|  | /* | 
|  | * Procedures for maintaining information about logical memory blocks. | 
|  | * | 
|  | * Peter Bergner, IBM Corp.	June 2001. | 
|  | * Copyright (C) 2001 Peter Bergner. | 
|  | * | 
|  | *      This program is free software; you can redistribute it and/or | 
|  | *      modify it under the terms of the GNU General Public License | 
|  | *      as published by the Free Software Foundation; either version | 
|  | *      2 of the License, or (at your option) any later version. | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/lmb.h> | 
|  |  | 
|  | #define LMB_ALLOC_ANYWHERE	0 | 
|  |  | 
|  | struct lmb lmb; | 
|  |  | 
|  | static int lmb_debug; | 
|  |  | 
|  | static int __init early_lmb(char *p) | 
|  | { | 
|  | if (p && strstr(p, "debug")) | 
|  | lmb_debug = 1; | 
|  | return 0; | 
|  | } | 
|  | early_param("lmb", early_lmb); | 
|  |  | 
|  | void lmb_dump_all(void) | 
|  | { | 
|  | unsigned long i; | 
|  |  | 
|  | if (!lmb_debug) | 
|  | return; | 
|  |  | 
|  | pr_info("lmb_dump_all:\n"); | 
|  | pr_info("    memory.cnt		  = 0x%lx\n", lmb.memory.cnt); | 
|  | pr_info("    memory.size		  = 0x%llx\n", | 
|  | (unsigned long long)lmb.memory.size); | 
|  | for (i=0; i < lmb.memory.cnt ;i++) { | 
|  | pr_info("    memory.region[0x%lx].base       = 0x%llx\n", | 
|  | i, (unsigned long long)lmb.memory.region[i].base); | 
|  | pr_info("		      .size     = 0x%llx\n", | 
|  | (unsigned long long)lmb.memory.region[i].size); | 
|  | } | 
|  |  | 
|  | pr_info("    reserved.cnt	  = 0x%lx\n", lmb.reserved.cnt); | 
|  | pr_info("    reserved.size	  = 0x%llx\n", | 
|  | (unsigned long long)lmb.memory.size); | 
|  | for (i=0; i < lmb.reserved.cnt ;i++) { | 
|  | pr_info("    reserved.region[0x%lx].base       = 0x%llx\n", | 
|  | i, (unsigned long long)lmb.reserved.region[i].base); | 
|  | pr_info("		      .size     = 0x%llx\n", | 
|  | (unsigned long long)lmb.reserved.region[i].size); | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned long lmb_addrs_overlap(u64 base1, u64 size1, u64 base2, | 
|  | u64 size2) | 
|  | { | 
|  | return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); | 
|  | } | 
|  |  | 
|  | static long lmb_addrs_adjacent(u64 base1, u64 size1, u64 base2, u64 size2) | 
|  | { | 
|  | if (base2 == base1 + size1) | 
|  | return 1; | 
|  | else if (base1 == base2 + size2) | 
|  | return -1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static long lmb_regions_adjacent(struct lmb_region *rgn, | 
|  | unsigned long r1, unsigned long r2) | 
|  | { | 
|  | u64 base1 = rgn->region[r1].base; | 
|  | u64 size1 = rgn->region[r1].size; | 
|  | u64 base2 = rgn->region[r2].base; | 
|  | u64 size2 = rgn->region[r2].size; | 
|  |  | 
|  | return lmb_addrs_adjacent(base1, size1, base2, size2); | 
|  | } | 
|  |  | 
|  | static void lmb_remove_region(struct lmb_region *rgn, unsigned long r) | 
|  | { | 
|  | unsigned long i; | 
|  |  | 
|  | for (i = r; i < rgn->cnt - 1; i++) { | 
|  | rgn->region[i].base = rgn->region[i + 1].base; | 
|  | rgn->region[i].size = rgn->region[i + 1].size; | 
|  | } | 
|  | rgn->cnt--; | 
|  | } | 
|  |  | 
|  | /* Assumption: base addr of region 1 < base addr of region 2 */ | 
|  | static void lmb_coalesce_regions(struct lmb_region *rgn, | 
|  | unsigned long r1, unsigned long r2) | 
|  | { | 
|  | rgn->region[r1].size += rgn->region[r2].size; | 
|  | lmb_remove_region(rgn, r2); | 
|  | } | 
|  |  | 
|  | void __init lmb_init(void) | 
|  | { | 
|  | /* Create a dummy zero size LMB which will get coalesced away later. | 
|  | * This simplifies the lmb_add() code below... | 
|  | */ | 
|  | lmb.memory.region[0].base = 0; | 
|  | lmb.memory.region[0].size = 0; | 
|  | lmb.memory.cnt = 1; | 
|  |  | 
|  | /* Ditto. */ | 
|  | lmb.reserved.region[0].base = 0; | 
|  | lmb.reserved.region[0].size = 0; | 
|  | lmb.reserved.cnt = 1; | 
|  | } | 
|  |  | 
|  | void __init lmb_analyze(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | lmb.memory.size = 0; | 
|  |  | 
|  | for (i = 0; i < lmb.memory.cnt; i++) | 
|  | lmb.memory.size += lmb.memory.region[i].size; | 
|  | } | 
|  |  | 
|  | static long lmb_add_region(struct lmb_region *rgn, u64 base, u64 size) | 
|  | { | 
|  | unsigned long coalesced = 0; | 
|  | long adjacent, i; | 
|  |  | 
|  | if ((rgn->cnt == 1) && (rgn->region[0].size == 0)) { | 
|  | rgn->region[0].base = base; | 
|  | rgn->region[0].size = size; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* First try and coalesce this LMB with another. */ | 
|  | for (i = 0; i < rgn->cnt; i++) { | 
|  | u64 rgnbase = rgn->region[i].base; | 
|  | u64 rgnsize = rgn->region[i].size; | 
|  |  | 
|  | if ((rgnbase == base) && (rgnsize == size)) | 
|  | /* Already have this region, so we're done */ | 
|  | return 0; | 
|  |  | 
|  | adjacent = lmb_addrs_adjacent(base, size, rgnbase, rgnsize); | 
|  | if (adjacent > 0) { | 
|  | rgn->region[i].base -= size; | 
|  | rgn->region[i].size += size; | 
|  | coalesced++; | 
|  | break; | 
|  | } else if (adjacent < 0) { | 
|  | rgn->region[i].size += size; | 
|  | coalesced++; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((i < rgn->cnt - 1) && lmb_regions_adjacent(rgn, i, i+1)) { | 
|  | lmb_coalesce_regions(rgn, i, i+1); | 
|  | coalesced++; | 
|  | } | 
|  |  | 
|  | if (coalesced) | 
|  | return coalesced; | 
|  | if (rgn->cnt >= MAX_LMB_REGIONS) | 
|  | return -1; | 
|  |  | 
|  | /* Couldn't coalesce the LMB, so add it to the sorted table. */ | 
|  | for (i = rgn->cnt - 1; i >= 0; i--) { | 
|  | if (base < rgn->region[i].base) { | 
|  | rgn->region[i+1].base = rgn->region[i].base; | 
|  | rgn->region[i+1].size = rgn->region[i].size; | 
|  | } else { | 
|  | rgn->region[i+1].base = base; | 
|  | rgn->region[i+1].size = size; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (base < rgn->region[0].base) { | 
|  | rgn->region[0].base = base; | 
|  | rgn->region[0].size = size; | 
|  | } | 
|  | rgn->cnt++; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | long lmb_add(u64 base, u64 size) | 
|  | { | 
|  | struct lmb_region *_rgn = &lmb.memory; | 
|  |  | 
|  | /* On pSeries LPAR systems, the first LMB is our RMO region. */ | 
