|  | #ifndef _LINUX_MMZONE_H | 
|  | #define _LINUX_MMZONE_H | 
|  |  | 
|  | #ifndef __ASSEMBLY__ | 
|  | #ifndef __GENERATING_BOUNDS_H | 
|  |  | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/wait.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/cache.h> | 
|  | #include <linux/threads.h> | 
|  | #include <linux/numa.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/seqlock.h> | 
|  | #include <linux/nodemask.h> | 
|  | #include <linux/pageblock-flags.h> | 
|  | #include <linux/bounds.h> | 
|  | #include <asm/atomic.h> | 
|  | #include <asm/page.h> | 
|  |  | 
|  | /* Free memory management - zoned buddy allocator.  */ | 
|  | #ifndef CONFIG_FORCE_MAX_ZONEORDER | 
|  | #define MAX_ORDER 11 | 
|  | #else | 
|  | #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER | 
|  | #endif | 
|  | #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) | 
|  |  | 
|  | /* | 
|  | * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed | 
|  | * costly to service.  That is between allocation orders which should | 
|  | * coelesce naturally under reasonable reclaim pressure and those which | 
|  | * will not. | 
|  | */ | 
|  | #define PAGE_ALLOC_COSTLY_ORDER 3 | 
|  |  | 
|  | #define MIGRATE_UNMOVABLE     0 | 
|  | #define MIGRATE_RECLAIMABLE   1 | 
|  | #define MIGRATE_MOVABLE       2 | 
|  | #define MIGRATE_RESERVE       3 | 
|  | #define MIGRATE_ISOLATE       4 /* can't allocate from here */ | 
|  | #define MIGRATE_TYPES         5 | 
|  |  | 
|  | #define for_each_migratetype_order(order, type) \ | 
|  | for (order = 0; order < MAX_ORDER; order++) \ | 
|  | for (type = 0; type < MIGRATE_TYPES; type++) | 
|  |  | 
|  | extern int page_group_by_mobility_disabled; | 
|  |  | 
|  | static inline int get_pageblock_migratetype(struct page *page) | 
|  | { | 
|  | if (unlikely(page_group_by_mobility_disabled)) | 
|  | return MIGRATE_UNMOVABLE; | 
|  |  | 
|  | return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end); | 
|  | } | 
|  |  | 
|  | struct free_area { | 
|  | struct list_head	free_list[MIGRATE_TYPES]; | 
|  | unsigned long		nr_free; | 
|  | }; | 
|  |  | 
|  | struct pglist_data; | 
|  |  | 
|  | /* | 
|  | * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. | 
|  | * So add a wild amount of padding here to ensure that they fall into separate | 
|  | * cachelines.  There are very few zone structures in the machine, so space | 
|  | * consumption is not a concern here. | 
|  | */ | 
|  | #if defined(CONFIG_SMP) | 
|  | struct zone_padding { | 
|  | char x[0]; | 
|  | } ____cacheline_internodealigned_in_smp; | 
|  | #define ZONE_PADDING(name)	struct zone_padding name; | 
|  | #else | 
|  | #define ZONE_PADDING(name) | 
|  | #endif | 
|  |  | 
|  | enum zone_stat_item { | 
|  | /* First 128 byte cacheline (assuming 64 bit words) */ | 
|  | NR_FREE_PAGES, | 
|  | NR_LRU_BASE, | 
|  | NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ | 
|  | NR_ACTIVE_ANON,		/*  "     "     "   "       "         */ | 
|  | NR_INACTIVE_FILE,	/*  "     "     "   "       "         */ | 
|  | NR_ACTIVE_FILE,		/*  "     "     "   "       "         */ | 
|  | #ifdef CONFIG_UNEVICTABLE_LRU | 
|  | NR_UNEVICTABLE,		/*  "     "     "   "       "         */ | 
|  | NR_MLOCK,		/* mlock()ed pages found and moved off LRU */ | 
|  | #else | 
|  | NR_UNEVICTABLE = NR_ACTIVE_FILE, /* avoid compiler errors in dead code */ | 
|  | NR_MLOCK = NR_ACTIVE_FILE, | 
|  | #endif | 
|  | NR_ANON_PAGES,	/* Mapped anonymous pages */ | 
|  | NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables. | 
|  | only modified from process context */ | 
|  | NR_FILE_PAGES, | 
|  | NR_FILE_DIRTY, | 
|  | NR_WRITEBACK, | 
|  | NR_SLAB_RECLAIMABLE, | 
|  | NR_SLAB_UNRECLAIMABLE, | 
|  | NR_PAGETABLE,		/* used for pagetables */ | 
|  | NR_UNSTABLE_NFS,	/* NFS unstable pages */ | 
|  | NR_BOUNCE, | 
|  | NR_VMSCAN_WRITE, | 
|  | /* Second 128 byte cacheline */ | 
|  | NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */ | 
|  | #ifdef CONFIG_NUMA | 
|  | NUMA_HIT,		/* allocated in intended node */ | 
|  | NUMA_MISS,		/* allocated in non intended node */ | 
|  | NUMA_FOREIGN,		/* was intended here, hit elsewhere */ | 
|  | NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */ | 
|  | NUMA_LOCAL,		/* allocation from local node */ | 
|  | NUMA_OTHER,		/* allocation from other node */ | 
|  | #endif | 
|  | NR_VM_ZONE_STAT_ITEMS }; | 
|  |  | 
|  | /* | 
|  | * We do arithmetic on the LRU lists in various places in the code, | 
|  | * so it is important to keep the active lists LRU_ACTIVE higher in | 
|  | * the array than the corresponding inactive lists, and to keep | 
|  | * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. | 
|  | * | 
|  | * This has to be kept in sync with the statistics in zone_stat_item | 
|  | * above and the descriptions in vmstat_text in mm/vmstat.c | 
|  | */ | 
|  | #define LRU_BASE 0 | 
|  | #define LRU_ACTIVE 1 | 
|  | #define LRU_FILE 2 | 
|  |  | 
|  | enum lru_list { | 
|  | LRU_INACTIVE_ANON = LRU_BASE, | 
|  | LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, | 
|  | LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, | 
