|  | /* | 
|  | * arch/blackfin/kernel/kgdb.c - Blackfin kgdb pieces | 
|  | * | 
|  | * Copyright 2005-2008 Analog Devices Inc. | 
|  | * | 
|  | * Licensed under the GPL-2 or later. | 
|  | */ | 
|  |  | 
|  | #include <linux/string.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/ptrace.h>		/* for linux pt_regs struct */ | 
|  | #include <linux/kgdb.h> | 
|  | #include <linux/console.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/irq.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <asm/system.h> | 
|  | #include <asm/traps.h> | 
|  | #include <asm/blackfin.h> | 
|  | #include <asm/dma.h> | 
|  |  | 
|  | /* Put the error code here just in case the user cares.  */ | 
|  | int gdb_bfin_errcode; | 
|  | /* Likewise, the vector number here (since GDB only gets the signal | 
|  | number through the usual means, and that's not very specific).  */ | 
|  | int gdb_bfin_vector = -1; | 
|  |  | 
|  | #if KGDB_MAX_NO_CPUS != 8 | 
|  | #error change the definition of slavecpulocks | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_BFIN_WDT | 
|  | # error "Please unselect blackfin watchdog driver before build KGDB." | 
|  | #endif | 
|  |  | 
|  | void pt_regs_to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *regs) | 
|  | { | 
|  | gdb_regs[BFIN_R0] = regs->r0; | 
|  | gdb_regs[BFIN_R1] = regs->r1; | 
|  | gdb_regs[BFIN_R2] = regs->r2; | 
|  | gdb_regs[BFIN_R3] = regs->r3; | 
|  | gdb_regs[BFIN_R4] = regs->r4; | 
|  | gdb_regs[BFIN_R5] = regs->r5; | 
|  | gdb_regs[BFIN_R6] = regs->r6; | 
|  | gdb_regs[BFIN_R7] = regs->r7; | 
|  | gdb_regs[BFIN_P0] = regs->p0; | 
|  | gdb_regs[BFIN_P1] = regs->p1; | 
|  | gdb_regs[BFIN_P2] = regs->p2; | 
|  | gdb_regs[BFIN_P3] = regs->p3; | 
|  | gdb_regs[BFIN_P4] = regs->p4; | 
|  | gdb_regs[BFIN_P5] = regs->p5; | 
|  | gdb_regs[BFIN_SP] = regs->reserved; | 
|  | gdb_regs[BFIN_FP] = regs->fp; | 
|  | gdb_regs[BFIN_I0] = regs->i0; | 
|  | gdb_regs[BFIN_I1] = regs->i1; | 
|  | gdb_regs[BFIN_I2] = regs->i2; | 
|  | gdb_regs[BFIN_I3] = regs->i3; | 
|  | gdb_regs[BFIN_M0] = regs->m0; | 
|  | gdb_regs[BFIN_M1] = regs->m1; | 
|  | gdb_regs[BFIN_M2] = regs->m2; | 
|  | gdb_regs[BFIN_M3] = regs->m3; | 
|  | gdb_regs[BFIN_B0] = regs->b0; | 
|  | gdb_regs[BFIN_B1] = regs->b1; | 
|  | gdb_regs[BFIN_B2] = regs->b2; | 
|  | gdb_regs[BFIN_B3] = regs->b3; | 
|  | gdb_regs[BFIN_L0] = regs->l0; | 
|  | gdb_regs[BFIN_L1] = regs->l1; | 
|  | gdb_regs[BFIN_L2] = regs->l2; | 
|  | gdb_regs[BFIN_L3] = regs->l3; | 
|  | gdb_regs[BFIN_A0_DOT_X] = regs->a0x; | 
|  | gdb_regs[BFIN_A0_DOT_W] = regs->a0w; | 
|  | gdb_regs[BFIN_A1_DOT_X] = regs->a1x; | 
|  | gdb_regs[BFIN_A1_DOT_W] = regs->a1w; | 
|  | gdb_regs[BFIN_ASTAT] = regs->astat; | 
|  | gdb_regs[BFIN_RETS] = regs->rets; | 
|  | gdb_regs[BFIN_LC0] = regs->lc0; | 
|  | gdb_regs[BFIN_LT0] = regs->lt0; | 
|  | gdb_regs[BFIN_LB0] = regs->lb0; | 
|  | gdb_regs[BFIN_LC1] = regs->lc1; | 
|  | gdb_regs[BFIN_LT1] = regs->lt1; | 
|  | gdb_regs[BFIN_LB1] = regs->lb1; | 
|  | gdb_regs[BFIN_CYCLES] = 0; | 
|  | gdb_regs[BFIN_CYCLES2] = 0; | 
|  | gdb_regs[BFIN_USP] = regs->usp; | 
|  | gdb_regs[BFIN_SEQSTAT] = regs->seqstat; | 
|  | gdb_regs[BFIN_SYSCFG] = regs->syscfg; | 
|  | gdb_regs[BFIN_RETI] = regs->pc; | 
|  | gdb_regs[BFIN_RETX] = regs->retx; | 
|  | gdb_regs[BFIN_RETN] = regs->retn; | 
|  | gdb_regs[BFIN_RETE] = regs->rete; | 
|  | gdb_regs[BFIN_PC] = regs->pc; | 
|  | gdb_regs[BFIN_CC] = 0; | 
|  | gdb_regs[BFIN_EXTRA1] = 0; | 
|  | gdb_regs[BFIN_EXTRA2] = 0; | 
|  | gdb_regs[BFIN_EXTRA3] = 0; | 
|  | gdb_regs[BFIN_IPEND] = regs->ipend; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Extracts ebp, esp and eip values understandable by gdb from the values | 
|  | * saved by switch_to. | 
|  | * thread.esp points to ebp. flags and ebp are pushed in switch_to hence esp | 
|  | * prior to entering switch_to is 8 greater then the value that is saved. | 
|  | * If switch_to changes, change following code appropriately. | 
|  | */ | 
|  | void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p) | 
|  | { | 
|  | gdb_regs[BFIN_SP] = p->thread.ksp; | 
|  | gdb_regs[BFIN_PC] = p->thread.pc; | 
|  | gdb_regs[BFIN_SEQSTAT] = p->thread.seqstat; | 
|  | } | 
|  |  | 
|  | void gdb_regs_to_pt_regs(unsigned long *gdb_regs, struct pt_regs *regs) | 
|  | { | 
|  | regs->r0 = gdb_regs[BFIN_R0]; | 
|  | regs->r1 = gdb_regs[BFIN_R1]; | 
|  | regs->r2 = gdb_regs[BFIN_R2]; | 
|  | regs->r3 = gdb_regs[BFIN_R3]; | 
|  | regs->r4 = gdb_regs[BFIN_R4]; | 
|  | regs->r5 = gdb_regs[BFIN_R5]; | 
|  | regs->r6 = gdb_regs[BFIN_R6]; | 
|  | regs->r7 = gdb_regs[BFIN_R7]; | 
|  | regs->p0 = gdb_regs[BFIN_P0]; | 
|  | regs->p1 = gdb_regs[BFIN_P1]; | 
|  | regs->p2 = gdb_regs[BFIN_P2]; | 
|  | regs->p3 = gdb_regs[BFIN_P3]; | 
|  | regs->p4 = gdb_regs[BFIN_P4]; | 
|  | regs->p5 = gdb_regs[BFIN_P5]; | 
|  | regs->fp = gdb_regs[BFIN_FP]; | 
|  | regs->i0 = gdb_regs[BFIN_I0]; | 
|  | regs->i1 = gdb_regs[BFIN_I1]; | 
|  | regs->i2 = gdb_regs[BFIN_I2]; | 
|  | regs->i3 = gdb_regs[BFIN_I3]; | 
|  | regs->m0 = gdb_regs[BFIN_M0]; | 
|  | regs->m1 = gdb_regs[BFIN_M1]; | 
|  | regs->m2 = gdb_regs[BFIN_M2]; | 
|  | regs->m3 = gdb_regs[BFIN_M3]; | 
|  | regs->b0 = gdb_regs[BFIN_B0]; | 
|  | regs->b1 = gdb_regs[BFIN_B1]; | 
|  | regs->b2 = gdb_regs[BFIN_B2]; | 
|  | regs->b3 = gdb_regs[BFIN_B3]; | 
|  | regs->l0 = gdb_regs[BFIN_L0]; | 
|  | regs->l1 = gdb_regs[BFIN_L1]; | 
|  | regs->l2 = gdb_regs[BFIN_L2]; | 
|  | regs->l3 = gdb_regs[BFIN_L3]; | 
|  | regs->a0x = gdb_regs[BFIN_A0_DOT_X]; | 
|  | regs->a0w = gdb_regs[BFIN_A0_DOT_W]; | 
|  | regs->a1x = gdb_regs[BFIN_A1_DOT_X]; | 
|  | regs->a1w = gdb_regs[BFIN_A1_DOT_W]; | 
|  | regs->rets = gdb_regs[BFIN_RETS]; | 
|  | regs->lc0 = gdb_regs[BFIN_LC0]; | 
|  | regs->lt0 = gdb_regs[BFIN_LT0]; | 
|  | regs->lb0 = gdb_regs[BFIN_LB0]; | 
|  | regs->lc1 = gdb_regs[BFIN_LC1]; | 
|  | regs->lt1 = gdb_regs[BFIN_LT1]; | 
|  | regs->lb1 = gdb_regs[BFIN_LB1]; | 
|  | regs->usp = gdb_regs[BFIN_USP]; | 
|  | regs->syscfg = gdb_regs[BFIN_SYSCFG]; | 
|  | regs->retx = gdb_regs[BFIN_PC]; | 
|  | regs->retn = gdb_regs[BFIN_RETN]; | 
|  | regs->rete = gdb_regs[BFIN_RETE]; | 
|  | regs->pc = gdb_regs[BFIN_PC]; | 
|  |  | 
|  | #if 0				/* can't change these */ | 
|  | regs->astat = gdb_regs[BFIN_ASTAT]; | 
|  | regs->seqstat = gdb_regs[BFIN_SEQSTAT]; | 
|  | regs->ipend = gdb_regs[BFIN_IPEND]; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | struct hw_breakpoint { | 
|  | unsigned int occupied:1; | 
|  | unsigned int skip:1; | 
|  | unsigned int enabled:1; | 
|  | unsigned int type:1; | 
|  | unsigned int dataacc:2; | 
|  | unsigned short count; | 
|  | unsigned int addr; | 
|  | } breakinfo[HW_WATCHPOINT_NUM]; | 
|  |  | 
|  | int bfin_set_hw_break(unsigned long addr, int len, enum kgdb_bptype type) | 
|  | { | 
|  | int breakno; | 
|  | int bfin_type; | 
|  | int dataacc = 0; | 
|  |  | 
|  | switch (type) { | 
|  | case BP_HARDWARE_BREAKPOINT: | 
|  | bfin_type = TYPE_INST_WATCHPOINT; | 
|  | break; | 
|  | case BP_WRITE_WATCHPOINT: | 
|  | dataacc = 1; | 
|  | bfin_type = TYPE_DATA_WATCHPOINT; | 
|  | break; | 
|  | case BP_READ_WATCHPOINT: | 
|  | dataacc = 2; | 
|  | bfin_type = TYPE_DATA_WATCHPOINT; | 
|  | break; | 
|  | case BP_ACCESS_WATCHPOINT: | 
|  | dataacc = 3; | 
|  | bfin_type = TYPE_DATA_WATCHPOINT; | 
|  | break; | 
|  | default: | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | /* Becasue hardware data watchpoint impelemented in current | 
|  | * Blackfin can not trigger an exception event as the hardware | 
|  | * instrction watchpoint does, we ignaore all data watch point here. | 
|  | * They can be turned on easily after future blackfin design | 
|  | * supports this feature. | 
|  | */ | 
|  | for (breakno = 0; breakno < HW_INST_WATCHPOINT_NUM; breakno++) | 
|  | if (bfin_type == breakinfo[breakno].type | 
|  | && !breakinfo[breakno].occupied) { | 
|  | breakinfo[breakno].occupied = 1; | 
|  | breakinfo[breakno].enabled = 1; | 
|  | breakinfo[breakno].addr = addr; | 
|  | breakinfo[breakno].dataacc = dataacc; | 
|  | breakinfo[breakno].count = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | int bfin_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype type) | 
|  | { | 
|  | int breakno; | 
|  | int bfin_type; | 
|  |  | 
|  | switch (type) { | 
|  | case BP_HARDWARE_BREAKPOINT: | 
|  | bfin_type = TYPE_INST_WATCHPOINT; | 
|  | break; | 
|  | case BP_WRITE_WATCHPOINT: | 
|  | case BP_READ_WATCHPOINT: | 
|  | case BP_ACCESS_WATCHPOINT: | 
|  | bfin_type = TYPE_DATA_WATCHPOINT; | 
|  | break; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | for (breakno = 0; breakno < HW_WATCHPOINT_NUM; breakno++) | 
|  | if (bfin_type == breakinfo[breakno].type | 
|  | && breakinfo[breakno].occupied | 
|  | && breakinfo[breakno].addr == addr) { | 
|  | breakinfo[breakno].occupied = 0; | 
|  | breakinfo[breakno].enabled = 0; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void bfin_remove_all_hw_break(void) | 
|  | { | 
|  | int breakno; | 
|  |  | 
|  | memset(breakinfo, 0, sizeof(struct hw_breakpoint)*HW_WATCHPOINT_NUM); | 
|  |  | 
|  | for (breakno = 0; breakno < HW_INST_WATCHPOINT_NUM; breakno++) | 
|  | breakinfo[breakno].type = TYPE_INST_WATCHPOINT; | 
|  | for (; breakno < HW_WATCHPOINT_NUM; breakno++) | 
|  | breakinfo[breakno].type = TYPE_DATA_WATCHPOINT; | 
|  | } | 
|  |  | 
|  | void bfin_correct_hw_break(void) | 
|  | { | 
|  | int breakno; | 
|  | unsigned int wpiactl = 0; | 
|  | unsigned int wpdactl = 0; | 
|  | int enable_wp = 0; | 
|  |  | 
|  | for (breakno = 0; breakno < HW_WATCHPOINT_NUM; breakno++) | 
|  | if (breakinfo[breakno].enabled) { | 
|  | enable_wp = 1; | 
|  |  | 
|  | switch (breakno) { | 
|  | case 0: | 
|  | wpiactl |= WPIAEN0|WPICNTEN0; | 
|  | bfin_write_WPIA0(breakinfo[breakno].addr); | 
|  | bfin_write_WPIACNT0(breakinfo[breakno].count | 
|  | + breakinfo->skip); | 
|  | break; | 
|  | case 1: | 
|  | wpiactl |= WPIAEN1|WPICNTEN1; | 
|  | bfin_write_WPIA1(breakinfo[breakno].addr); | 
|  | bfin_write_WPIACNT1(breakinfo[breakno].count | 
|  | + breakinfo->skip); | 
|  | break; | 
|  | case 2: | 
|  | wpiactl |= WPIAEN2|WPICNTEN2; | 
|  | bfin_write_WPIA2(breakinfo[breakno].addr); | 
|  | bfin_write_WPIACNT2(breakinfo[breakno].count | 
|  | + breakinfo->skip); | 
|  | break; | 
|  | case 3: | 
|  | wpiactl |= WPIAEN3|WPICNTEN3; | 
|  | bfin_write_WPIA3(breakinfo[breakno].addr); | 
|  | bfin_write_WPIACNT3(breakinfo[breakno].count | 
|  | + breakinfo->skip); | 
|  | break; | 
|  | case 4: | 
|  | wpiactl |= WPIAEN4|WPICNTEN4; | 
|  | bfin_write_WPIA4(breakinfo[breakno].addr); | 
|  | bfin_write_WPIACNT4(breakinfo[breakno].count | 
|  | + breakinfo->skip); | 
|  | break; | 
|  | case 5: | 
|  | wpiactl |= WPIAEN5|WPICNTEN5; | 
|  | bfin_write_WPIA5(breakinfo[breakno].addr); | 
|  | bfin_write_WPIACNT5(breakinfo[breakno].count | 
|  | + breakinfo->skip); | 
|  | break; | 
|  | case 6: | 
|  | wpdactl |= WPDAEN0|WPDCNTEN0|WPDSRC0; | 
|  | wpdactl |= breakinfo[breakno].dataacc | 
|  | << WPDACC0_OFFSET; | 
|  | bfin_write_WPDA0(breakinfo[breakno].addr); | 
|  | bfin_write_WPDACNT0(breakinfo[breakno].count | 
|  | + breakinfo->skip); | 
|  | break; | 
|  | case 7: | 
|  | wpdactl |= WPDAEN1|WPDCNTEN1|WPDSRC1; | 
|  | wpdactl |= breakinfo[breakno].dataacc | 
|  | << WPDACC1_OFFSET; | 
|  | bfin_write_WPDA1(breakinfo[breakno].addr); | 
|  | bfin_write_WPDACNT1(breakinfo[breakno].count | 
|  | + breakinfo->skip); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Should enable WPPWR bit first before set any other | 
|  | * WPIACTL and WPDACTL bits */ | 
|  | if (enable_wp) { | 
|  | bfin_write_WPIACTL(WPPWR); | 
|  | CSYNC(); | 
|  | bfin_write_WPIACTL(wpiactl|WPPWR); | 
|  | bfin_write_WPDACTL(wpdactl); | 
|  | CSYNC(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void kgdb_disable_hw_debug(struct pt_regs *regs) | 
|  | { | 
|  | /* Disable hardware debugging while we are in kgdb */ | 
|  | bfin_write_WPIACTL(0); | 
|  | bfin_write_WPDACTL(0); | 
|  | CSYNC(); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | void kgdb_passive_cpu_callback(void *info) | 
|  | { | 
|  | kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs()); | 
|  | } | 
|  |  | 
|  | void kgdb_roundup_cpus(unsigned long flags) | 
|  | { | 
|  | smp_call_function(kgdb_passive_cpu_callback, NULL, 0, 0); | 
|  | } | 
|  |  | 
|  | void kgdb_roundup_cpu(int cpu, unsigned long flags) | 
|  | { | 
|  | smp_call_function_single(cpu, kgdb_passive_cpu_callback, NULL, 0, 0); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void kgdb_post_primary_code(struct pt_regs *regs, int eVector, int err_code) | 
|  | { | 
|  | /* Master processor is completely in the debugger */ | 
|  | gdb_bfin_vector = eVector; | 
|  | gdb_bfin_errcode = err_code; | 
|  | } | 
|  |  | 
|  | int kgdb_arch_handle_exception(int vector, int signo, | 
|  | int err_code, char *remcom_in_buffer, | 
|  | char *remcom_out_buffer, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | long addr; | 
|  | long breakno; | 
|  | char *ptr; | 
|  | int newPC; | 
|  | int wp_status; | 
|  | int i; | 
|  |  | 
|  | switch (remcom_in_buffer[0]) { | 
|  | case 'c': | 
|  | case 's': | 
