| /* | 
 |  * Initialize MMU support. | 
 |  * | 
 |  * Copyright (C) 1998-2003 Hewlett-Packard Co | 
 |  *	David Mosberger-Tang <davidm@hpl.hp.com> | 
 |  */ | 
 | #include <linux/kernel.h> | 
 | #include <linux/init.h> | 
 |  | 
 | #include <linux/bootmem.h> | 
 | #include <linux/efi.h> | 
 | #include <linux/elf.h> | 
 | #include <linux/memblock.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/mmzone.h> | 
 | #include <linux/module.h> | 
 | #include <linux/personality.h> | 
 | #include <linux/reboot.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/proc_fs.h> | 
 | #include <linux/bitops.h> | 
 | #include <linux/kexec.h> | 
 |  | 
 | #include <asm/dma.h> | 
 | #include <asm/io.h> | 
 | #include <asm/machvec.h> | 
 | #include <asm/numa.h> | 
 | #include <asm/patch.h> | 
 | #include <asm/pgalloc.h> | 
 | #include <asm/sal.h> | 
 | #include <asm/sections.h> | 
 | #include <asm/system.h> | 
 | #include <asm/tlb.h> | 
 | #include <asm/uaccess.h> | 
 | #include <asm/unistd.h> | 
 | #include <asm/mca.h> | 
 | #include <asm/paravirt.h> | 
 |  | 
 | extern void ia64_tlb_init (void); | 
 |  | 
 | unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL; | 
 |  | 
 | #ifdef CONFIG_VIRTUAL_MEM_MAP | 
 | unsigned long VMALLOC_END = VMALLOC_END_INIT; | 
 | EXPORT_SYMBOL(VMALLOC_END); | 
 | struct page *vmem_map; | 
 | EXPORT_SYMBOL(vmem_map); | 
 | #endif | 
 |  | 
 | struct page *zero_page_memmap_ptr;	/* map entry for zero page */ | 
 | EXPORT_SYMBOL(zero_page_memmap_ptr); | 
 |  | 
 | void | 
 | __ia64_sync_icache_dcache (pte_t pte) | 
 | { | 
 | 	unsigned long addr; | 
 | 	struct page *page; | 
 |  | 
 | 	page = pte_page(pte); | 
 | 	addr = (unsigned long) page_address(page); | 
 |  | 
 | 	if (test_bit(PG_arch_1, &page->flags)) | 
 | 		return;				/* i-cache is already coherent with d-cache */ | 
 |  | 
 | 	flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page))); | 
 | 	set_bit(PG_arch_1, &page->flags);	/* mark page as clean */ | 
 | } | 
 |  | 
 | /* | 
 |  * Since DMA is i-cache coherent, any (complete) pages that were written via | 
 |  * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to | 
 |  * flush them when they get mapped into an executable vm-area. | 
 |  */ | 
 | void | 
 | dma_mark_clean(void *addr, size_t size) | 
 | { | 
 | 	unsigned long pg_addr, end; | 
 |  | 
 | 	pg_addr = PAGE_ALIGN((unsigned long) addr); | 
 | 	end = (unsigned long) addr + size; | 
 | 	while (pg_addr + PAGE_SIZE <= end) { | 
 | 		struct page *page = virt_to_page(pg_addr); | 
 | 		set_bit(PG_arch_1, &page->flags); | 
 | 		pg_addr += PAGE_SIZE; | 
 | 	} | 
 | } | 
 |  | 
 | inline void | 
 | ia64_set_rbs_bot (void) | 
 | { | 
 | 	unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16; | 
 |  | 
 | 	if (stack_size > MAX_USER_STACK_SIZE) | 
 | 		stack_size = MAX_USER_STACK_SIZE; | 
 | 	current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size); | 
 | } | 
 |  | 
 | /* | 
 |  * This performs some platform-dependent address space initialization. | 
 |  * On IA-64, we want to setup the VM area for the register backing | 
 |  * store (which grows upwards) and install the gateway page which is | 
 |  * used for signal trampolines, etc. | 
 |  */ | 
 | void | 
 | ia64_init_addr_space (void) | 
 | { | 
 | 	struct vm_area_struct *vma; | 
 |  | 
 | 	ia64_set_rbs_bot(); | 