|  | LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, | 
|  | #ifdef CONFIG_UNEVICTABLE_LRU | 
|  | LRU_UNEVICTABLE, | 
|  | #else | 
|  | LRU_UNEVICTABLE = LRU_ACTIVE_FILE, /* avoid compiler errors in dead code */ | 
|  | #endif | 
|  | NR_LRU_LISTS | 
|  | }; | 
|  |  | 
|  | #define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++) | 
|  |  | 
|  | #define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++) | 
|  |  | 
|  | static inline int is_file_lru(enum lru_list l) | 
|  | { | 
|  | return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE); | 
|  | } | 
|  |  | 
|  | static inline int is_active_lru(enum lru_list l) | 
|  | { | 
|  | return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE); | 
|  | } | 
|  |  | 
|  | static inline int is_unevictable_lru(enum lru_list l) | 
|  | { | 
|  | #ifdef CONFIG_UNEVICTABLE_LRU | 
|  | return (l == LRU_UNEVICTABLE); | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | struct per_cpu_pages { | 
|  | int count;		/* number of pages in the list */ | 
|  | int high;		/* high watermark, emptying needed */ | 
|  | int batch;		/* chunk size for buddy add/remove */ | 
|  | struct list_head list;	/* the list of pages */ | 
|  | }; | 
|  |  | 
|  | struct per_cpu_pageset { | 
|  | struct per_cpu_pages pcp; | 
|  | #ifdef CONFIG_NUMA | 
|  | s8 expire; | 
|  | #endif | 
|  | #ifdef CONFIG_SMP | 
|  | s8 stat_threshold; | 
|  | s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; | 
|  | #endif | 
|  | } ____cacheline_aligned_in_smp; | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)]) | 
|  | #else | 
|  | #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)]) | 
|  | #endif | 
|  |  | 
|  | #endif /* !__GENERATING_BOUNDS.H */ | 
|  |  | 
|  | enum zone_type { | 
|  | #ifdef CONFIG_ZONE_DMA | 
|  | /* | 
|  | * ZONE_DMA is used when there are devices that are not able | 
|  | * to do DMA to all of addressable memory (ZONE_NORMAL). Then we | 
|  | * carve out the portion of memory that is needed for these devices. | 
|  | * The range is arch specific. | 
|  | * | 
|  | * Some examples | 
|  | * | 
|  | * Architecture		Limit | 
|  | * --------------------------- | 
|  | * parisc, ia64, sparc	<4G | 
|  | * s390			<2G | 
|  | * arm			Various | 
|  | * alpha		Unlimited or 0-16MB. | 
|  | * | 
|  | * i386, x86_64 and multiple other arches | 
|  | * 			<16M. | 
|  | */ | 
|  | ZONE_DMA, | 
|  | #endif | 
|  | #ifdef CONFIG_ZONE_DMA32 | 
|  | /* | 
|  | * x86_64 needs two ZONE_DMAs because it supports devices that are | 
|  | * only able to do DMA to the lower 16M but also 32 bit devices that | 
|  | * can only do DMA areas below 4G. | 
|  | */ | 
|  | ZONE_DMA32, | 
|  | #endif | 
|  | /* | 
|  | * Normal addressable memory is in ZONE_NORMAL. DMA operations can be | 
|  | * performed on pages in ZONE_NORMAL if the DMA devices support | 
|  | * transfers to all addressable memory. | 
|  | */ | 
|  | ZONE_NORMAL, | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | /* | 
|  | * A memory area that is only addressable by the kernel through | 
|  | * mapping portions into its own address space. This is for example | 
|  | * used by i386 to allow the kernel to address the memory beyond | 
|  | * 900MB. The kernel will set up special mappings (page | 
|  | * table entries on i386) for each page that the kernel needs to | 
|  | * access. | 
|  | */ | 
|  | ZONE_HIGHMEM, | 
|  | #endif | 
|  | ZONE_MOVABLE, | 
|  | __MAX_NR_ZONES | 
|  | }; | 
|  |  | 
|  | #ifndef __GENERATING_BOUNDS_H | 
|  |  | 
|  | /* | 
|  | * When a memory allocation must conform to specific limitations (such | 
|  | * as being suitable for DMA) the caller will pass in hints to the | 
|  | * allocator in the gfp_mask, in the zone modifier bits.  These bits | 
|  | * are used to select a priority ordered list of memory zones which | 
|  | * match the requested limits. See gfp_zone() in include/linux/gfp.h | 
|  | */ | 
|  |  | 
|  | #if MAX_NR_ZONES < 2 | 
|  | #define ZONES_SHIFT 0 | 
|  | #elif MAX_NR_ZONES <= 2 | 
|  | #define ZONES_SHIFT 1 | 
|  | #elif MAX_NR_ZONES <= 4 | 
|  | #define ZONES_SHIFT 2 | 
|  | #else | 
|  | #error ZONES_SHIFT -- too many zones configured adjust calculation | 
|  | #endif | 
|  |  | 
|  | struct zone { | 
|  | /* Fields commonly accessed by the page allocator */ | 
|  | unsigned long		pages_min, pages_low, pages_high; | 
|  | /* | 
|  | * We don't know if the memory that we're going to allocate will be freeable | 
|  | * or/and it will be released eventually, so to avoid totally wasting several | 
|  | * GB of ram we must reserve some of the lower zone memory (otherwise we risk | 
|  | * to run OOM on the lower zones despite there's tons of freeable ram | 
|  | * on the higher zones). This array is recalculated at runtime if the | 
|  | * sysctl_lowmem_reserve_ratio sysctl changes. | 
|  | */ | 
|  | unsigned long		lowmem_reserve[MAX_NR_ZONES]; | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | int node; | 
|  | /* | 
|  | * zone reclaim becomes active if more unmapped pages exist. | 
|  | */ | 
|  | unsigned long		min_unmapped_pages; | 
