used for both the jprobe pre-handler | 
 | 		 * and the kretprobe trampoline | 
 | 		 */ | 
 | 		return 1; | 
 |  | 
 | ss_probe: | 
 | 	prepare_ss(p, regs); | 
 | 	kcb->kprobe_status = KPROBE_HIT_SS; | 
 | 	return 1; | 
 |  | 
 | no_kprobe: | 
 | 	preempt_enable_no_resched(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int __kprobes post_kprobes_handler(struct pt_regs *regs) | 
 | { | 
 | 	struct kprobe *cur = kprobe_running(); | 
 | 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
 |  | 
 | 	if (!cur) | 
 | 		return 0; | 
 |  | 
 | 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { | 
 | 		kcb->kprobe_status = KPROBE_HIT_SSDONE; | 
 | 		cur->post_handler(cur, regs, 0); | 
 | 	} | 
 |  | 
 | 	resume_execution(cur, regs); | 
 |  | 
 | 	/*Restore back the original saved kprobes variables and continue. */ | 
 | 	if (kcb->kprobe_status == KPROBE_REENTER) { | 
 | 		restore_previous_kprobe(kcb); | 
 | 		goto out; | 
 | 	} | 
 | 	reset_current_kprobe(); | 
 |  | 
 | out: | 
 | 	preempt_enable_no_resched(); | 
 | 	return 1; | 
 | } | 
 |  | 
 | int __kprobes kprobes_fault_handler(struct pt_regs *regs, int trapnr) | 
 | { | 
 | 	struct kprobe *cur = kprobe_running(); | 
 | 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
 |  | 
 |  | 
 | 	switch(kcb->kprobe_status) { | 
 | 	case KPROBE_HIT_SS: | 
 | 	case KPROBE_REENTER: | 
 | 		/* | 
 | 		 * We are here because the instruction being single | 
 | 		 * stepped caused a page fault. We reset the current | 
 | 		 * kprobe and the instruction pointer points back to | 
 | 		 * the probe address and allow the page fault handler | 
 | 		 * to continue as a normal page fault. | 
 | 		 */ | 
 | 		regs->cr_iip = ((unsigned long)cur->addr) & ~0xFULL; | 
 | 		ia64_psr(regs)->ri = ((unsigned long)cur->addr) & 0xf; | 
 | 		if (kcb->kprobe_status == KPROBE_REENTER) | 
 | 			restore_previous_kprobe(kcb); | 
 | 		else | 
 | 			reset_current_kprobe(); | 
 | 		preempt_enable_no_resched(); | 
 | 		break; | 
 | 	case KPROBE_HIT_ACTIVE: | 
 | 	case KPROBE_HIT_SSDONE: | 
 | 		/* | 
 | 		 * We increment the nmissed count for accounting, | 
 | 		 * we can also use npre/npostfault count for accouting | 
 | 		 * these specific fault cases. | 
 | 		 */ | 
 | 		kprobes_inc_nmissed_count(cur); | 
 |  | 
 | 		/* | 
 | 		 * We come here because instructions in the pre/post | 
 | 		 * handler caused the page_fault, this could happen | 
 | 		 * if handler tries to access user space by | 
 | 		 * copy_from_user(), get_user() etc. Let the | 
 | 		 * user-specified handler try to fix it first. | 
 | 		 */ | 
 | 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) | 
 | 			return 1; | 
 | 		/* | 
 | 		 * In case the user-specified fault handler returned | 
 | 		 * zero, try to fix up. | 
 | 		 */ | 
 | 		if (ia64_done_with_exception(regs)) | 
 | 			return 1; | 
 |  | 
 | 		/* | 
 | 		 * Let ia64_do_page_fault() fix it. | 
 | 		 */ | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int __kprobes kprobe_exceptions_notify(struct notifier_block *self, | 
 | 				       unsigned long val, void *data) | 
 | { | 
 | 	struct die_args *args = (struct die_args *)data; | 
 | 	int ret = NOTIFY_DONE; | 
 |  | 
 | 	if (args->regs && user_mode(args->regs)) | 
 | 		return ret; | 
 |  | 
 | 	switch(val) { | 
 | 	case DIE_BREAK: | 
 | 		/* err is break number from ia64_bad_break() */ | 
 | 		if ((args->err >> 12) == (__IA64_BREAK_KPROBE >> 12) | 
 | 			|| args->err == __IA64_BREAK_JPROBE | 
 | 			|| args->err == 0) | 
 | 			if (pre_kprobes_handler(args)) | 