 |  | 
 | 	/* | 
 | 	 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore | 
 | 	 * the problem.  When the process attempts to write to the register backing store | 
 | 	 * for the first time, it will get a SEGFAULT in this case. | 
 | 	 */ | 
 | 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); | 
 | 	if (vma) { | 
 | 		INIT_LIST_HEAD(&vma->anon_vma_chain); | 
 | 		vma->vm_mm = current->mm; | 
 | 		vma->vm_start = current->thread.rbs_bot & PAGE_MASK; | 
 | 		vma->vm_end = vma->vm_start + PAGE_SIZE; | 
 | 		vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT; | 
 | 		vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); | 
 | 		down_write(¤t->mm->mmap_sem); | 
 | 		if (insert_vm_struct(current->mm, vma)) { | 
 | 			up_write(¤t->mm->mmap_sem); | 
 | 			kmem_cache_free(vm_area_cachep, vma); | 
 | 			return; | 
 | 		} | 
 | 		up_write(¤t->mm->mmap_sem); | 
 | 	} | 
 |  | 
 | 	/* map NaT-page at address zero to speed up speculative dereferencing of NULL: */ | 
 | 	if (!(current->personality & MMAP_PAGE_ZERO)) { | 
 | 		vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); | 
 | 		if (vma) { | 
 | 			INIT_LIST_HEAD(&vma->anon_vma_chain); | 
 | 			vma->vm_mm = current->mm; | 
 | 			vma->vm_end = PAGE_SIZE; | 
 | 			vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT); | 
 | 			vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED; | 
 | 			down_write(¤t->mm->mmap_sem); | 
 | 			if (insert_vm_struct(current->mm, vma)) { | 
 | 				up_write(¤t->mm->mmap_sem); | 
 | 				kmem_cache_free(vm_area_cachep, vma); | 
 | 				return; | 
 | 			} | 
 | 			up_write(¤t->mm->mmap_sem); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | void | 
 | free_initmem (void) | 
 | { | 
 | 	unsigned long addr, eaddr; | 
 |  | 
 | 	addr = (unsigned long) ia64_imva(__init_begin); | 
 | 	eaddr = (unsigned long) ia64_imva(__init_end); | 
 | 	while (addr < eaddr) { | 
 | 		ClearPageReserved(virt_to_page(addr)); | 
 | 		init_page_count(virt_to_page(addr)); | 
 | 		free_page(addr); | 
 | 		++totalram_pages; | 
 | 		addr += PAGE_SIZE; | 
 | 	} | 
 | 	printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n", | 
 | 	       (__init_end - __init_begin) >> 10); | 
 | } | 
 |  | 
 | void __init | 
 | free_initrd_mem (unsigned long start, unsigned long end) | 
 | { | 
 | 	struct page *page; | 
 | 	/* | 
 | 	 * EFI uses 4KB pages while the kernel can use 4KB or bigger. | 
 | 	 * Thus EFI and the kernel may have different page sizes. It is | 
 | 	 * therefore possible to have the initrd share the same page as | 
 | 	 * the end of the kernel (given current setup). | 
 | 	 * | 
 | 	 * To avoid freeing/using the wrong page (kernel sized) we: | 
 | 	 *	- align up the beginning of initrd | 
 | 	 *	- align down the end of initrd | 
 | 	 * | 
 | 	 *  |             | | 
 | 	 *  |=============| a000 | 
 | 	 *  |             | | 
 | 	 *  |             | | 
 | 	 *  |             | 9000 | 
 | 	 *  |/////////////| | 
 | 	 *  |/////////////| | 
 | 	 *  |=============| 8000 | 
 | 	 *  |///INITRD////| | 
 | 	 *  |/////////////| | 
 | 	 *  |/////////////| 7000 | 
 | 	 *  |             | | 
 | 	 *  |KKKKKKKKKKKKK| | 
 | 	 *  |=============| 6000 | 
 | 	 *  |KKKKKKKKKKKKK| | 
 | 	 *  |KKKKKKKKKKKKK| | 
 | 	 *  K=kernel using 8KB pages | 
 | 	 * | 