|  | unsigned long		min_slab_pages; | 
|  | struct per_cpu_pageset	*pageset[NR_CPUS]; | 
|  | #else | 
|  | struct per_cpu_pageset	pageset[NR_CPUS]; | 
|  | #endif | 
|  | /* | 
|  | * free areas of different sizes | 
|  | */ | 
|  | spinlock_t		lock; | 
|  | #ifdef CONFIG_MEMORY_HOTPLUG | 
|  | /* see spanned/present_pages for more description */ | 
|  | seqlock_t		span_seqlock; | 
|  | #endif | 
|  | struct free_area	free_area[MAX_ORDER]; | 
|  |  | 
|  | #ifndef CONFIG_SPARSEMEM | 
|  | /* | 
|  | * Flags for a pageblock_nr_pages block. See pageblock-flags.h. | 
|  | * In SPARSEMEM, this map is stored in struct mem_section | 
|  | */ | 
|  | unsigned long		*pageblock_flags; | 
|  | #endif /* CONFIG_SPARSEMEM */ | 
|  |  | 
|  |  | 
|  | ZONE_PADDING(_pad1_) | 
|  |  | 
|  | /* Fields commonly accessed by the page reclaim scanner */ | 
|  | spinlock_t		lru_lock; | 
|  | struct { | 
|  | struct list_head list; | 
|  | unsigned long nr_scan; | 
|  | } lru[NR_LRU_LISTS]; | 
|  |  | 
|  | /* | 
|  | * The pageout code in vmscan.c keeps track of how many of the | 
|  | * mem/swap backed and file backed pages are refeferenced. | 
|  | * The higher the rotated/scanned ratio, the more valuable | 
|  | * that cache is. | 
|  | * | 
|  | * The anon LRU stats live in [0], file LRU stats in [1] | 
|  | */ | 
|  | unsigned long		recent_rotated[2]; | 
|  | unsigned long		recent_scanned[2]; | 
|  |  | 
|  | unsigned long		pages_scanned;	   /* since last reclaim */ | 
|  | unsigned long		flags;		   /* zone flags, see below */ | 
|  |  | 
|  | /* Zone statistics */ | 
|  | atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS]; | 
|  |  | 
|  | /* | 
|  | * prev_priority holds the scanning priority for this zone.  It is | 
|  | * defined as the scanning priority at which we achieved our reclaim | 
|  | * target at the previous try_to_free_pages() or balance_pgdat() | 
|  | * invokation. | 
|  | * | 
|  | * We use prev_priority as a measure of how much stress page reclaim is | 
|  | * under - it drives the swappiness decision: whether to unmap mapped | 
|  | * pages. | 
|  | * | 
|  | * Access to both this field is quite racy even on uniprocessor.  But | 
|  | * it is expected to average out OK. | 
|  | */ | 
|  | int prev_priority; | 
|  |  | 
|  | /* | 
|  | * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on | 
|  | * this zone's LRU.  Maintained by the pageout code. | 
|  | */ | 
|  | unsigned int inactive_ratio; | 
|  |  | 
|  |  | 
|  | ZONE_PADDING(_pad2_) | 
|  | /* Rarely used or read-mostly fields */ | 
|  |  | 
|  | /* | 
|  | * wait_table		-- the array holding the hash table | 
|  | * wait_table_hash_nr_entries	-- the size of the hash table array | 
|  | * wait_table_bits	-- wait_table_size == (1 << wait_table_bits) | 
|  | * | 
|  | * The purpose of all these is to keep track of the people | 
|  | * waiting for a page to become available and make them | 
|  | * runnable again when possible. The trouble is that this | 
|  | * consumes a lot of space, especially when so few things | 
|  | * wait on pages at a given time. So instead of using | 
|  | * per-page waitqueues, we use a waitqueue hash table. | 
|  | * | 
|  | * The bucket discipline is to sleep on the same queue when | 
|  | * colliding and wake all in that wait queue when removing. | 
|  | * When something wakes, it must check to be sure its page is | 
|  | * truly available, a la thundering herd. The cost of a | 
|  | * collision is great, but given the expected load of the | 
|  | * table, they should be so rare as to be outweighed by the | 
|  | * benefits from the saved space. | 
|  | * | 
|  | * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the | 
|  | * primary users of these fields, and in mm/page_alloc.c | 
|  | * free_area_init_core() performs the initialization of them. | 
|  | */ | 
|  | wait_queue_head_t	* wait_table; | 
|  | unsigned long		wait_table_hash_nr_entries; | 
|  | unsigned long		wait_table_bits; | 
|  |  | 
|  | /* | 
|  | * Discontig memory support fields. | 
|  | */ | 
|  | struct pglist_data	*zone_pgdat; | 
|  | /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ | 
|  | unsigned long		zone_start_pfn; | 
|  |  | 
|  | /* | 
|  | * zone_start_pfn, spanned_pages and present_pages are all | 
|  | * protected by span_seqlock.  It is a seqlock because it has | 
|  | * to be read outside of zone->lock, and it is done in the main | 
|  | * allocator path.  But, it is written quite infrequently. | 
|  | * | 
|  | * The lock is declared along with zone->lock because it is | 
|  | * frequently read in proximity to zone->lock.  It's good to | 
|  | * give them a chance of being in the same cacheline. | 
|  | */ | 
|  | unsigned long		spanned_pages;	/* total size, including holes */ | 
|  | unsigned long		present_pages;	/* amount of memory (excluding holes) */ | 
|  |  | 
|  | /* | 
|  | * rarely used fields: | 
|  | */ | 
|  | const char		*name; | 
|  | } ____cacheline_internodealigned_in_smp; | 
|  |  | 
|  | typedef enum { | 
|  | ZONE_ALL_UNRECLAIMABLE,		/* all pages pinned */ | 
|  | ZONE_RECLAIM_LOCKED,		/* prevents concurrent reclaim */ | 
