| /* | 
 |  * RTC subsystem, interface functions | 
 |  * | 
 |  * Copyright (C) 2005 Tower Technologies | 
 |  * Author: Alessandro Zummo <a.zummo@towertech.it> | 
 |  * | 
 |  * based on arch/arm/common/rtctime.c | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License version 2 as | 
 |  * published by the Free Software Foundation. | 
 | */ | 
 |  | 
 | #include <linux/rtc.h> | 
 | #include <linux/log2.h> | 
 |  | 
 | int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	err = mutex_lock_interruptible(&rtc->ops_lock); | 
 | 	if (err) | 
 | 		return -EBUSY; | 
 |  | 
 | 	if (!rtc->ops) | 
 | 		err = -ENODEV; | 
 | 	else if (!rtc->ops->read_time) | 
 | 		err = -EINVAL; | 
 | 	else { | 
 | 		memset(tm, 0, sizeof(struct rtc_time)); | 
 | 		err = rtc->ops->read_time(rtc->dev.parent, tm); | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&rtc->ops_lock); | 
 | 	return err; | 
 | } | 
 | EXPORT_SYMBOL_GPL(rtc_read_time); | 
 |  | 
 | int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	err = rtc_valid_tm(tm); | 
 | 	if (err != 0) | 
 | 		return err; | 
 |  | 
 | 	err = mutex_lock_interruptible(&rtc->ops_lock); | 
 | 	if (err) | 
 | 		return -EBUSY; | 
 |  | 
 | 	if (!rtc->ops) | 
 | 		err = -ENODEV; | 
 | 	else if (!rtc->ops->set_time) | 
 | 		err = -EINVAL; | 
 | 	else | 
 | 		err = rtc->ops->set_time(rtc->dev.parent, tm); | 
 |  | 
 | 	mutex_unlock(&rtc->ops_lock); | 
 | 	return err; | 
 | } | 
 | EXPORT_SYMBOL_GPL(rtc_set_time); | 
 |  | 
 | int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	err = mutex_lock_interruptible(&rtc->ops_lock); | 
 | 	if (err) | 
 | 		return -EBUSY; | 
 |  | 
 | 	if (!rtc->ops) | 
 | 		err = -ENODEV; | 
 | 	else if (rtc->ops->set_mmss) | 
 | 		err = rtc->ops->set_mmss(rtc->dev.parent, secs); | 
 | 	else if (rtc->ops->read_time && rtc->ops->set_time) { | 
 | 		struct rtc_time new, old; | 
 |  | 
 | 		err = rtc->ops->read_time(rtc->dev.parent, &old); | 
 | 		if (err == 0) { | 
 | 			rtc_time_to_tm(secs, &new); | 
 |  | 
 | 			/* | 
 | 			 * avoid writing when we're going to change the day of | 
 | 			 * the month. We will retry in the next minute. This | 
 | 			 * basically means that if the RTC must not drift | 
 | 			 * by more than 1 minute in 11 minutes. | 
 | 			 */ | 
 | 			if (!((old.tm_hour == 23 && old.tm_min == 59) || | 
 | 				(new.tm_hour == 23 && new.tm_min == 59))) | 
 | 				err = rtc->ops->set_time(rtc->dev.parent, | 
 | 						&new); | 
 | 		} | 
 | 	} | 
 | 	else | 
 | 		err = -EINVAL; | 
 |  | 
 | 	mutex_unlock(&rtc->ops_lock); | 
 |  | 
 | 	return err; | 
 | } | 
 | EXPORT_SYMBOL_GPL(rtc_set_mmss); | 
 |  | 
 | static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	err = mutex_lock_interruptible(&rtc->ops_lock); | 
 | 	if (err) | 
 | 		return -EBUSY; | 
 |  | 
 | 	if (rtc->ops == NULL) | 
 | 		err = -ENODEV; | 
 | 	else if (!rtc->ops->read_alarm) | 
 | 		err = -EINVAL; | 
 | 	else { | 
 | 		memset(alarm, 0, sizeof(struct rtc_wkalrm)); | 
 | 		err = rtc->ops->read_alarm(rtc->dev.parent, alarm); | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&rtc->ops_lock); | 
 | 	return err; | 
 | } | 
 |  | 
 | int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) | 
 | { | 
 | 	int err; | 
 | 	struct rtc_time before, now; | 
 | 	int first_time = 1; | 
 |  | 
 | 	/* The lower level RTC driver may not be capable of filling | 
 | 	 * in all fields of the rtc_time struct (eg. rtc-cmos), | 
 | 	 * and so might instead return -1 in some fields. | 
 | 	 * We deal with that here by grabbing a current RTC timestamp | 
 | 	 * and using values from that for any missing (-1) values. | 
 | 	 * | 
 | 	 * But this can be racey, because some fields of the RTC timestamp | 
 | 	 * may have wrapped in the interval since we read the RTC alarm, | 
 | 	 * which would lead to us inserting inconsistent values in place | 
 | 	 * of the -1 fields. | 
 | 	 * | 
 | 	 * Reading the alarm and timestamp in the reverse sequence | 