 | 	 * In this example, we must free page 8000 ONLY. So we must align up | 
 | 	 * initrd_start and keep initrd_end as is. | 
 | 	 */ | 
 | 	start = PAGE_ALIGN(start); | 
 | 	end = end & PAGE_MASK; | 
 |  | 
 | 	if (start < end) | 
 | 		printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10); | 
 |  | 
 | 	for (; start < end; start += PAGE_SIZE) { | 
 | 		if (!virt_addr_valid(start)) | 
 | 			continue; | 
 | 		page = virt_to_page(start); | 
 | 		ClearPageReserved(page); | 
 | 		init_page_count(page); | 
 | 		free_page(start); | 
 | 		++totalram_pages; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * This installs a clean page in the kernel's page table. | 
 |  */ | 
 | static struct page * __init | 
 | put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	pud_t *pud; | 
 | 	pmd_t *pmd; | 
 | 	pte_t *pte; | 
 |  | 
 | 	if (!PageReserved(page)) | 
 | 		printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n", | 
 | 		       page_address(page)); | 
 |  | 
 | 	pgd = pgd_offset_k(address);		/* note: this is NOT pgd_offset()! */ | 
 |  | 
 | 	{ | 
 | 		pud = pud_alloc(&init_mm, pgd, address); | 
 | 		if (!pud) | 
 | 			goto out; | 
 | 		pmd = pmd_alloc(&init_mm, pud, address); | 
 | 		if (!pmd) | 
 | 			goto out; | 
 | 		pte = pte_alloc_kernel(pmd, address); | 
 | 		if (!pte) | 
 | 			goto out; | 
 | 		if (!pte_none(*pte)) | 
 | 			goto out; | 
 | 		set_pte(pte, mk_pte(page, pgprot)); | 
 | 	} | 
 |   out: | 
 | 	/* no need for flush_tlb */ | 
 | 	return page; | 
 | } | 
 |  | 
 | static void __init | 
 | setup_gate (void) | 
 | { | 
 | 	void *gate_section; | 
 | 	struct page *page; | 
 |  | 
 | 	/* | 
 | 	 * Map the gate page twice: once read-only to export the ELF | 
 | 	 * headers etc. and once execute-only page to enable | 
 | 	 * privilege-promotion via "epc": | 
 | 	 */ | 
 | 	gate_section = paravirt_get_gate_section(); | 
 | 	page = virt_to_page(ia64_imva(gate_section)); | 
 | 	put_kernel_page(page, GATE_ADDR, PAGE_READONLY); | 
 | #ifdef HAVE_BUGGY_SEGREL | 
 | 	page = virt_to_page(ia64_imva(gate_section + PAGE_SIZE)); | 
 | 	put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE); | 
 | #else | 
 | 	put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE); | 
 | 	/* Fill in the holes (if any) with read-only zero pages: */ | 
 | 	{ | 
 | 		unsigned long addr; | 
 |  | 
 | 		for (addr = GATE_ADDR + PAGE_SIZE; | 
 | 		     addr < GATE_ADDR + PERCPU_PAGE_SIZE; | 
 | 		     addr += PAGE_SIZE) | 
 | 		{ | 
 | 			put_kernel_page(ZERO_PAGE(0), addr, | 
 | 					PAGE_READONLY); | 
 | 			put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE, | 
 | 					PAGE_READONLY); | 
 | 		} | 
 | 	} | 
 | #endif | 
 | 	ia64_patch_gate(); | 
 | } | 
 |  | 
 | void __devinit | 
 | ia64_mmu_init (void *my_cpu_data) | 
 | { | 
 | 	unsigned long pta, impl_va_bits; | 
 | 	extern void __devinit tlb_init (void); | 
 |  | 
 | #ifdef CONFIG_DISABLE_VHPT | 
 | #	define VHPT_ENABLE_BIT	0 | 
 | #else | 
 | #	define VHPT_ENABLE_BIT	1 | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped | 
 | 	 * address space.  The IA-64 architecture guarantees that at least 50 bits of | 
 | 	 * virtual address space are implemented but if we pick a large enough page size | 
 | 	 * (e.g., 64KB), the mapped address space is big enough that it will overlap with | 
 | 	 * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages, | 
 | 	 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a | 
 | 	 * problem in practice.  Alternatively, we could truncate the top of the mapped | 
 | 	 * address space to not permit mappings that would overlap with the VMLPT. | 
 | 	 * --davidm 00/12/06 | 
 | 	 */ | 
 | #	define pte_bits			3 | 
 | #	define mapped_space_bits	(3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT) | 
 | 	/* | 
 | 	 * The virtual page table has to cover the entire implemented address space within | 
 | 	 * a region even though not all of this space may be mappable.  The reason for | 
 | 	 * this is that the Access bit and Dirty bit fault handlers perform | 
 | 	 * non-speculative accesses to the virtual page table, so the address range of the | 
 | 	 * virtual page table itself needs to be covered by virtual page table. | 
 | 	 */ | 
 | #	define vmlpt_bits		(impl_va_bits - PAGE_SHIFT + pte_bits) | 
 | #	define POW2(n)			(1ULL << (n)) | 
 |  | 
 | 	impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61))); | 
 |  | 
 | 	if (impl_va_bits < 51 || impl_va_bits > 61) | 
 | 		panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1); | 
 | 	/* | 
 | 	 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need, | 
 | 	 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of | 
 | 	 * the test makes sure that our mapped space doesn't overlap the | 
 | 	 * unimplemented hole in the middle of the region. | 
 | 	 */ | 
 | 	if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) || | 
 | 	    (mapped_space_bits > impl_va_bits - 1)) | 
 | 		panic("Cannot build a big enough virtual-linear page table" | 
 | 		      " to cover mapped address space.\n" | 
 | 		      " Try using a smaller page size.\n"); | 
 |  | 
 |  | 
 | 	/* place the VMLPT at the end of each page-table mapped region: */ | 
 | 	pta = POW2(61) - POW2(vmlpt_bits); | 
 |  | 
 | 	/* | 
 | 	 * Set the (virtually mapped linear) page table address.  Bit | 
 | 	 * 8 selects between the short and long format, bits 2-7 the | 
 | 	 * size of the table, and bit 0 whether the VHPT walker is | 
 | 	 * enabled. | 
 | 	 */ | 
 | 	ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT); | 
 |  | 
 | 	ia64_tlb_init(); | 
 |  | 
 | #ifdef	CONFIG_HUGETLB_PAGE | 
 | 	ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2); | 
 | 	ia64_srlz_d(); | 
 | #endif | 
 | } | 
 |  | 
 | #ifdef CONFIG_VIRTUAL_MEM_MAP | 
 | int vmemmap_find_next_valid_pfn(int node, int i) | 
 | { | 
 | 	unsigned long end_address, hole_next_pfn; | 
 | 	unsigned long stop_address; | 
 | 	pg_data_t *pgdat = NODE_DATA(node); | 
 |  | 
 | 	end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i]; | 
 | 	end_address = PAGE_ALIGN(end_address); | 
 |  | 
 | 	stop_address = (unsigned long) &vmem_map[ | 
 | 		pgdat->node_start_pfn + pgdat->node_spanned_pages]; | 
 |  | 
 | 	do { | 
 | 		pgd_t *pgd; | 
 | 		pud_t *pud; | 
 | 		pmd_t *pmd; | 
 | 		pte_t *pte; | 
 |  | 
 | 		pgd = pgd_offset_k(end_address); | 
 | 		if (pgd_none(*pgd)) { | 
 | 			end_address += PGDIR_SIZE; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		pud = pud_offset(pgd, end_address); | 
 | 		if (pud_none(*pud)) { | 
 | 			end_address += PUD_SIZE; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		pmd = pmd_offset(pud, end_address); | 
 | 		if (pmd_none(*pmd)) { | 