|  | if (base == 0) | 
|  | lmb.rmo_size = size; | 
|  |  | 
|  | return lmb_add_region(_rgn, base, size); | 
|  |  | 
|  | } | 
|  |  | 
|  | long lmb_remove(u64 base, u64 size) | 
|  | { | 
|  | struct lmb_region *rgn = &(lmb.memory); | 
|  | u64 rgnbegin, rgnend; | 
|  | u64 end = base + size; | 
|  | int i; | 
|  |  | 
|  | rgnbegin = rgnend = 0; /* supress gcc warnings */ | 
|  |  | 
|  | /* Find the region where (base, size) belongs to */ | 
|  | for (i=0; i < rgn->cnt; i++) { | 
|  | rgnbegin = rgn->region[i].base; | 
|  | rgnend = rgnbegin + rgn->region[i].size; | 
|  |  | 
|  | if ((rgnbegin <= base) && (end <= rgnend)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Didn't find the region */ | 
|  | if (i == rgn->cnt) | 
|  | return -1; | 
|  |  | 
|  | /* Check to see if we are removing entire region */ | 
|  | if ((rgnbegin == base) && (rgnend == end)) { | 
|  | lmb_remove_region(rgn, i); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Check to see if region is matching at the front */ | 
|  | if (rgnbegin == base) { | 
|  | rgn->region[i].base = end; | 
|  | rgn->region[i].size -= size; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Check to see if the region is matching at the end */ | 
|  | if (rgnend == end) { | 
|  | rgn->region[i].size -= size; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to split the entry -  adjust the current one to the | 
|  | * beginging of the hole and add the region after hole. | 
|  | */ | 
|  | rgn->region[i].size = base - rgn->region[i].base; | 
|  | return lmb_add_region(rgn, end, rgnend - end); | 
|  | } | 
|  |  | 
|  | long __init lmb_reserve(u64 base, u64 size) | 
|  | { | 
|  | struct lmb_region *_rgn = &lmb.reserved; | 
|  |  | 
|  | BUG_ON(0 == size); | 
|  |  | 
|  | return lmb_add_region(_rgn, base, size); | 
|  | } | 
|  |  | 
|  | long __init lmb_overlaps_region(struct lmb_region *rgn, u64 base, u64 size) | 
|  | { | 
|  | unsigned long i; | 
|  |  | 
|  | for (i = 0; i < rgn->cnt; i++) { | 
|  | u64 rgnbase = rgn->region[i].base; | 
|  | u64 rgnsize = rgn->region[i].size; | 
|  | if (lmb_addrs_overlap(base, size, rgnbase, rgnsize)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return (i < rgn->cnt) ? i : -1; | 
|  | } | 
|  |  | 
|  | static u64 lmb_align_down(u64 addr, u64 size) | 
|  | { | 
|  | return addr & ~(size - 1); | 
|  | } | 
|  |  | 
|  | static u64 lmb_align_up(u64 addr, u64 size) | 
|  | { | 
|  | return (addr + (size - 1)) & ~(size - 1); | 
|  | } | 
|  |  | 
|  | static u64 __init lmb_alloc_nid_unreserved(u64 start, u64 end, | 
|  | u64 size, u64 align) | 
|  | { | 
|  | u64 base, res_base; | 
|  | long j; | 
|  |  | 
|  | base = lmb_align_down((end - size), align); | 
|  | while (start <= base) { | 
|  | j = lmb_overlaps_region(&lmb.reserved, base, size); | 
|  | if (j < 0) { | 
|  | /* this area isn't reserved, take it */ | 
|  | if (lmb_add_region(&lmb.reserved, base, size) < 0) | 
|  | base = ~(u64)0; | 
|  | return base; | 
|  | } | 
|  | res_base = lmb.reserved.region[j].base; | 
|  | if (res_base < size) | 