|  | ZONE_OOM_LOCKED,		/* zone is in OOM killer zonelist */ | 
|  | } zone_flags_t; | 
|  |  | 
|  | static inline void zone_set_flag(struct zone *zone, zone_flags_t flag) | 
|  | { | 
|  | set_bit(flag, &zone->flags); | 
|  | } | 
|  |  | 
|  | static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag) | 
|  | { | 
|  | return test_and_set_bit(flag, &zone->flags); | 
|  | } | 
|  |  | 
|  | static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag) | 
|  | { | 
|  | clear_bit(flag, &zone->flags); | 
|  | } | 
|  |  | 
|  | static inline int zone_is_all_unreclaimable(const struct zone *zone) | 
|  | { | 
|  | return test_bit(ZONE_ALL_UNRECLAIMABLE, &zone->flags); | 
|  | } | 
|  |  | 
|  | static inline int zone_is_reclaim_locked(const struct zone *zone) | 
|  | { | 
|  | return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags); | 
|  | } | 
|  |  | 
|  | static inline int zone_is_oom_locked(const struct zone *zone) | 
|  | { | 
|  | return test_bit(ZONE_OOM_LOCKED, &zone->flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The "priority" of VM scanning is how much of the queues we will scan in one | 
|  | * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the | 
|  | * queues ("queue_length >> 12") during an aging round. | 
|  | */ | 
|  | #define DEF_PRIORITY 12 | 
|  |  | 
|  | /* Maximum number of zones on a zonelist */ | 
|  | #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  |  | 
|  | /* | 
|  | * The NUMA zonelists are doubled becausse we need zonelists that restrict the | 
|  | * allocations to a single node for GFP_THISNODE. | 
|  | * | 
|  | * [0]	: Zonelist with fallback | 
|  | * [1]	: No fallback (GFP_THISNODE) | 
|  | */ | 
|  | #define MAX_ZONELISTS 2 | 
|  |  | 
|  |  | 
|  | /* | 
|  | * We cache key information from each zonelist for smaller cache | 
|  | * footprint when scanning for free pages in get_page_from_freelist(). | 
|  | * | 
|  | * 1) The BITMAP fullzones tracks which zones in a zonelist have come | 
|  | *    up short of free memory since the last time (last_fullzone_zap) | 
|  | *    we zero'd fullzones. | 
|  | * 2) The array z_to_n[] maps each zone in the zonelist to its node | 
|  | *    id, so that we can efficiently evaluate whether that node is | 
|  | *    set in the current tasks mems_allowed. | 
|  | * | 
|  | * Both fullzones and z_to_n[] are one-to-one with the zonelist, | 
|  | * indexed by a zones offset in the zonelist zones[] array. | 
|  | * | 
|  | * The get_page_from_freelist() routine does two scans.  During the | 
|  | * first scan, we skip zones whose corresponding bit in 'fullzones' | 
|  | * is set or whose corresponding node in current->mems_allowed (which | 
|  | * comes from cpusets) is not set.  During the second scan, we bypass | 
|  | * this zonelist_cache, to ensure we look methodically at each zone. | 
|  | * | 
|  | * Once per second, we zero out (zap) fullzones, forcing us to | 
|  | * reconsider nodes that might have regained more free memory. | 
|  | * The field last_full_zap is the time we last zapped fullzones. | 
|  | * | 
|  | * This mechanism reduces the amount of time we waste repeatedly | 
|  | * reexaming zones for free memory when they just came up low on | 
|  | * memory momentarilly ago. | 
|  | * | 
|  | * The zonelist_cache struct members logically belong in struct | 
|  | * zonelist.  However, the mempolicy zonelists constructed for | 
|  | * MPOL_BIND are intentionally variable length (and usually much | 
|  | * shorter).  A general purpose mechanism for handling structs with | 
|  | * multiple variable length members is more mechanism than we want | 
|  | * here.  We resort to some special case hackery instead. | 
|  | * | 
|  | * The MPOL_BIND zonelists don't need this zonelist_cache (in good | 
|  | * part because they are shorter), so we put the fixed length stuff | 
|  | * at the front of the zonelist struct, ending in a variable length | 
|  | * zones[], as is needed by MPOL_BIND. | 
|  | * | 
|  | * Then we put the optional zonelist cache on the end of the zonelist | 
|  | * struct.  This optional stuff is found by a 'zlcache_ptr' pointer in | 
|  | * the fixed length portion at the front of the struct.  This pointer | 
|  | * both enables us to find the zonelist cache, and in the case of | 
|  | * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL) | 
|  | * to know that the zonelist cache is not there. | 
|  | * | 
|  | * The end result is that struct zonelists come in two flavors: | 
|  | *  1) The full, fixed length version, shown below, and | 
|  | *  2) The custom zonelists for MPOL_BIND. | 
|  | * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache. | 
|  | * | 
|  | * Even though there may be multiple CPU cores on a node modifying | 
|  | * fullzones or last_full_zap in the same zonelist_cache at the same | 
|  | * time, we don't lock it.  This is just hint data - if it is wrong now | 
|  | * and then, the allocator will still function, perhaps a bit slower. | 
|  | */ | 
|  |  | 
|  |  | 
|  | struct zonelist_cache { | 
|  | unsigned short z_to_n[MAX_ZONES_PER_ZONELIST];		/* zone->nid */ | 