 | 				ret = NOTIFY_STOP; | 
 | 		break; | 
 | 	case DIE_FAULT: | 
 | 		/* err is vector number from ia64_fault() */ | 
 | 		if (args->err == 36) | 
 | 			if (post_kprobes_handler(args->regs)) | 
 | 				ret = NOTIFY_STOP; | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | struct param_bsp_cfm { | 
 | 	unsigned long ip; | 
 | 	unsigned long *bsp; | 
 | 	unsigned long cfm; | 
 | }; | 
 |  | 
 | static void ia64_get_bsp_cfm(struct unw_frame_info *info, void *arg) | 
 | { | 
 | 	unsigned long ip; | 
 | 	struct param_bsp_cfm *lp = arg; | 
 |  | 
 | 	do { | 
 | 		unw_get_ip(info, &ip); | 
 | 		if (ip == 0) | 
 | 			break; | 
 | 		if (ip == lp->ip) { | 
 | 			unw_get_bsp(info, (unsigned long*)&lp->bsp); | 
 | 			unw_get_cfm(info, (unsigned long*)&lp->cfm); | 
 | 			return; | 
 | 		} | 
 | 	} while (unw_unwind(info) >= 0); | 
 | 	lp->bsp = NULL; | 
 | 	lp->cfm = 0; | 
 | 	return; | 
 | } | 
 |  | 
 | unsigned long arch_deref_entry_point(void *entry) | 
 | { | 
 | 	return ((struct fnptr *)entry)->ip; | 
 | } | 
 |  | 
 | int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) | 
 | { | 
 | 	struct jprobe *jp = container_of(p, struct jprobe, kp); | 
 | 	unsigned long addr = arch_deref_entry_point(jp->entry); | 
 | 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
 | 	struct param_bsp_cfm pa; | 
 | 	int bytes; | 
 |  | 
 | 	/* | 
 | 	 * Callee owns the argument space and could overwrite it, eg | 
 | 	 * tail call optimization. So to be absolutely safe | 
 | 	 * we save the argument space before transferring the control | 
 | 	 * to instrumented jprobe function which runs in | 
 | 	 * the process context | 
 | 	 */ | 
 | 	pa.ip = regs->cr_iip; | 
 | 	unw_init_running(ia64_get_bsp_cfm, &pa); | 
 | 	bytes = (char *)ia64_rse_skip_regs(pa.bsp, pa.cfm & 0x3f) | 
 | 				- (char *)pa.bsp; | 
 | 	memcpy( kcb->jprobes_saved_stacked_regs, | 
 | 		pa.bsp, | 
 | 		bytes ); | 
 | 	kcb->bsp = pa.bsp; | 
 | 	kcb->cfm = pa.cfm; | 
 |  | 
 | 	/* save architectural state */ | 
 | 	kcb->jprobe_saved_regs = *regs; | 
 |  | 
 | 	/* after rfi, execute the jprobe instrumented function */ | 
 | 	regs->cr_iip = addr & ~0xFULL; | 
 | 	ia64_psr(regs)->ri = addr & 0xf; | 
 | 	regs->r1 = ((struct fnptr *)(jp->entry))->gp; | 
 |  | 
 | 	/* | 
 | 	 * fix the return address to our jprobe_inst_return() function | 
 | 	 * in the jprobes.S file | 
 | 	 */ | 
 | 	regs->b0 = ((struct fnptr *)(jprobe_inst_return))->ip; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) | 
 | { | 
 | 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
 | 	int bytes; | 
 |  | 
 | 	/* restoring architectural state */ | 
 | 	*regs = kcb->jprobe_saved_regs; | 
 |  | 
 | 	/* restoring the original argument space */ | 
 | 	flush_register_stack(); | 
 | 	bytes = (char *)ia64_rse_skip_regs(kcb->bsp, kcb->cfm & 0x3f) | 
 | 				- (char *)kcb->bsp; | 
 | 	memcpy( kcb->bsp, | 
 | 		kcb->jprobes_saved_stacked_regs, | 
 | 		bytes ); | 
 | 	invalidate_stacked_regs(); | 
 |  | 
 | 	preempt_enable_no_resched(); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static struct kprobe trampoline_p = { | 
 | 	.pre_handler = trampoline_probe_handler | 
 | }; | 
 |  | 
 | int __init arch_init_kprobes(void) | 
 | { | 
 | 	trampoline_p.addr = | 
 | 		(kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip; | 
 | 	return register_kprobe(&trampoline_p); | 
 | } | 
 |  | 
 | int __kprobes arch_trampoline_kprobe(struct kprobe *p) | 
 | { | 
 | 	if (p->addr == | 
 | 		(kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } |