|  | #include <linux/kernel.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/timer.h> | 
|  | #include <linux/acpi_pmtmr.h> | 
|  | #include <linux/cpufreq.h> | 
|  | #include <linux/dmi.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/clocksource.h> | 
|  | #include <linux/percpu.h> | 
|  |  | 
|  | #include <asm/hpet.h> | 
|  | #include <asm/timer.h> | 
|  | #include <asm/vgtod.h> | 
|  | #include <asm/time.h> | 
|  | #include <asm/delay.h> | 
|  |  | 
|  | unsigned int cpu_khz;           /* TSC clocks / usec, not used here */ | 
|  | EXPORT_SYMBOL(cpu_khz); | 
|  | unsigned int tsc_khz; | 
|  | EXPORT_SYMBOL(tsc_khz); | 
|  |  | 
|  | /* | 
|  | * TSC can be unstable due to cpufreq or due to unsynced TSCs | 
|  | */ | 
|  | static int tsc_unstable; | 
|  |  | 
|  | /* native_sched_clock() is called before tsc_init(), so | 
|  | we must start with the TSC soft disabled to prevent | 
|  | erroneous rdtsc usage on !cpu_has_tsc processors */ | 
|  | static int tsc_disabled = -1; | 
|  |  | 
|  | /* | 
|  | * Scheduler clock - returns current time in nanosec units. | 
|  | */ | 
|  | u64 native_sched_clock(void) | 
|  | { | 
|  | u64 this_offset; | 
|  |  | 
|  | /* | 
|  | * Fall back to jiffies if there's no TSC available: | 
|  | * ( But note that we still use it if the TSC is marked | 
|  | *   unstable. We do this because unlike Time Of Day, | 
|  | *   the scheduler clock tolerates small errors and it's | 
|  | *   very important for it to be as fast as the platform | 
|  | *   can achive it. ) | 
|  | */ | 
|  | if (unlikely(tsc_disabled)) { | 
|  | /* No locking but a rare wrong value is not a big deal: */ | 
|  | return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ); | 
|  | } | 
|  |  | 
|  | /* read the Time Stamp Counter: */ | 
|  | rdtscll(this_offset); | 
|  |  | 
|  | /* return the value in ns */ | 
|  | return cycles_2_ns(this_offset); | 
|  | } | 
|  |  | 
|  | /* We need to define a real function for sched_clock, to override the | 
|  | weak default version */ | 
|  | #ifdef CONFIG_PARAVIRT | 
|  | unsigned long long sched_clock(void) | 
|  | { | 
|  | return paravirt_sched_clock(); | 
|  | } | 
|  | #else | 
|  | unsigned long long | 
|  | sched_clock(void) __attribute__((alias("native_sched_clock"))); | 
|  | #endif | 
|  |  | 
|  | int check_tsc_unstable(void) | 
|  | { | 
|  | return tsc_unstable; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(check_tsc_unstable); | 
|  |  | 
|  | #ifdef CONFIG_X86_TSC | 
|  | int __init notsc_setup(char *str) | 
|  | { | 
|  | printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, " | 
|  | "cannot disable TSC completely.\n"); | 
|  | tsc_disabled = 1; | 
|  | return 1; | 
|  | } | 
|  | #else | 
|  | /* | 
|  | * disable flag for tsc. Takes effect by clearing the TSC cpu flag | 
|  | * in cpu/common.c | 
|  | */ | 
|  | int __init notsc_setup(char *str) | 
|  | { | 
|  | setup_clear_cpu_cap(X86_FEATURE_TSC); | 
|  | return 1; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | __setup("notsc", notsc_setup); | 
|  |  | 
|  | #define MAX_RETRIES     5 | 
|  | #define SMI_TRESHOLD    50000 | 
|  |  | 
|  | /* | 
|  | * Read TSC and the reference counters. Take care of SMI disturbance | 
|  | */ | 
|  | static u64 tsc_read_refs(u64 *p, int hpet) | 
|  | { | 
|  | u64 t1, t2; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < MAX_RETRIES; i++) { | 
|  | t1 = get_cycles(); | 
|  | if (hpet) | 
|  | *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF; | 
|  | else | 
|  | *p = acpi_pm_read_early(); | 
|  | t2 = get_cycles(); | 
|  | if ((t2 - t1) < SMI_TRESHOLD) | 
|  | return t2; | 
|  | } | 
|  | return ULLONG_MAX; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the TSC frequency from HPET reference | 
|  | */ | 
|  | static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2) | 
|  | { | 
|  | u64 tmp; | 
|  |  | 
|  | if (hpet2 < hpet1) | 
|  | hpet2 += 0x100000000ULL; | 
|  | hpet2 -= hpet1; | 
|  | tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD)); | 
|  | do_div(tmp, 1000000); | 
|  | do_div(deltatsc, tmp); | 
|  |  | 
|  | return (unsigned long) deltatsc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the TSC frequency from PMTimer reference | 
|  | */ | 
|  | static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2) | 
|  | { | 
|  | u64 tmp; | 
|  |  | 
|  | if (!pm1 && !pm2) | 
|  | return ULONG_MAX; | 
|  |  | 
|  | if (pm2 < pm1) | 
|  | pm2 += (u64)ACPI_PM_OVRRUN; | 
|  | pm2 -= pm1; | 
|  | tmp = pm2 * 1000000000LL; | 
|  | do_div(tmp, PMTMR_TICKS_PER_SEC); | 
|  | do_div(deltatsc, tmp); | 
|  |  | 
|  | return (unsigned long) deltatsc; | 
|  | } | 
|  |  | 
|  | #define CAL_MS		10 | 
|  | #define CAL_LATCH	(CLOCK_TICK_RATE / (1000 / CAL_MS)) | 
|  | #define CAL_PIT_LOOPS	1000 | 
|  |  | 
|  | #define CAL2_MS		50 | 
|  | #define CAL2_LATCH	(CLOCK_TICK_RATE / (1000 / CAL2_MS)) | 
|  | #define CAL2_PIT_LOOPS	5000 | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Try to calibrate the TSC against the Programmable | 
|  | * Interrupt Timer and return the frequency of the TSC | 
|  | * in kHz. | 
|  | * | 
|  | * Return ULONG_MAX on failure to calibrate. | 
|  | */ | 
|  | static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin) | 
|  | { | 
|  | u64 tsc, t1, t2, delta; | 
|  | unsigned long tscmin, tscmax; | 
|  | int pitcnt; | 
|  |  | 
|  | /* Set the Gate high, disable speaker */ | 
|  | outb((inb(0x61) & ~0x02) | 0x01, 0x61); | 
|  |  | 
|  | /* | 
|  | * Setup CTC channel 2* for mode 0, (interrupt on terminal | 
|  | * count mode), binary count. Set the latch register to 50ms | 
|  | * (LSB then MSB) to begin countdown. | 
|  | */ | 
|  | outb(0xb0, 0x43); | 
|  | outb(latch & 0xff, 0x42); | 
|  | outb(latch >> 8, 0x42); | 
|  |  | 
|  | tsc = t1 = t2 = get_cycles(); | 
|  |  | 
|  | pitcnt = 0; | 
|  | tscmax = 0; | 
|  | tscmin = ULONG_MAX; | 
|  | while ((inb(0x61) & 0x20) == 0) { | 
|  | t2 = get_cycles(); | 
|  | delta = t2 - tsc; | 
|  | tsc = t2; | 
|  | if ((unsigned long) delta < tscmin) | 
|  | tscmin = (unsigned int) delta; | 
|  | if ((unsigned long) delta > tscmax) | 
|  | tscmax = (unsigned int) delta; | 
|  | pitcnt++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sanity checks: | 
|  | * | 
|  | * If we were not able to read the PIT more than loopmin | 
|  | * times, then we have been hit by a massive SMI | 
|  | * | 
|  | * If the maximum is 10 times larger than the minimum, | 
|  | * then we got hit by an SMI as well. | 
|  | */ | 
|  | if (pitcnt < loopmin || tscmax > 10 * tscmin) | 
|  | return ULONG_MAX; | 
|  |  | 
|  | /* Calculate the PIT value */ | 
|  | delta = t2 - t1; | 
|  | do_div(delta, ms); | 
|  | return delta; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This reads the current MSB of the PIT counter, and | 
|  | * checks if we are running on sufficiently fast and | 
|  | * non-virtualized hardware. | 
|  | * | 
|  | * Our expectations are: | 
|  | * | 