|  | DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST);	/* zone full? */ | 
|  | unsigned long last_full_zap;		/* when last zap'd (jiffies) */ | 
|  | }; | 
|  | #else | 
|  | #define MAX_ZONELISTS 1 | 
|  | struct zonelist_cache; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * This struct contains information about a zone in a zonelist. It is stored | 
|  | * here to avoid dereferences into large structures and lookups of tables | 
|  | */ | 
|  | struct zoneref { | 
|  | struct zone *zone;	/* Pointer to actual zone */ | 
|  | int zone_idx;		/* zone_idx(zoneref->zone) */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * One allocation request operates on a zonelist. A zonelist | 
|  | * is a list of zones, the first one is the 'goal' of the | 
|  | * allocation, the other zones are fallback zones, in decreasing | 
|  | * priority. | 
|  | * | 
|  | * If zlcache_ptr is not NULL, then it is just the address of zlcache, | 
|  | * as explained above.  If zlcache_ptr is NULL, there is no zlcache. | 
|  | * * | 
|  | * To speed the reading of the zonelist, the zonerefs contain the zone index | 
|  | * of the entry being read. Helper functions to access information given | 
|  | * a struct zoneref are | 
|  | * | 
|  | * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs | 
|  | * zonelist_zone_idx()	- Return the index of the zone for an entry | 
|  | * zonelist_node_idx()	- Return the index of the node for an entry | 
|  | */ | 
|  | struct zonelist { | 
|  | struct zonelist_cache *zlcache_ptr;		     // NULL or &zlcache | 
|  | struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; | 
|  | #ifdef CONFIG_NUMA | 
|  | struct zonelist_cache zlcache;			     // optional ... | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_ARCH_POPULATES_NODE_MAP | 
|  | struct node_active_region { | 
|  | unsigned long start_pfn; | 
|  | unsigned long end_pfn; | 
|  | int nid; | 
|  | }; | 
|  | #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ | 
|  |  | 
|  | #ifndef CONFIG_DISCONTIGMEM | 
|  | /* The array of struct pages - for discontigmem use pgdat->lmem_map */ | 
|  | extern struct page *mem_map; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM | 
|  | * (mostly NUMA machines?) to denote a higher-level memory zone than the | 
|  | * zone denotes. | 
|  | * | 
|  | * On NUMA machines, each NUMA node would have a pg_data_t to describe | 
|  | * it's memory layout. | 
|  | * | 
|  | * Memory statistics and page replacement data structures are maintained on a | 
|  | * per-zone basis. | 
|  | */ | 
|  | struct bootmem_data; | 
|  | typedef struct pglist_data { | 
|  | struct zone node_zones[MAX_NR_ZONES]; | 
|  | struct zonelist node_zonelists[MAX_ZONELISTS]; | 
|  | int nr_zones; | 
|  | #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */ | 
|  | struct page *node_mem_map; | 
|  | #ifdef CONFIG_CGROUP_MEM_RES_CTLR | 
|  | struct page_cgroup *node_page_cgroup; | 
|  | #endif | 
|  | #endif | 
|  | struct bootmem_data *bdata; | 
|  | #ifdef CONFIG_MEMORY_HOTPLUG | 
|  | /* | 
|  | * Must be held any time you expect node_start_pfn, node_present_pages | 
|  | * or node_spanned_pages stay constant.  Holding this will also | 
|  | * guarantee that any pfn_valid() stays that way. | 
|  | * | 
|  | * Nests above zone->lock and zone->size_seqlock. | 
|  | */ | 
|  | spinlock_t node_size_lock; | 
|  | #endif | 
|  | unsigned long node_start_pfn; | 
|  | unsigned long node_present_pages; /* total number of physical pages */ | 
|  | unsigned long node_spanned_pages; /* total size of physical page | 
|  | range, including holes */ | 
|  | int node_id; | 
|  | wait_queue_head_t kswapd_wait; | 
|  | struct task_struct *kswapd; | 
|  | int kswapd_max_order; | 
|  | } pg_data_t; | 
|  |  | 
|  | #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages) | 
|  | #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages) | 
|  | #ifdef CONFIG_FLAT_NODE_MEM_MAP | 
|  | #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr)) | 
|  | #else | 
|  | #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr)) | 
|  | #endif | 
|  | #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr)) | 
|  |  | 
|  | #include <linux/memory_hotplug.h> | 
|  |  | 
|  | void get_zone_counts(unsigned long *active, unsigned long *inactive, | 
|  | unsigned long *free); | 
|  | void build_all_zonelists(void); | 
|  | void wakeup_kswapd(struct zone *zone, int order); | 
|  | int zone_watermark_ok(struct zone *z, int order, unsigned long mark, | 
|  | int classzone_idx, int alloc_flags); | 
|  | enum memmap_context { | 
|  | MEMMAP_EARLY, | 
|  | MEMMAP_HOTPLUG, | 
|  | }; | 
|  | extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, | 
|  | unsigned long size, | 
|  | enum memmap_context context); | 
|  |  | 
|  | #ifdef CONFIG_HAVE_MEMORY_PRESENT | 
|  | void memory_present(int nid, unsigned long start, unsigned long end); | 
|  | #else | 
|  | static inline void memory_present(int nid, unsigned long start, unsigned long end) {} | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE | 
|  | unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. | 
|  | */ | 