 | 	 * would have the same race condition, and not solve the issue. | 
 | 	 * | 
 | 	 * So, we must first read the RTC timestamp, | 
 | 	 * then read the RTC alarm value, | 
 | 	 * and then read a second RTC timestamp. | 
 | 	 * | 
 | 	 * If any fields of the second timestamp have changed | 
 | 	 * when compared with the first timestamp, then we know | 
 | 	 * our timestamp may be inconsistent with that used by | 
 | 	 * the low-level rtc_read_alarm_internal() function. | 
 | 	 * | 
 | 	 * So, when the two timestamps disagree, we just loop and do | 
 | 	 * the process again to get a fully consistent set of values. | 
 | 	 * | 
 | 	 * This could all instead be done in the lower level driver, | 
 | 	 * but since more than one lower level RTC implementation needs it, | 
 | 	 * then it's probably best best to do it here instead of there.. | 
 | 	 */ | 
 |  | 
 | 	/* Get the "before" timestamp */ | 
 | 	err = rtc_read_time(rtc, &before); | 
 | 	if (err < 0) | 
 | 		return err; | 
 | 	do { | 
 | 		if (!first_time) | 
 | 			memcpy(&before, &now, sizeof(struct rtc_time)); | 
 | 		first_time = 0; | 
 |  | 
 | 		/* get the RTC alarm values, which may be incomplete */ | 
 | 		err = rtc_read_alarm_internal(rtc, alarm); | 
 | 		if (err) | 
 | 			return err; | 
 | 		if (!alarm->enabled) | 
 | 			return 0; | 
 |  | 
 | 		/* get the "after" timestamp, to detect wrapped fields */ | 
 | 		err = rtc_read_time(rtc, &now); | 
 | 		if (err < 0) | 
 | 			return err; | 
 |  | 
 | 		/* note that tm_sec is a "don't care" value here: */ | 
 | 	} while (   before.tm_min   != now.tm_min | 
 | 		 || before.tm_hour  != now.tm_hour | 
 | 		 || before.tm_mon   != now.tm_mon | 
 | 		 || before.tm_year  != now.tm_year | 
 | 		 || before.tm_isdst != now.tm_isdst); | 
 |  | 
 | 	/* Fill in any missing alarm fields using the timestamp */ | 
 | 	if (alarm->time.tm_sec == -1) | 
 | 		alarm->time.tm_sec = now.tm_sec; | 
 | 	if (alarm->time.tm_min == -1) | 
 | 		alarm->time.tm_min = now.tm_min; | 
 | 	if (alarm->time.tm_hour == -1) | 
 | 		alarm->time.tm_hour = now.tm_hour; | 
 | 	if (alarm->time.tm_mday == -1) | 
 | 		alarm->time.tm_mday = now.tm_mday; | 
 | 	if (alarm->time.tm_mon == -1) | 
 | 		alarm->time.tm_mon = now.tm_mon; | 
 | 	if (alarm->time.tm_year == -1) | 
 | 		alarm->time.tm_year = now.tm_year; | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(rtc_read_alarm); | 
 |  | 
 | int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	err = rtc_valid_tm(&alarm->time); | 
 | 	if (err != 0) | 
 | 		return err; | 
 |  | 
 | 	err = mutex_lock_interruptible(&rtc->ops_lock); | 
 | 	if (err) | 
 | 		return -EBUSY; | 
 |  | 
 | 	if (!rtc->ops) | 
 | 		err = -ENODEV; | 
 | 	else if (!rtc->ops->set_alarm) | 
 | 		err = -EINVAL; | 
 | 	else | 
 | 		err = rtc->ops->set_alarm(rtc->dev.parent, alarm); | 
 |  | 
 | 	mutex_unlock(&rtc->ops_lock); | 
 | 	return err; | 
 | } | 
 | EXPORT_SYMBOL_GPL(rtc_set_alarm); | 
 |  | 
 | /** | 
 |  * rtc_update_irq - report RTC periodic, alarm, and/or update irqs | 
 |  * @rtc: the rtc device | 
 |  * @num: how many irqs are being reported (usually one) | 
 |  * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF | 
 |  * Context: in_interrupt(), irqs blocked | 
 |  */ | 
 | void rtc_update_irq(struct rtc_device *rtc, | 
 | 		unsigned long num, unsigned long events) | 
 | { | 
 | 	spin_lock(&rtc->irq_lock); | 
 | 	rtc->irq_data = (rtc->irq_data + (num << 8)) | events; | 
 | 	spin_unlock(&rtc->irq_lock); | 
 |  | 
 | 	spin_lock(&rtc->irq_task_lock); | 
 | 	if (rtc->irq_task) | 
 | 		rtc->irq_task->func(rtc->irq_task->private_data); | 
 | 	spin_unlock(&rtc->irq_task_lock); | 
 |  | 
 | 	wake_up_interruptible(&rtc->irq_queue); | 
 | 	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN); | 
 | } | 
 | EXPORT_SYMBOL_GPL(rtc_update_irq); | 
 |  | 
 | static int __rtc_match(struct device *dev, void *data) | 
 | { | 
 | 	char *name = (char *)data; | 