|  | if (kgdb_contthread && kgdb_contthread != current) { | 
|  | strcpy(remcom_out_buffer, "E00"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | kgdb_contthread = NULL; | 
|  |  | 
|  | /* try to read optional parameter, pc unchanged if no parm */ | 
|  | ptr = &remcom_in_buffer[1]; | 
|  | if (kgdb_hex2long(&ptr, &addr)) { | 
|  | regs->retx = addr; | 
|  | } | 
|  | newPC = regs->retx; | 
|  |  | 
|  | /* clear the trace bit */ | 
|  | regs->syscfg &= 0xfffffffe; | 
|  |  | 
|  | /* set the trace bit if we're stepping */ | 
|  | if (remcom_in_buffer[0] == 's') { | 
|  | regs->syscfg |= 0x1; | 
|  | kgdb_single_step = regs->ipend; | 
|  | kgdb_single_step >>= 6; | 
|  | for (i = 10; i > 0; i--, kgdb_single_step >>= 1) | 
|  | if (kgdb_single_step & 1) | 
|  | break; | 
|  | /* i indicate event priority of current stopped instruction | 
|  | * user space instruction is 0, IVG15 is 1, IVTMR is 10. | 
|  | * kgdb_single_step > 0 means in single step mode | 
|  | */ | 
|  | kgdb_single_step = i + 1; | 
|  | } | 
|  |  | 
|  | if (vector == VEC_WATCH) { | 
|  | wp_status = bfin_read_WPSTAT(); | 
|  | for (breakno = 0; breakno < HW_WATCHPOINT_NUM; breakno++) { | 
|  | if (wp_status & (1 << breakno)) { | 
|  | breakinfo->skip = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | bfin_write_WPSTAT(0); | 
|  | } | 
|  |  | 
|  | bfin_correct_hw_break(); | 
|  |  | 
|  | return 0; | 
|  | }			/* switch */ | 
|  | return -1;		/* this means that we do not want to exit from the handler */ | 
|  | } | 
|  |  | 
|  | struct kgdb_arch arch_kgdb_ops = { | 
|  | .gdb_bpt_instr = {0xa1}, | 
|  | #ifdef CONFIG_SMP | 
|  | .flags = KGDB_HW_BREAKPOINT|KGDB_THR_PROC_SWAP, | 
|  | #else | 
|  | .flags = KGDB_HW_BREAKPOINT, | 
|  | #endif | 
|  | .set_hw_breakpoint = bfin_set_hw_break, | 
|  | .remove_hw_breakpoint = bfin_remove_hw_break, | 
|  | .remove_all_hw_break = bfin_remove_all_hw_break, | 
|  | .correct_hw_break = bfin_correct_hw_break, | 
|  | }; | 
|  |  | 
|  | static int hex(char ch) | 
|  | { | 
|  | if ((ch >= 'a') && (ch <= 'f')) | 
|  | return ch - 'a' + 10; | 
|  | if ((ch >= '0') && (ch <= '9')) | 
|  | return ch - '0'; | 
|  | if ((ch >= 'A') && (ch <= 'F')) | 
|  | return ch - 'A' + 10; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static int validate_memory_access_address(unsigned long addr, int size) | 
|  | { | 
|  | int cpu = raw_smp_processor_id(); | 
|  |  | 
|  | if (size < 0) | 
|  | return EFAULT; | 
|  | if (addr >= 0x1000 && (addr + size) <= physical_mem_end) | 
|  | return 0; | 
|  | if (addr >= SYSMMR_BASE) | 
|  | return 0; | 
|  | if (addr >= ASYNC_BANK0_BASE | 
|  | && addr + size <= ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE) | 
|  | return 0; | 
|  | if (cpu == 0) { | 
|  | if (addr >= L1_SCRATCH_START | 
|  | && (addr + size <= L1_SCRATCH_START + L1_SCRATCH_LENGTH)) | 
|  | return 0; | 
|  | #if L1_CODE_LENGTH != 0 | 
|  | if (addr >= L1_CODE_START | 
|  | && (addr + size <= L1_CODE_START + L1_CODE_LENGTH)) | 
|  | return 0; | 
|  | #endif | 
|  | #if L1_DATA_A_LENGTH != 0 | 
|  | if (addr >= L1_DATA_A_START | 
|  | && (addr + size <= L1_DATA_A_START + L1_DATA_A_LENGTH)) | 
|  | return 0; | 
|  | #endif | 
|  | #if L1_DATA_B_LENGTH != 0 | 
|  | if (addr >= L1_DATA_B_START | 
|  | && (addr + size <= L1_DATA_B_START + L1_DATA_B_LENGTH)) | 