|  | #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones) | 
|  |  | 
|  | static inline int populated_zone(struct zone *zone) | 
|  | { | 
|  | return (!!zone->present_pages); | 
|  | } | 
|  |  | 
|  | extern int movable_zone; | 
|  |  | 
|  | static inline int zone_movable_is_highmem(void) | 
|  | { | 
|  | #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP) | 
|  | return movable_zone == ZONE_HIGHMEM; | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline int is_highmem_idx(enum zone_type idx) | 
|  | { | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | return (idx == ZONE_HIGHMEM || | 
|  | (idx == ZONE_MOVABLE && zone_movable_is_highmem())); | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline int is_normal_idx(enum zone_type idx) | 
|  | { | 
|  | return (idx == ZONE_NORMAL); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * is_highmem - helper function to quickly check if a struct zone is a | 
|  | *              highmem zone or not.  This is an attempt to keep references | 
|  | *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. | 
|  | * @zone - pointer to struct zone variable | 
|  | */ | 
|  | static inline int is_highmem(struct zone *zone) | 
|  | { | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones; | 
|  | return zone_off == ZONE_HIGHMEM * sizeof(*zone) || | 
|  | (zone_off == ZONE_MOVABLE * sizeof(*zone) && | 
|  | zone_movable_is_highmem()); | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline int is_normal(struct zone *zone) | 
|  | { | 
|  | return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL; | 
|  | } | 
|  |  | 
|  | static inline int is_dma32(struct zone *zone) | 
|  | { | 
|  | #ifdef CONFIG_ZONE_DMA32 | 
|  | return zone == zone->zone_pgdat->node_zones + ZONE_DMA32; | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline int is_dma(struct zone *zone) | 
|  | { | 
|  | #ifdef CONFIG_ZONE_DMA | 
|  | return zone == zone->zone_pgdat->node_zones + ZONE_DMA; | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* These two functions are used to setup the per zone pages min values */ | 
|  | struct ctl_table; | 
|  | struct file; | 
|  | int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *, | 
|  | void __user *, size_t *, loff_t *); | 
|  | extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; | 
|  | int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *, | 
|  | void __user *, size_t *, loff_t *); | 
|  | int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *, | 
|  | void __user *, size_t *, loff_t *); | 
|  | int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, | 
|  | struct file *, void __user *, size_t *, loff_t *); | 
|  | int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, | 
|  | struct file *, void __user *, size_t *, loff_t *); | 
|  |  | 
|  | extern int numa_zonelist_order_handler(struct ctl_table *, int, | 
|  | struct file *, void __user *, size_t *, loff_t *); | 
|  | extern char numa_zonelist_order[]; | 
|  | #define NUMA_ZONELIST_ORDER_LEN 16	/* string buffer size */ | 
|  |  | 
|  | #include <linux/topology.h> | 
|  | /* Returns the number of the current Node. */ | 
|  | #ifndef numa_node_id | 
|  | #define numa_node_id()		(cpu_to_node(raw_smp_processor_id())) | 
|  | #endif | 
|  |  | 
|  | #ifndef CONFIG_NEED_MULTIPLE_NODES | 
|  |  | 
|  | extern struct pglist_data contig_page_data; | 
|  | #define NODE_DATA(nid)		(&contig_page_data) | 
|  | #define NODE_MEM_MAP(nid)	mem_map | 
|  |  | 
|  | #else /* CONFIG_NEED_MULTIPLE_NODES */ | 
|  |  | 
|  | #include <asm/mmzone.h> | 
|  |  | 
|  | #endif /* !CONFIG_NEED_MULTIPLE_NODES */ | 
|  |  | 
|  | extern struct pglist_data *first_online_pgdat(void); | 
|  | extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); | 
|  | extern struct zone *next_zone(struct zone *zone); | 
|  |  | 
|  | /** | 
|  | * for_each_online_pgdat - helper macro to iterate over all online nodes | 
|  | * @pgdat - pointer to a pg_data_t variable | 
|  | */ | 
|  | #define for_each_online_pgdat(pgdat)			\ | 
|  | for (pgdat = first_online_pgdat();		\ | 
|  | pgdat;					\ | 
|  | pgdat = next_online_pgdat(pgdat)) | 
|  | /** | 
|  | * for_each_zone - helper macro to iterate over all memory zones | 
|  | * @zone - pointer to struct zone variable | 
|  | * | 
|  | * The user only needs to declare the zone variable, for_each_zone | 
|  | * fills it in. | 
|  | */ | 
|  | #define for_each_zone(zone)			        \ | 
|  | for (zone = (first_online_pgdat())->node_zones; \ | 
|  | zone;					\ | 
|  | zone = next_zone(zone)) | 
|  |  | 
|  | static inline struct zone *zonelist_zone(struct zoneref *zoneref) | 
|  | { | 
|  | return zoneref->zone; | 
|  | } | 
|  |  | 
|  | static inline int zonelist_zone_idx(struct zoneref *zoneref) | 
|  | { | 
|  | return zoneref->zone_idx; | 
|  | } | 
|  |  | 
|  | static inline int zonelist_node_idx(struct zoneref *zoneref) | 
|  | { | 
|  | #ifdef CONFIG_NUMA | 
|  | /* zone_to_nid not available in this context */ | 
|  | return zoneref->zone->node; | 
|  | #else | 
|  | return 0; | 
|  | #endif /* CONFIG_NUMA */ | 
|  | } | 
|  |  | 
|  | /** | 
|  | * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point | 