 |  | 
 | 	if (strncmp(dev->bus_id, name, BUS_ID_SIZE) == 0) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | struct rtc_device *rtc_class_open(char *name) | 
 | { | 
 | 	struct device *dev; | 
 | 	struct rtc_device *rtc = NULL; | 
 |  | 
 | 	dev = class_find_device(rtc_class, name, __rtc_match); | 
 | 	if (dev) | 
 | 		rtc = to_rtc_device(dev); | 
 |  | 
 | 	if (rtc) { | 
 | 		if (!try_module_get(rtc->owner)) { | 
 | 			put_device(dev); | 
 | 			rtc = NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return rtc; | 
 | } | 
 | EXPORT_SYMBOL_GPL(rtc_class_open); | 
 |  | 
 | void rtc_class_close(struct rtc_device *rtc) | 
 | { | 
 | 	module_put(rtc->owner); | 
 | 	put_device(&rtc->dev); | 
 | } | 
 | EXPORT_SYMBOL_GPL(rtc_class_close); | 
 |  | 
 | int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task) | 
 | { | 
 | 	int retval = -EBUSY; | 
 |  | 
 | 	if (task == NULL || task->func == NULL) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Cannot register while the char dev is in use */ | 
 | 	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags)) | 
 | 		return -EBUSY; | 
 |  | 
 | 	spin_lock_irq(&rtc->irq_task_lock); | 
 | 	if (rtc->irq_task == NULL) { | 
 | 		rtc->irq_task = task; | 
 | 		retval = 0; | 
 | 	} | 
 | 	spin_unlock_irq(&rtc->irq_task_lock); | 
 |  | 
 | 	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags); | 
 |  | 
 | 	return retval; | 
 | } | 
 | EXPORT_SYMBOL_GPL(rtc_irq_register); | 
 |  | 
 | void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task) | 
 | { | 
 | 	spin_lock_irq(&rtc->irq_task_lock); | 
 | 	if (rtc->irq_task == task) | 
 | 		rtc->irq_task = NULL; | 
 | 	spin_unlock_irq(&rtc->irq_task_lock); | 
 | } | 
 | EXPORT_SYMBOL_GPL(rtc_irq_unregister); | 
 |  | 
 | /** | 
 |  * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs | 
 |  * @rtc: the rtc device | 
 |  * @task: currently registered with rtc_irq_register() | 
 |  * @enabled: true to enable periodic IRQs | 
 |  * Context: any | 
 |  * | 
 |  * Note that rtc_irq_set_freq() should previously have been used to | 
 |  * specify the desired frequency of periodic IRQ task->func() callbacks. | 
 |  */ | 
 | int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled) | 
 | { | 
 | 	int err = 0; | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (rtc->ops->irq_set_state == NULL) | 
 | 		return -ENXIO; | 
 |  | 
 | 	spin_lock_irqsave(&rtc->irq_task_lock, flags); | 
 | 	if (rtc->irq_task != NULL && task == NULL) | 
 | 		err = -EBUSY; | 
 | 	if (rtc->irq_task != task) | 
 | 		err = -EACCES; | 
 | 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags); | 
 |  | 
 | 	if (err == 0) | 
 | 		err = rtc->ops->irq_set_state(rtc->dev.parent, enabled); | 
 |  | 
 | 	return err; | 
 | } | 
 | EXPORT_SYMBOL_GPL(rtc_irq_set_state); | 
 |  | 
 | /** | 
 |  * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ | 
 |  * @rtc: the rtc device | 
 |  * @task: currently registered with rtc_irq_register() | 
 |  * @freq: positive frequency with which task->func() will be called | 
 |  * Context: any | 
 |  * | 
 |  * Note that rtc_irq_set_state() is used to enable or disable the | 
 |  * periodic IRQs. | 
 |  */ | 
 | int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq) | 
 | { | 
 | 	int err = 0; | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (rtc->ops->irq_set_freq == NULL) | 
 | 		return -ENXIO; | 
 |  | 
 | 	if (!is_power_of_2(freq)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	spin_lock_irqsave(&rtc->irq_task_lock, flags); | 
 | 	if (rtc->irq_task != NULL && task == NULL) | 
 | 		err = -EBUSY; | 
 | 	if (rtc->irq_task != task) | 
 | 		err = -EACCES; | 
 | 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags); | 
 |  | 
 | 	if (err == 0) { | 
 | 		err = rtc->ops->irq_set_freq(rtc->dev.parent, freq); | 
 | 		if (err == 0) | 
 | 			rtc->irq_freq = freq; | 
 | 	} | 
 | 	return err; | 
 | } | 
 | EXPORT_SYMBOL_GPL(rtc_irq_set_freq); |