|  | return 0; | 
|  | #endif | 
|  | #ifdef CONFIG_SMP | 
|  | } else if (cpu == 1) { | 
|  | if (addr >= COREB_L1_SCRATCH_START | 
|  | && (addr + size <= COREB_L1_SCRATCH_START | 
|  | + L1_SCRATCH_LENGTH)) | 
|  | return 0; | 
|  | # if L1_CODE_LENGTH != 0 | 
|  | if (addr >= COREB_L1_CODE_START | 
|  | && (addr + size <= COREB_L1_CODE_START + L1_CODE_LENGTH)) | 
|  | return 0; | 
|  | # endif | 
|  | # if L1_DATA_A_LENGTH != 0 | 
|  | if (addr >= COREB_L1_DATA_A_START | 
|  | && (addr + size <= COREB_L1_DATA_A_START + L1_DATA_A_LENGTH)) | 
|  | return 0; | 
|  | # endif | 
|  | # if L1_DATA_B_LENGTH != 0 | 
|  | if (addr >= COREB_L1_DATA_B_START | 
|  | && (addr + size <= COREB_L1_DATA_B_START + L1_DATA_B_LENGTH)) | 
|  | return 0; | 
|  | # endif | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #if L2_LENGTH != 0 | 
|  | if (addr >= L2_START | 
|  | && addr + size <= L2_START + L2_LENGTH) | 
|  | return 0; | 
|  | #endif | 
|  |  | 
|  | return EFAULT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convert the memory pointed to by mem into hex, placing result in buf. | 
|  | * Return a pointer to the last char put in buf (null). May return an error. | 
|  | */ | 
|  | int kgdb_mem2hex(char *mem, char *buf, int count) | 
|  | { | 
|  | char *tmp; | 
|  | int err = 0; | 
|  | unsigned char *pch; | 
|  | unsigned short mmr16; | 
|  | unsigned long mmr32; | 
|  | int cpu = raw_smp_processor_id(); | 
|  |  | 
|  | if (validate_memory_access_address((unsigned long)mem, count)) | 
|  | return EFAULT; | 
|  |  | 
|  | /* | 
|  | * We use the upper half of buf as an intermediate buffer for the | 
|  | * raw memory copy.  Hex conversion will work against this one. | 
|  | */ | 
|  | tmp = buf + count; | 
|  |  | 
|  | if ((unsigned int)mem >= SYSMMR_BASE) { /*access MMR registers*/ | 
|  | switch (count) { | 
|  | case 2: | 
|  | if ((unsigned int)mem % 2 == 0) { | 
|  | mmr16 = *(unsigned short *)mem; | 
|  | pch = (unsigned char *)&mmr16; | 
|  | *tmp++ = *pch++; | 
|  | *tmp++ = *pch++; | 
|  | tmp -= 2; | 
|  | } else | 
|  | err = EFAULT; | 
|  | break; | 
|  | case 4: | 
|  | if ((unsigned int)mem % 4 == 0) { | 
|  | mmr32 = *(unsigned long *)mem; | 
|  | pch = (unsigned char *)&mmr32; | 
|  | *tmp++ = *pch++; | 
|  | *tmp++ = *pch++; | 
|  | *tmp++ = *pch++; | 
|  | *tmp++ = *pch++; | 
|  | tmp -= 4; | 
|  | } else | 
|  | err = EFAULT; | 
|  | break; | 
|  | default: | 
|  | err = EFAULT; | 
|  | } | 
|  | } else if (cpu == 0 && (unsigned int)mem >= L1_CODE_START && | 
|  | (unsigned int)(mem + count) <= L1_CODE_START + L1_CODE_LENGTH | 
|  | #ifdef CONFIG_SMP | 
|  | || cpu == 1 && (unsigned int)mem >= COREB_L1_CODE_START && | 
|  | (unsigned int)(mem + count) <= | 
|  | COREB_L1_CODE_START + L1_CODE_LENGTH | 
|  | #endif | 
|  | ) { | 
|  | /* access L1 instruction SRAM*/ | 
|  | if (dma_memcpy(tmp, mem, count) == NULL) | 
|  | err = EFAULT; | 
|  | } else | 
|  | err = probe_kernel_read(tmp, mem, count); | 
|  |  | 
|  | if (!err) { | 
|  | while (count > 0) { | 
|  | buf = pack_hex_byte(buf, *tmp); | 
|  | tmp++; | 
|  | count--; | 
|  | } | 
|  |  | 
|  | *buf = 0; | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy the binary array pointed to by buf into mem.  Fix $, #, and | 