|  | *  - the PIT is running at roughly 1.19MHz | 
|  | * | 
|  | *  - each IO is going to take about 1us on real hardware, | 
|  | *    but we allow it to be much faster (by a factor of 10) or | 
|  | *    _slightly_ slower (ie we allow up to a 2us read+counter | 
|  | *    update - anything else implies a unacceptably slow CPU | 
|  | *    or PIT for the fast calibration to work. | 
|  | * | 
|  | *  - with 256 PIT ticks to read the value, we have 214us to | 
|  | *    see the same MSB (and overhead like doing a single TSC | 
|  | *    read per MSB value etc). | 
|  | * | 
|  | *  - We're doing 2 reads per loop (LSB, MSB), and we expect | 
|  | *    them each to take about a microsecond on real hardware. | 
|  | *    So we expect a count value of around 100. But we'll be | 
|  | *    generous, and accept anything over 50. | 
|  | * | 
|  | *  - if the PIT is stuck, and we see *many* more reads, we | 
|  | *    return early (and the next caller of pit_expect_msb() | 
|  | *    then consider it a failure when they don't see the | 
|  | *    next expected value). | 
|  | * | 
|  | * These expectations mean that we know that we have seen the | 
|  | * transition from one expected value to another with a fairly | 
|  | * high accuracy, and we didn't miss any events. We can thus | 
|  | * use the TSC value at the transitions to calculate a pretty | 
|  | * good value for the TSC frequencty. | 
|  | */ | 
|  | static inline int pit_expect_msb(unsigned char val) | 
|  | { | 
|  | int count = 0; | 
|  |  | 
|  | for (count = 0; count < 50000; count++) { | 
|  | /* Ignore LSB */ | 
|  | inb(0x42); | 
|  | if (inb(0x42) != val) | 
|  | break; | 
|  | } | 
|  | return count > 50; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * How many MSB values do we want to see? We aim for a | 
|  | * 15ms calibration, which assuming a 2us counter read | 
|  | * error should give us roughly 150 ppm precision for | 
|  | * the calibration. | 
|  | */ | 
|  | #define QUICK_PIT_MS 15 | 
|  | #define QUICK_PIT_ITERATIONS (QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256) | 
|  |  | 
|  | static unsigned long quick_pit_calibrate(void) | 
|  | { | 
|  | /* Set the Gate high, disable speaker */ | 
|  | outb((inb(0x61) & ~0x02) | 0x01, 0x61); | 
|  |  | 
|  | /* | 
|  | * Counter 2, mode 0 (one-shot), binary count | 
|  | * | 
|  | * NOTE! Mode 2 decrements by two (and then the | 
|  | * output is flipped each time, giving the same | 
|  | * final output frequency as a decrement-by-one), | 
|  | * so mode 0 is much better when looking at the | 
|  | * individual counts. | 
|  | */ | 
|  | outb(0xb0, 0x43); | 
|  |  | 
|  | /* Start at 0xffff */ | 
|  | outb(0xff, 0x42); | 
|  | outb(0xff, 0x42); | 
|  |  | 
|  | if (pit_expect_msb(0xff)) { | 
|  | int i; | 
|  | u64 t1, t2, delta; | 
|  | unsigned char expect = 0xfe; | 
|  |  | 
|  | t1 = get_cycles(); | 
|  | for (i = 0; i < QUICK_PIT_ITERATIONS; i++, expect--) { | 
|  | if (!pit_expect_msb(expect)) | 
|  | goto failed; | 
|  | } | 
|  | t2 = get_cycles(); | 
|  |  | 
|  | /* | 
|  | * Make sure we can rely on the second TSC timestamp: | 
|  | */ | 
|  | if (!pit_expect_msb(expect)) | 
|  | goto failed; | 
|  |  | 
|  | /* | 
|  | * Ok, if we get here, then we've seen the | 
|  | * MSB of the PIT decrement QUICK_PIT_ITERATIONS | 
|  | * times, and each MSB had many hits, so we never | 
|  | * had any sudden jumps. | 
|  | * | 
|  | * As a result, we can depend on there not being | 
|  | * any odd delays anywhere, and the TSC reads are | 
|  | * reliable. | 
|  | * | 
|  | * kHz = ticks / time-in-seconds / 1000; | 
|  | * kHz = (t2 - t1) / (QPI * 256 / PIT_TICK_RATE) / 1000 | 
|  | * kHz = ((t2 - t1) * PIT_TICK_RATE) / (QPI * 256 * 1000) | 
|  | */ | 
|  | delta = (t2 - t1)*PIT_TICK_RATE; | 
|  | do_div(delta, QUICK_PIT_ITERATIONS*256*1000); | 
|  | printk("Fast TSC calibration using PIT\n"); | 
|  | return delta; | 
|  | } | 
|  | failed: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * native_calibrate_tsc - calibrate the tsc on boot | 
|  | */ | 
|  | unsigned long native_calibrate_tsc(void) | 
|  | { | 
|  | u64 tsc1, tsc2, delta, ref1, ref2; | 
|  | unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX; | 
|  | unsigned long flags, latch, ms, fast_calibrate; | 
|  | int hpet = is_hpet_enabled(), i, loopmin; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | fast_calibrate = quick_pit_calibrate(); | 
|  | local_irq_restore(flags); | 
|  | if (fast_calibrate) | 
|  | return fast_calibrate; | 
|  |  | 
|  | /* | 
|  | * Run 5 calibration loops to get the lowest frequency value | 
|  | * (the best estimate). We use two different calibration modes | 
|  | * here: | 
|  | * | 
|  | * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and | 
|  | * load a timeout of 50ms. We read the time right after we | 
|  | * started the timer and wait until the PIT count down reaches | 
|  | * zero. In each wait loop iteration we read the TSC and check | 
|  | * the delta to the previous read. We keep track of the min | 
|  | * and max values of that delta. The delta is mostly defined | 
|  | * by the IO time of the PIT access, so we can detect when a | 
|  | * SMI/SMM disturbance happend between the two reads. If the | 
|  | * maximum time is significantly larger than the minimum time, | 
|  | * then we discard the result and have another try. | 
|  | * | 
|  | * 2) Reference counter. If available we use the HPET or the | 
|  | * PMTIMER as a reference to check the sanity of that value. | 
|  | * We use separate TSC readouts and check inside of the | 
|  | * reference read for a SMI/SMM disturbance. We dicard | 
|  | * disturbed values here as well. We do that around the PIT | 
|  | * calibration delay loop as we have to wait for a certain | 
|  | * amount of time anyway. | 
|  | */ | 
|  |  | 
|  | /* Preset PIT loop values */ | 
|  | latch = CAL_LATCH; | 
|  | ms = CAL_MS; | 
|  | loopmin = CAL_PIT_LOOPS; | 
|  |  | 
|  | for (i = 0; i < 3; i++) { | 
|  | unsigned long tsc_pit_khz; | 
|  |  | 
|  | /* | 
|  | * Read the start value and the reference count of | 
|  | * hpet/pmtimer when available. Then do the PIT | 
|  | * calibration, which will take at least 50ms, and | 
|  | * read the end value. | 
|  | */ | 
|  | local_irq_save(flags); | 
|  | tsc1 = tsc_read_refs(&ref1, hpet); | 
|  | tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin); | 
|  | tsc2 = tsc_read_refs(&ref2, hpet); | 
|  | local_irq_restore(flags); | 
|  |  | 
|  | /* Pick the lowest PIT TSC calibration so far */ | 
|  | tsc_pit_min = min(tsc_pit_min, tsc_pit_khz); | 
|  |  | 
|  | /* hpet or pmtimer available ? */ | 
|  | if (!hpet && !ref1 && !ref2) | 
|  | continue; | 
|  |  | 
|  | /* Check, whether the sampling was disturbed by an SMI */ | 
|  | if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX) | 
|  | continue; | 
|  |  | 
|  | tsc2 = (tsc2 - tsc1) * 1000000LL; | 
|  | if (hpet) | 
|  | tsc2 = calc_hpet_ref(tsc2, ref1, ref2); | 
|  | else | 
|  | tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2); | 
|  |  | 
|  | tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2); | 
|  |  | 
|  | /* Check the reference deviation */ | 
|  | delta = ((u64) tsc_pit_min) * 100; | 
|  | do_div(delta, tsc_ref_min); | 
|  |  | 
|  | /* | 
|  | * If both calibration results are inside a 10% window | 
|  | * then we can be sure, that the calibration | 
|  | * succeeded. We break out of the loop right away. We | 
|  | * use the reference value, as it is more precise. | 
|  | */ | 
|  | if (delta >= 90 && delta <= 110) { | 
|  | printk(KERN_INFO | 
|  | "TSC: PIT calibration matches %s. %d loops\n", | 
|  | hpet ? "HPET" : "PMTIMER", i + 1); | 
|  | return tsc_ref_min; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check whether PIT failed more than once. This | 
|  | * happens in virtualized environments. We need to | 
|  | * give the virtual PC a slightly longer timeframe for | 
|  | * the HPET/PMTIMER to make the result precise. | 
|  | */ | 
|  | if (i == 1 && tsc_pit_min == ULONG_MAX) { | 
|  | latch = CAL2_LATCH; | 
|  | ms = CAL2_MS; | 
|  | loopmin = CAL2_PIT_LOOPS; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now check the results. | 
|  | */ | 
|  | if (tsc_pit_min == ULONG_MAX) { | 
|  | /* PIT gave no useful value */ | 
|  | printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n"); | 
|  |  | 
|  | /* We don't have an alternative source, disable TSC */ | 
|  | if (!hpet && !ref1 && !ref2) { | 
|  | printk("TSC: No reference (HPET/PMTIMER) available\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* The alternative source failed as well, disable TSC */ | 
|  | if (tsc_ref_min == ULONG_MAX) { | 
|  | printk(KERN_WARNING "TSC: HPET/PMTIMER calibration " | 
|  | "failed.\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Use the alternative source */ | 
|  | printk(KERN_INFO "TSC: using %s reference calibration\n", | 
|  | hpet ? "HPET" : "PMTIMER"); | 
|  |  | 
|  | return tsc_ref_min; | 
|  | } | 
|  |  | 
|  | /* We don't have an alternative source, use the PIT calibration value */ | 
|  | if (!hpet && !ref1 && !ref2) { | 
|  | printk(KERN_INFO "TSC: Using PIT calibration value\n"); | 
|  | return tsc_pit_min; | 
|  | } | 
|  |  | 
|  | /* The alternative source failed, use the PIT calibration value */ | 
|  | if (tsc_ref_min == ULONG_MAX) { | 
|  | printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. " | 
|  | "Using PIT calibration\n"); | 
|  | return tsc_pit_min; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The calibration values differ too much. In doubt, we use | 
|  | * the PIT value as we know that there are PMTIMERs around | 
|  | * running at double speed. At least we let the user know: | 
|  | */ | 
|  | printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n", | 
|  | hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min); | 
|  | printk(KERN_INFO "TSC: Using PIT calibration value\n"); | 
|  | return tsc_pit_min; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | /* Only called from the Powernow K7 cpu freq driver */ | 
|  | int recalibrate_cpu_khz(void) | 
|  | { | 
|  | #ifndef CONFIG_SMP | 
|  | unsigned long cpu_khz_old = cpu_khz; | 
|  |  | 
|  | if (cpu_has_tsc) { | 
|  | tsc_khz = calibrate_tsc(); | 
|  | cpu_khz = tsc_khz; | 
|  | cpu_data(0).loops_per_jiffy = | 
|  | cpufreq_scale(cpu_data(0).loops_per_jiffy, | 
|  | cpu_khz_old, cpu_khz); | 
|  | return 0; | 