|  | break; | 
|  | base = lmb_align_down(res_base - size, align); | 
|  | } | 
|  |  | 
|  | return ~(u64)0; | 
|  | } | 
|  |  | 
|  | static u64 __init lmb_alloc_nid_region(struct lmb_property *mp, | 
|  | u64 (*nid_range)(u64, u64, int *), | 
|  | u64 size, u64 align, int nid) | 
|  | { | 
|  | u64 start, end; | 
|  |  | 
|  | start = mp->base; | 
|  | end = start + mp->size; | 
|  |  | 
|  | start = lmb_align_up(start, align); | 
|  | while (start < end) { | 
|  | u64 this_end; | 
|  | int this_nid; | 
|  |  | 
|  | this_end = nid_range(start, end, &this_nid); | 
|  | if (this_nid == nid) { | 
|  | u64 ret = lmb_alloc_nid_unreserved(start, this_end, | 
|  | size, align); | 
|  | if (ret != ~(u64)0) | 
|  | return ret; | 
|  | } | 
|  | start = this_end; | 
|  | } | 
|  |  | 
|  | return ~(u64)0; | 
|  | } | 
|  |  | 
|  | u64 __init lmb_alloc_nid(u64 size, u64 align, int nid, | 
|  | u64 (*nid_range)(u64 start, u64 end, int *nid)) | 
|  | { | 
|  | struct lmb_region *mem = &lmb.memory; | 
|  | int i; | 
|  |  | 
|  | BUG_ON(0 == size); | 
|  |  | 
|  | size = lmb_align_up(size, align); | 
|  |  | 
|  | for (i = 0; i < mem->cnt; i++) { | 
|  | u64 ret = lmb_alloc_nid_region(&mem->region[i], | 
|  | nid_range, | 
|  | size, align, nid); | 
|  | if (ret != ~(u64)0) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return lmb_alloc(size, align); | 
|  | } | 
|  |  | 
|  | u64 __init lmb_alloc(u64 size, u64 align) | 
|  | { | 
|  | return lmb_alloc_base(size, align, LMB_ALLOC_ANYWHERE); | 
|  | } | 
|  |  | 
|  | u64 __init lmb_alloc_base(u64 size, u64 align, u64 max_addr) | 
|  | { | 
|  | u64 alloc; | 
|  |  | 
|  | alloc = __lmb_alloc_base(size, align, max_addr); | 
|  |  | 
|  | if (alloc == 0) | 
|  | panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n", | 
|  | (unsigned long long) size, (unsigned long long) max_addr); | 
|  |  | 
|  | return alloc; | 
|  | } | 
|  |  | 
|  | u64 __init __lmb_alloc_base(u64 size, u64 align, u64 max_addr) | 
|  | { | 
|  | long i, j; | 
|  | u64 base = 0; | 
|  | u64 res_base; | 
|  |  | 
|  | BUG_ON(0 == size); | 
|  |  | 
|  | size = lmb_align_up(size, align); | 
|  |  | 
|  | /* On some platforms, make sure we allocate lowmem */ | 
|  | /* Note that LMB_REAL_LIMIT may be LMB_ALLOC_ANYWHERE */ | 
|  | if (max_addr == LMB_ALLOC_ANYWHERE) | 
|  | max_addr = LMB_REAL_LIMIT; | 
|  |  | 
|  | for (i = lmb.memory.cnt - 1; i >= 0; i--) { | 
|  | u64 lmbbase = lmb.memory.region[i].base; | 
|  | u64 lmbsize = lmb.memory.region[i].size; | 
|  |  | 
|  | if (lmbsize < size) | 
|  | continue; | 
|  | if (max_addr == LMB_ALLOC_ANYWHERE) | 
|  | base = lmb_align_down(lmbbase + lmbsize - size, align); | 
|  | else if (lmbbase < max_addr) { | 
|  | base = min(lmbbase + lmbsize, max_addr); | 
|  | base = lmb_align_down(base - size, align); | 
|  | } else | 
|  | continue; | 
|  |  | 
|  | while (base && lmbbase <= base) { | 
|  | j = lmb_overlaps_region(&lmb.reserved, base, size); | 
|  | if (j < 0) { | 
|  | /* this area isn't reserved, take it */ | 
|  | if (lmb_add_region(&lmb.reserved, base, size) < 0) | 