|  | * 0x7d escaped with 0x7d.  Return a pointer to the character after | 
|  | * the last byte written. | 
|  | */ | 
|  | int kgdb_ebin2mem(char *buf, char *mem, int count) | 
|  | { | 
|  | char *tmp_old; | 
|  | char *tmp_new; | 
|  | unsigned short *mmr16; | 
|  | unsigned long *mmr32; | 
|  | int err = 0; | 
|  | int size = 0; | 
|  | int cpu = raw_smp_processor_id(); | 
|  |  | 
|  | tmp_old = tmp_new = buf; | 
|  |  | 
|  | while (count-- > 0) { | 
|  | if (*tmp_old == 0x7d) | 
|  | *tmp_new = *(++tmp_old) ^ 0x20; | 
|  | else | 
|  | *tmp_new = *tmp_old; | 
|  | tmp_new++; | 
|  | tmp_old++; | 
|  | size++; | 
|  | } | 
|  |  | 
|  | if (validate_memory_access_address((unsigned long)mem, size)) | 
|  | return EFAULT; | 
|  |  | 
|  | if ((unsigned int)mem >= SYSMMR_BASE) { /*access MMR registers*/ | 
|  | switch (size) { | 
|  | case 2: | 
|  | if ((unsigned int)mem % 2 == 0) { | 
|  | mmr16 = (unsigned short *)buf; | 
|  | *(unsigned short *)mem = *mmr16; | 
|  | } else | 
|  | return EFAULT; | 
|  | break; | 
|  | case 4: | 
|  | if ((unsigned int)mem % 4 == 0) { | 
|  | mmr32 = (unsigned long *)buf; | 
|  | *(unsigned long *)mem = *mmr32; | 
|  | } else | 
|  | return EFAULT; | 
|  | break; | 
|  | default: | 
|  | return EFAULT; | 
|  | } | 
|  | } else if (cpu == 0 && (unsigned int)mem >= L1_CODE_START && | 
|  | (unsigned int)(mem + count) < L1_CODE_START + L1_CODE_LENGTH | 
|  | #ifdef CONFIG_SMP | 
|  | || cpu == 1 && (unsigned int)mem >= COREB_L1_CODE_START && | 
|  | (unsigned int)(mem + count) <= | 
|  | COREB_L1_CODE_START + L1_CODE_LENGTH | 
|  | #endif | 
|  | ) { | 
|  | /* access L1 instruction SRAM */ | 
|  | if (dma_memcpy(mem, buf, size) == NULL) | 
|  | err = EFAULT; | 
|  | } else | 
|  | err = probe_kernel_write(mem, buf, size); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convert the hex array pointed to by buf into binary to be placed in mem. | 
|  | * Return a pointer to the character AFTER the last byte written. | 
|  | * May return an error. | 
|  | */ | 
|  | int kgdb_hex2mem(char *buf, char *mem, int count) | 
|  | { | 
|  | char *tmp_raw; | 
|  | char *tmp_hex; | 
|  | unsigned short *mmr16; | 
|  | unsigned long *mmr32; | 
|  | int cpu = raw_smp_processor_id(); | 
|  |  | 
|  | if (validate_memory_access_address((unsigned long)mem, count)) | 
|  | return EFAULT; | 
|  |  | 
|  | /* | 
|  | * We use the upper half of buf as an intermediate buffer for the | 
|  | * raw memory that is converted from hex. | 
|  | */ | 
|  | tmp_raw = buf + count * 2; | 
|  |  | 
|  | tmp_hex = tmp_raw - 1; | 
|  | while (tmp_hex >= buf) { | 
|  | tmp_raw--; | 
|  | *tmp_raw = hex(*tmp_hex--); | 
|  | *tmp_raw |= hex(*tmp_hex--) << 4; | 
|  | } | 
|  |  | 
|  | if ((unsigned int)mem >= SYSMMR_BASE) { /*access MMR registers*/ | 
|  | switch (count) { | 
|  | case 2: | 
|  | if ((unsigned int)mem % 2 == 0) { | 
|  | mmr16 = (unsigned short *)tmp_raw; | 
|  | *(unsigned short *)mem = *mmr16; | 
|  | } else | 
|  | return EFAULT; | 
|  | break; | 
|  | case 4: | 
|  | if ((unsigned int)mem % 4 == 0) { | 
|  | mmr32 = (unsigned long *)tmp_raw; | 
|  | *(unsigned long *)mem = *mmr32; | 
|  | } else | 
|  | return EFAULT; | 
|  | break; | 
|  | default: | 
|  | return EFAULT; | 
|  | } | 
|  | } else if (cpu == 0 && (unsigned int)mem >= L1_CODE_START && | 