|  | * @z - The cursor used as a starting point for the search | 
|  | * @highest_zoneidx - The zone index of the highest zone to return | 
|  | * @nodes - An optional nodemask to filter the zonelist with | 
|  | * @zone - The first suitable zone found is returned via this parameter | 
|  | * | 
|  | * This function returns the next zone at or below a given zone index that is | 
|  | * within the allowed nodemask using a cursor as the starting point for the | 
|  | * search. The zoneref returned is a cursor that represents the current zone | 
|  | * being examined. It should be advanced by one before calling | 
|  | * next_zones_zonelist again. | 
|  | */ | 
|  | struct zoneref *next_zones_zonelist(struct zoneref *z, | 
|  | enum zone_type highest_zoneidx, | 
|  | nodemask_t *nodes, | 
|  | struct zone **zone); | 
|  |  | 
|  | /** | 
|  | * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist | 
|  | * @zonelist - The zonelist to search for a suitable zone | 
|  | * @highest_zoneidx - The zone index of the highest zone to return | 
|  | * @nodes - An optional nodemask to filter the zonelist with | 
|  | * @zone - The first suitable zone found is returned via this parameter | 
|  | * | 
|  | * This function returns the first zone at or below a given zone index that is | 
|  | * within the allowed nodemask. The zoneref returned is a cursor that can be | 
|  | * used to iterate the zonelist with next_zones_zonelist by advancing it by | 
|  | * one before calling. | 
|  | */ | 
|  | static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, | 
|  | enum zone_type highest_zoneidx, | 
|  | nodemask_t *nodes, | 
|  | struct zone **zone) | 
|  | { | 
|  | return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes, | 
|  | zone); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask | 
|  | * @zone - The current zone in the iterator | 
|  | * @z - The current pointer within zonelist->zones being iterated | 
|  | * @zlist - The zonelist being iterated | 
|  | * @highidx - The zone index of the highest zone to return | 
|  | * @nodemask - Nodemask allowed by the allocator | 
|  | * | 
|  | * This iterator iterates though all zones at or below a given zone index and | 
|  | * within a given nodemask | 
|  | */ | 
|  | #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ | 
|  | for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone);	\ | 
|  | zone;							\ | 
|  | z = next_zones_zonelist(++z, highidx, nodemask, &zone))	\ | 
|  |  | 
|  | /** | 
|  | * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index | 
|  | * @zone - The current zone in the iterator | 
|  | * @z - The current pointer within zonelist->zones being iterated | 
|  | * @zlist - The zonelist being iterated | 
|  | * @highidx - The zone index of the highest zone to return | 
|  | * | 
|  | * This iterator iterates though all zones at or below a given zone index. | 
|  | */ | 
|  | #define for_each_zone_zonelist(zone, z, zlist, highidx) \ | 
|  | for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) | 
|  |  | 
|  | #ifdef CONFIG_SPARSEMEM | 
|  | #include <asm/sparsemem.h> | 
|  | #endif | 
|  |  | 
|  | #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ | 
|  | !defined(CONFIG_ARCH_POPULATES_NODE_MAP) | 
|  | static inline unsigned long early_pfn_to_nid(unsigned long pfn) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_FLATMEM | 
|  | #define pfn_to_nid(pfn)		(0) | 
|  | #endif | 
|  |  | 
|  | #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) | 
|  | #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) | 
|  |  | 
|  | #ifdef CONFIG_SPARSEMEM | 
|  |  | 
|  | /* | 
|  | * SECTION_SHIFT    		#bits space required to store a section # | 
|  | * | 
|  | * PA_SECTION_SHIFT		physical address to/from section number | 
|  | * PFN_SECTION_SHIFT		pfn to/from section number | 
|  | */ | 
|  | #define SECTIONS_SHIFT		(MAX_PHYSMEM_BITS - SECTION_SIZE_BITS) | 
|  |  | 
|  | #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS) | 
|  | #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT) | 
|  |  | 
|  | #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT) | 
|  |  | 
|  | #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT) | 
|  | #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1)) | 
|  |  | 
|  | #define SECTION_BLOCKFLAGS_BITS \ | 
|  | ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) | 
|  |  | 
|  | #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS | 
|  | #error Allocator MAX_ORDER exceeds SECTION_SIZE | 
|  | #endif | 
|  |  | 
|  | struct page; | 
|  | struct page_cgroup; | 
|  | struct mem_section { | 
|  | /* | 
|  | * This is, logically, a pointer to an array of struct | 
|  | * pages.  However, it is stored with some other magic. | 
|  | * (see sparse.c::sparse_init_one_section()) | 
|  | * | 
|  | * Additionally during early boot we encode node id of | 
|  | * the location of the section here to guide allocation. | 
|  | * (see sparse.c::memory_present()) | 
|  | * | 
|  | * Making it a UL at least makes someone do a cast | 
|  | * before using it wrong. | 
|  | */ | 