|  | return 0; | 
|  | return base; | 
|  | } | 
|  | res_base = lmb.reserved.region[j].base; | 
|  | if (res_base < size) | 
|  | break; | 
|  | base = lmb_align_down(res_base - size, align); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* You must call lmb_analyze() before this. */ | 
|  | u64 __init lmb_phys_mem_size(void) | 
|  | { | 
|  | return lmb.memory.size; | 
|  | } | 
|  |  | 
|  | u64 __init lmb_end_of_DRAM(void) | 
|  | { | 
|  | int idx = lmb.memory.cnt - 1; | 
|  |  | 
|  | return (lmb.memory.region[idx].base + lmb.memory.region[idx].size); | 
|  | } | 
|  |  | 
|  | /* You must call lmb_analyze() after this. */ | 
|  | void __init lmb_enforce_memory_limit(u64 memory_limit) | 
|  | { | 
|  | unsigned long i; | 
|  | u64 limit; | 
|  | struct lmb_property *p; | 
|  |  | 
|  | if (!memory_limit) | 
|  | return; | 
|  |  | 
|  | /* Truncate the lmb regions to satisfy the memory limit. */ | 
|  | limit = memory_limit; | 
|  | for (i = 0; i < lmb.memory.cnt; i++) { | 
|  | if (limit > lmb.memory.region[i].size) { | 
|  | limit -= lmb.memory.region[i].size; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | lmb.memory.region[i].size = limit; | 
|  | lmb.memory.cnt = i + 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (lmb.memory.region[0].size < lmb.rmo_size) | 
|  | lmb.rmo_size = lmb.memory.region[0].size; | 
|  |  | 
|  | memory_limit = lmb_end_of_DRAM(); | 
|  |  | 
|  | /* And truncate any reserves above the limit also. */ | 
|  | for (i = 0; i < lmb.reserved.cnt; i++) { | 
|  | p = &lmb.reserved.region[i]; | 
|  |  | 
|  | if (p->base > memory_limit) | 
|  | p->size = 0; | 
|  | else if ((p->base + p->size) > memory_limit) | 
|  | p->size = memory_limit - p->base; | 
|  |  | 
|  | if (p->size == 0) { | 
|  | lmb_remove_region(&lmb.reserved, i); | 
|  | i--; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | int __init lmb_is_reserved(u64 addr) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < lmb.reserved.cnt; i++) { | 
|  | u64 upper = lmb.reserved.region[i].base + | 
|  | lmb.reserved.region[i].size - 1; | 
|  | if ((addr >= lmb.reserved.region[i].base) && (addr <= upper)) | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Given a <base, len>, find which memory regions belong to this range. | 
|  | * Adjust the request and return a contiguous chunk. | 
|  | */ | 
|  | int lmb_find(struct lmb_property *res) | 
|  | { | 
|  | int i; | 
|  | u64 rstart, rend; | 
|  |  | 
|  | rstart = res->base; | 
|  | rend = rstart + res->size - 1; | 
|  |  | 
|  | for (i = 0; i < lmb.memory.cnt; i++) { | 
|  | u64 start = lmb.memory.region[i].base; | 
|  | u64 end = start + lmb.memory.region[i].size - 1; | 
|  |  | 
|  | if (start > rend) | 
|  | return -1; | 
|  |  | 
|  | if ((end >= rstart) && (start < rend)) { | 
|  | /* adjust the request */ | 
|  | if (rstart < start) | 
|  | rstart = start; | 
|  | if (rend > end) | 
|  | rend = end; | 
|  | res->base = rstart; | 
|  | res->size = rend - rstart + 1; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | return -1; | 
|  | } |