|  | (unsigned int)(mem + count) <= L1_CODE_START + L1_CODE_LENGTH | 
|  | #ifdef CONFIG_SMP | 
|  | || cpu == 1 && (unsigned int)mem >= COREB_L1_CODE_START && | 
|  | (unsigned int)(mem + count) <= | 
|  | COREB_L1_CODE_START + L1_CODE_LENGTH | 
|  | #endif | 
|  | ) { | 
|  | /* access L1 instruction SRAM */ | 
|  | if (dma_memcpy(mem, tmp_raw, count) == NULL) | 
|  | return EFAULT; | 
|  | } else | 
|  | return probe_kernel_write(mem, tmp_raw, count); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kgdb_validate_break_address(unsigned long addr) | 
|  | { | 
|  | int cpu = raw_smp_processor_id(); | 
|  |  | 
|  | if (addr >= 0x1000 && (addr + BREAK_INSTR_SIZE) <= physical_mem_end) | 
|  | return 0; | 
|  | if (addr >= ASYNC_BANK0_BASE | 
|  | && addr + BREAK_INSTR_SIZE <= ASYNC_BANK3_BASE + ASYNC_BANK3_BASE) | 
|  | return 0; | 
|  | #if L1_CODE_LENGTH != 0 | 
|  | if (cpu == 0 && addr >= L1_CODE_START | 
|  | && addr + BREAK_INSTR_SIZE <= L1_CODE_START + L1_CODE_LENGTH) | 
|  | return 0; | 
|  | # ifdef CONFIG_SMP | 
|  | else if (cpu == 1 && addr >= COREB_L1_CODE_START | 
|  | && addr + BREAK_INSTR_SIZE <= COREB_L1_CODE_START + L1_CODE_LENGTH) | 
|  | return 0; | 
|  | # endif | 
|  | #endif | 
|  | #if L2_LENGTH != 0 | 
|  | if (addr >= L2_START | 
|  | && addr + BREAK_INSTR_SIZE <= L2_START + L2_LENGTH) | 
|  | return 0; | 
|  | #endif | 
|  |  | 
|  | return EFAULT; | 
|  | } | 
|  |  | 
|  | int kgdb_arch_set_breakpoint(unsigned long addr, char *saved_instr) | 
|  | { | 
|  | int err; | 
|  | int cpu = raw_smp_processor_id(); | 
|  |  | 
|  | if ((cpu == 0 && (unsigned int)addr >= L1_CODE_START | 
|  | && (unsigned int)(addr + BREAK_INSTR_SIZE) | 
|  | < L1_CODE_START + L1_CODE_LENGTH) | 
|  | #ifdef CONFIG_SMP | 
|  | || (cpu == 1 && (unsigned int)addr >= COREB_L1_CODE_START | 
|  | && (unsigned int)(addr + BREAK_INSTR_SIZE) | 
|  | < COREB_L1_CODE_START + L1_CODE_LENGTH) | 
|  | #endif | 
|  | ) { | 
|  | /* access L1 instruction SRAM */ | 
|  | if (dma_memcpy(saved_instr, (void *)addr, BREAK_INSTR_SIZE) | 
|  | == NULL) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (dma_memcpy((void *)addr, arch_kgdb_ops.gdb_bpt_instr, | 
|  | BREAK_INSTR_SIZE) == NULL) | 
|  | return -EFAULT; | 
|  |  | 
|  | return 0; | 
|  | } else { | 
|  | err = probe_kernel_read(saved_instr, (char *)addr, | 
|  | BREAK_INSTR_SIZE); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | return probe_kernel_write((char *)addr, | 
|  | arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE); | 
|  | } | 
|  | } | 
|  |  | 
|  | int kgdb_arch_remove_breakpoint(unsigned long addr, char *bundle) | 
|  | { | 
|  | if ((unsigned int)addr >= L1_CODE_START && | 
|  | (unsigned int)(addr + BREAK_INSTR_SIZE) < | 
|  | L1_CODE_START + L1_CODE_LENGTH) { | 
|  | /* access L1 instruction SRAM */ | 
|  | if (dma_memcpy((void *)addr, bundle, BREAK_INSTR_SIZE) == NULL) | 
|  | return -EFAULT; | 
|  |  | 
|  | return 0; | 
|  | } else | 
|  | return probe_kernel_write((char *)addr, | 
|  | (char *)bundle, BREAK_INSTR_SIZE); | 
|  | } | 
|  |  | 
|  | int kgdb_arch_init(void) | 
|  | { | 
|  | kgdb_single_step = 0; | 
|  |  | 
|  | bfin_remove_all_hw_break(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void kgdb_arch_exit(void) | 
|  | { | 
|  | } |