|  | } else | 
|  | return -ENODEV; | 
|  | #else | 
|  | return -ENODEV; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(recalibrate_cpu_khz); | 
|  |  | 
|  | #endif /* CONFIG_X86_32 */ | 
|  |  | 
|  | /* Accelerators for sched_clock() | 
|  | * convert from cycles(64bits) => nanoseconds (64bits) | 
|  | *  basic equation: | 
|  | *              ns = cycles / (freq / ns_per_sec) | 
|  | *              ns = cycles * (ns_per_sec / freq) | 
|  | *              ns = cycles * (10^9 / (cpu_khz * 10^3)) | 
|  | *              ns = cycles * (10^6 / cpu_khz) | 
|  | * | 
|  | *      Then we use scaling math (suggested by george@mvista.com) to get: | 
|  | *              ns = cycles * (10^6 * SC / cpu_khz) / SC | 
|  | *              ns = cycles * cyc2ns_scale / SC | 
|  | * | 
|  | *      And since SC is a constant power of two, we can convert the div | 
|  | *  into a shift. | 
|  | * | 
|  | *  We can use khz divisor instead of mhz to keep a better precision, since | 
|  | *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits. | 
|  | *  (mathieu.desnoyers@polymtl.ca) | 
|  | * | 
|  | *                      -johnstul@us.ibm.com "math is hard, lets go shopping!" | 
|  | */ | 
|  |  | 
|  | DEFINE_PER_CPU(unsigned long, cyc2ns); | 
|  |  | 
|  | static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu) | 
|  | { | 
|  | unsigned long long tsc_now, ns_now; | 
|  | unsigned long flags, *scale; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | sched_clock_idle_sleep_event(); | 
|  |  | 
|  | scale = &per_cpu(cyc2ns, cpu); | 
|  |  | 
|  | rdtscll(tsc_now); | 
|  | ns_now = __cycles_2_ns(tsc_now); | 
|  |  | 
|  | if (cpu_khz) | 
|  | *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz; | 
|  |  | 
|  | sched_clock_idle_wakeup_event(0); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_CPU_FREQ | 
|  |  | 
|  | /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency | 
|  | * changes. | 
|  | * | 
|  | * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's | 
|  | * not that important because current Opteron setups do not support | 
|  | * scaling on SMP anyroads. | 
|  | * | 
|  | * Should fix up last_tsc too. Currently gettimeofday in the | 
|  | * first tick after the change will be slightly wrong. | 
|  | */ | 
|  |  | 
|  | static unsigned int  ref_freq; | 
|  | static unsigned long loops_per_jiffy_ref; | 
|  | static unsigned long tsc_khz_ref; | 
|  |  | 
|  | static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, | 
|  | void *data) | 
|  | { | 
|  | struct cpufreq_freqs *freq = data; | 
|  | unsigned long *lpj, dummy; | 
|  |  | 
|  | if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC)) | 
|  | return 0; | 
|  |  | 
|  | lpj = &dummy; | 
|  | if (!(freq->flags & CPUFREQ_CONST_LOOPS)) | 
|  | #ifdef CONFIG_SMP | 
|  | lpj = &cpu_data(freq->cpu).loops_per_jiffy; | 
|  | #else | 
|  | lpj = &boot_cpu_data.loops_per_jiffy; | 
|  | #endif | 
|  |  | 
|  | if (!ref_freq) { | 
|  | ref_freq = freq->old; | 
|  | loops_per_jiffy_ref = *lpj; | 
|  | tsc_khz_ref = tsc_khz; | 
|  | } | 
|  | if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) || | 
|  | (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) || | 
|  | (val == CPUFREQ_RESUMECHANGE)) { | 
|  | *lpj = 	cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); | 
|  |  | 
|  | tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new); | 
|  | if (!(freq->flags & CPUFREQ_CONST_LOOPS)) | 
|  | mark_tsc_unstable("cpufreq changes"); | 