|  | unsigned long section_mem_map; | 
|  |  | 
|  | /* See declaration of similar field in struct zone */ | 
|  | unsigned long *pageblock_flags; | 
|  | #ifdef CONFIG_CGROUP_MEM_RES_CTLR | 
|  | /* | 
|  | * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use | 
|  | * section. (see memcontrol.h/page_cgroup.h about this.) | 
|  | */ | 
|  | struct page_cgroup *page_cgroup; | 
|  | unsigned long pad; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_SPARSEMEM_EXTREME | 
|  | #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section)) | 
|  | #else | 
|  | #define SECTIONS_PER_ROOT	1 | 
|  | #endif | 
|  |  | 
|  | #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT) | 
|  | #define NR_SECTION_ROOTS	(NR_MEM_SECTIONS / SECTIONS_PER_ROOT) | 
|  | #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1) | 
|  |  | 
|  | #ifdef CONFIG_SPARSEMEM_EXTREME | 
|  | extern struct mem_section *mem_section[NR_SECTION_ROOTS]; | 
|  | #else | 
|  | extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; | 
|  | #endif | 
|  |  | 
|  | static inline struct mem_section *__nr_to_section(unsigned long nr) | 
|  | { | 
|  | if (!mem_section[SECTION_NR_TO_ROOT(nr)]) | 
|  | return NULL; | 
|  | return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; | 
|  | } | 
|  | extern int __section_nr(struct mem_section* ms); | 
|  | extern unsigned long usemap_size(void); | 
|  |  | 
|  | /* | 
|  | * We use the lower bits of the mem_map pointer to store | 
|  | * a little bit of information.  There should be at least | 
|  | * 3 bits here due to 32-bit alignment. | 
|  | */ | 
|  | #define	SECTION_MARKED_PRESENT	(1UL<<0) | 
|  | #define SECTION_HAS_MEM_MAP	(1UL<<1) | 
|  | #define SECTION_MAP_LAST_BIT	(1UL<<2) | 
|  | #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1)) | 
|  | #define SECTION_NID_SHIFT	2 | 
|  |  | 
|  | static inline struct page *__section_mem_map_addr(struct mem_section *section) | 
|  | { | 
|  | unsigned long map = section->section_mem_map; | 
|  | map &= SECTION_MAP_MASK; | 
|  | return (struct page *)map; | 
|  | } | 
|  |  | 
|  | static inline int present_section(struct mem_section *section) | 
|  | { | 
|  | return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); | 
|  | } | 
|  |  | 
|  | static inline int present_section_nr(unsigned long nr) | 
|  | { | 
|  | return present_section(__nr_to_section(nr)); | 
|  | } | 
|  |  | 
|  | static inline int valid_section(struct mem_section *section) | 
|  | { | 
|  | return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); | 
|  | } | 
|  |  | 
|  | static inline int valid_section_nr(unsigned long nr) | 
|  | { | 
|  | return valid_section(__nr_to_section(nr)); | 
|  | } | 
|  |  | 
|  | static inline struct mem_section *__pfn_to_section(unsigned long pfn) | 
|  | { | 
|  | return __nr_to_section(pfn_to_section_nr(pfn)); | 
|  | } | 
|  |  | 
|  | static inline int pfn_valid(unsigned long pfn) | 
|  | { | 
|  | if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) | 
|  | return 0; | 
|  | return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); | 
|  | } | 
|  |  | 
|  | static inline int pfn_present(unsigned long pfn) | 
|  | { | 
|  | if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) | 
|  | return 0; | 
|  | return present_section(__nr_to_section(pfn_to_section_nr(pfn))); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * These are _only_ used during initialisation, therefore they | 
|  | * can use __initdata ...  They could have names to indicate | 
|  | * this restriction. | 
|  | */ | 
|  | #ifdef CONFIG_NUMA | 
|  | #define pfn_to_nid(pfn)							\ | 
|  | ({									\ | 
|  | unsigned long __pfn_to_nid_pfn = (pfn);				\ | 
|  | page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\ | 
|  | }) | 
|  | #else | 
|  | #define pfn_to_nid(pfn)		(0) | 
|  | #endif | 
|  |  | 
|  | #define early_pfn_valid(pfn)	pfn_valid(pfn) | 
|  | void sparse_init(void); | 
|  | #else | 
|  | #define sparse_init()	do {} while (0) | 
|  | #define sparse_index_init(_sec, _nid)  do {} while (0) | 
|  | #endif /* CONFIG_SPARSEMEM */ | 
|  |  | 
|  | #ifdef CONFIG_NODES_SPAN_OTHER_NODES | 
|  | #define early_pfn_in_nid(pfn, nid)	(early_pfn_to_nid(pfn) == (nid)) | 
|  | #else | 
|  | #define early_pfn_in_nid(pfn, nid)	(1) | 
|  | #endif | 
|  |  | 
|  | #ifndef early_pfn_valid | 
|  | #define early_pfn_valid(pfn)	(1) | 
|  | #endif | 
|  |  | 
|  | void memory_present(int nid, unsigned long start, unsigned long end); | 
|  | unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); | 
|  |  | 
|  | /* | 
|  | * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we | 
|  | * need to check pfn validility within that MAX_ORDER_NR_PAGES block. | 
|  | * pfn_valid_within() should be used in this case; we optimise this away | 
|  | * when we have no holes within a MAX_ORDER_NR_PAGES block. | 
|  | */ | 
|  | #ifdef CONFIG_HOLES_IN_ZONE | 
|  | #define pfn_valid_within(pfn) pfn_valid(pfn) | 
|  | #else | 
|  | #define pfn_valid_within(pfn) (1) | 
|  | #endif | 
|  |  | 
|  | #endif /* !__GENERATING_BOUNDS.H */ | 
|  | #endif /* !__ASSEMBLY__ */ | 
|  | #endif /* _LINUX_MMZONE_H */ |