|  | } | 
|  |  | 
|  | set_cyc2ns_scale(tsc_khz, freq->cpu); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct notifier_block time_cpufreq_notifier_block = { | 
|  | .notifier_call  = time_cpufreq_notifier | 
|  | }; | 
|  |  | 
|  | static int __init cpufreq_tsc(void) | 
|  | { | 
|  | if (!cpu_has_tsc) | 
|  | return 0; | 
|  | if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) | 
|  | return 0; | 
|  | cpufreq_register_notifier(&time_cpufreq_notifier_block, | 
|  | CPUFREQ_TRANSITION_NOTIFIER); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | core_initcall(cpufreq_tsc); | 
|  |  | 
|  | #endif /* CONFIG_CPU_FREQ */ | 
|  |  | 
|  | /* clocksource code */ | 
|  |  | 
|  | static struct clocksource clocksource_tsc; | 
|  |  | 
|  | /* | 
|  | * We compare the TSC to the cycle_last value in the clocksource | 
|  | * structure to avoid a nasty time-warp. This can be observed in a | 
|  | * very small window right after one CPU updated cycle_last under | 
|  | * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which | 
|  | * is smaller than the cycle_last reference value due to a TSC which | 
|  | * is slighty behind. This delta is nowhere else observable, but in | 
|  | * that case it results in a forward time jump in the range of hours | 
|  | * due to the unsigned delta calculation of the time keeping core | 
|  | * code, which is necessary to support wrapping clocksources like pm | 
|  | * timer. | 
|  | */ | 
|  | static cycle_t read_tsc(void) | 
|  | { | 
|  | cycle_t ret = (cycle_t)get_cycles(); | 
|  |  | 
|  | return ret >= clocksource_tsc.cycle_last ? | 
|  | ret : clocksource_tsc.cycle_last; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | static cycle_t __vsyscall_fn vread_tsc(void) | 
|  | { | 
|  | cycle_t ret = (cycle_t)vget_cycles(); | 
|  |  | 
|  | return ret >= __vsyscall_gtod_data.clock.cycle_last ? | 
|  | ret : __vsyscall_gtod_data.clock.cycle_last; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static struct clocksource clocksource_tsc = { | 
|  | .name                   = "tsc", | 
|  | .rating                 = 300, | 
|  | .read                   = read_tsc, | 
|  | .mask                   = CLOCKSOURCE_MASK(64), | 
|  | .shift                  = 22, | 
|  | .flags                  = CLOCK_SOURCE_IS_CONTINUOUS | | 
|  | CLOCK_SOURCE_MUST_VERIFY, | 
|  | #ifdef CONFIG_X86_64 | 
|  | .vread                  = vread_tsc, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | void mark_tsc_unstable(char *reason) | 
|  | { | 
|  | if (!tsc_unstable) { | 
|  | tsc_unstable = 1; | 
|  | printk("Marking TSC unstable due to %s\n", reason); | 
|  | /* Change only the rating, when not registered */ | 
|  | if (clocksource_tsc.mult) | 
|  | clocksource_change_rating(&clocksource_tsc, 0); | 
|  | else | 
|  | clocksource_tsc.rating = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(mark_tsc_unstable); | 
|  |  | 
|  | static int __init dmi_mark_tsc_unstable(const struct dmi_system_id *d) | 
|  | { | 
|  | printk(KERN_NOTICE "%s detected: marking TSC unstable.\n", | 
|  | d->ident); | 
|  | tsc_unstable = 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* List of systems that have known TSC problems */ | 
|  | static struct dmi_system_id __initdata bad_tsc_dmi_table[] = { | 
|  | { | 
|  | .callback = dmi_mark_tsc_unstable, | 
|  | .ident = "IBM Thinkpad 380XD", | 
|  | .matches = { | 
|  | DMI_MATCH(DMI_BOARD_VENDOR, "IBM"), | 
|  | DMI_MATCH(DMI_BOARD_NAME, "2635FA0"), | 
|  | }, | 
|  | }, | 
|  | {} | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Geode_LX - the OLPC CPU has a possibly a very reliable TSC | 
|  | */ | 
|  | #ifdef CONFIG_MGEODE_LX | 
|  | /* RTSC counts during suspend */ | 
|  | #define RTSC_SUSP 0x100 | 
|  |  | 
|  | static void __init check_geode_tsc_reliable(void) | 
|  | { | 
|  | unsigned long res_low, res_high; | 
|  |  | 
|  | rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high); | 
|  | if (res_low & RTSC_SUSP) | 
|  | clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY; | 
|  | } | 
|  | #else | 
|  | static inline void check_geode_tsc_reliable(void) { } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Make an educated guess if the TSC is trustworthy and synchronized | 
|  | * over all CPUs. | 
|  | */ | 
|  | __cpuinit int unsynchronized_tsc(void) | 
|  | { | 
|  | if (!cpu_has_tsc || tsc_unstable) | 
|  | return 1; | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | if (apic_is_clustered_box()) | 
|  | return 1; | 
|  | #endif | 
|  |  | 
|  | if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) | 
|  | return 0; | 
|  | /* | 
|  | * Intel systems are normally all synchronized. | 
|  | * Exceptions must mark TSC as unstable: | 
|  | */ | 
|  | if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) { | 
|  | /* assume multi socket systems are not synchronized: */ | 
|  | if (num_possible_cpus() > 1) | 
|  | tsc_unstable = 1; | 
|  | } | 
|  |  | 
|  | return tsc_unstable; | 
|  | } | 
|  |  | 
|  | static void __init init_tsc_clocksource(void) | 
|  | { | 
|  | clocksource_tsc.mult = clocksource_khz2mult(tsc_khz, | 
|  | clocksource_tsc.shift); | 
|  | /* lower the rating if we already know its unstable: */ | 
|  | if (check_tsc_unstable()) { | 
|  | clocksource_tsc.rating = 0; | 
|  | clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS; | 
|  | } | 
|  | clocksource_register(&clocksource_tsc); | 
|  | } | 
|  |  | 
|  | void __init tsc_init(void) | 
|  | { | 
|  | u64 lpj; | 
|  | int cpu; | 
|  |  | 
|  | if (!cpu_has_tsc) | 
|  | return; | 
|  |  | 
|  | tsc_khz = calibrate_tsc(); | 
|  | cpu_khz = tsc_khz; | 
|  |  | 
|  | if (!tsc_khz) { | 
|  | mark_tsc_unstable("could not calculate TSC khz"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) && | 
|  | (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)) | 
|  | cpu_khz = calibrate_cpu(); | 
|  | #endif | 
|  |  | 
|  | lpj = ((u64)tsc_khz * 1000); | 
|  | do_div(lpj, HZ); | 
|  | lpj_fine = lpj; | 
|  |  | 
|  | printk("Detected %lu.%03lu MHz processor.\n", | 
|  | (unsigned long)cpu_khz / 1000, | 
|  | (unsigned long)cpu_khz % 1000); | 
|  |  | 
|  | /* | 
|  | * Secondary CPUs do not run through tsc_init(), so set up | 
|  | * all the scale factors for all CPUs, assuming the same | 
|  | * speed as the bootup CPU. (cpufreq notifiers will fix this | 
|  | * up if their speed diverges) | 
|  | */ | 
|  | for_each_possible_cpu(cpu) | 
|  | set_cyc2ns_scale(cpu_khz, cpu); | 
|  |  | 
|  | if (tsc_disabled > 0) | 
|  | return; | 
|  |  | 
|  | /* now allow native_sched_clock() to use rdtsc */ | 
|  | tsc_disabled = 0; | 
|  |  | 
|  | use_tsc_delay(); | 
|  | /* Check and install the TSC clocksource */ | 
|  | dmi_check_system(bad_tsc_dmi_table); | 
|  |  | 
|  | if (unsynchronized_tsc()) | 
|  | mark_tsc_unstable("TSCs unsynchronized"); | 
|  |  | 
|  | check_geode_tsc_reliable(); | 
|  | init_tsc_clocksource(); | 
|  | } | 
|  |  |