 | 			end_address += PMD_SIZE; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		pte = pte_offset_kernel(pmd, end_address); | 
 | retry_pte: | 
 | 		if (pte_none(*pte)) { | 
 | 			end_address += PAGE_SIZE; | 
 | 			pte++; | 
 | 			if ((end_address < stop_address) && | 
 | 			    (end_address != ALIGN(end_address, 1UL << PMD_SHIFT))) | 
 | 				goto retry_pte; | 
 | 			continue; | 
 | 		} | 
 | 		/* Found next valid vmem_map page */ | 
 | 		break; | 
 | 	} while (end_address < stop_address); | 
 |  | 
 | 	end_address = min(end_address, stop_address); | 
 | 	end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1; | 
 | 	hole_next_pfn = end_address / sizeof(struct page); | 
 | 	return hole_next_pfn - pgdat->node_start_pfn; | 
 | } | 
 |  | 
 | int __init create_mem_map_page_table(u64 start, u64 end, void *arg) | 
 | { | 
 | 	unsigned long address, start_page, end_page; | 
 | 	struct page *map_start, *map_end; | 
 | 	int node; | 
 | 	pgd_t *pgd; | 
 | 	pud_t *pud; | 
 | 	pmd_t *pmd; | 
 | 	pte_t *pte; | 
 |  | 
 | 	map_start = vmem_map + (__pa(start) >> PAGE_SHIFT); | 
 | 	map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT); | 
 |  | 
 | 	start_page = (unsigned long) map_start & PAGE_MASK; | 
 | 	end_page = PAGE_ALIGN((unsigned long) map_end); | 
 | 	node = paddr_to_nid(__pa(start)); | 
 |  | 
 | 	for (address = start_page; address < end_page; address += PAGE_SIZE) { | 
 | 		pgd = pgd_offset_k(address); | 
 | 		if (pgd_none(*pgd)) | 
 | 			pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); | 
 | 		pud = pud_offset(pgd, address); | 
 |  | 
 | 		if (pud_none(*pud)) | 
 | 			pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); | 
 | 		pmd = pmd_offset(pud, address); | 
 |  | 
 | 		if (pmd_none(*pmd)) | 
 | 			pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); | 
 | 		pte = pte_offset_kernel(pmd, address); | 
 |  | 
 | 		if (pte_none(*pte)) | 
 | 			set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT, | 
 | 					     PAGE_KERNEL)); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | struct memmap_init_callback_data { | 
 | 	struct page *start; | 
 | 	struct page *end; | 
 | 	int nid; | 
 | 	unsigned long zone; | 
 | }; | 
 |  | 
 | static int __meminit | 
 | virtual_memmap_init(u64 start, u64 end, void *arg) | 
 | { | 
 | 	struct memmap_init_callback_data *args; | 
 | 	struct page *map_start, *map_end; | 
 |  | 
 | 	args = (struct memmap_init_callback_data *) arg; | 
 | 	map_start = vmem_map + (__pa(start) >> PAGE_SHIFT); | 
 | 	map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT); | 
 |  | 
 | 	if (map_start < args->start) | 
 | 		map_start = args->start; | 
 | 	if (map_end > args->end) | 
 | 		map_end = args->end; | 
 |  | 
 | 	/* | 
 | 	 * We have to initialize "out of bounds" struct page elements that fit completely | 
 | 	 * on the same pages that were allocated for the "in bounds" elements because they | 
 | 	 * may be referenced later (and found to be "reserved"). | 
 | 	 */ | 
 | 	map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page); | 
 | 	map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end) | 
 | 		    / sizeof(struct page)); | 
 |  | 
 | 	if (map_start < map_end) | 
 | 		memmap_init_zone((unsigned long)(map_end - map_start), | 
 | 				 args->nid, args->zone, page_to_pfn(map_start), | 
 | 				 MEMMAP_EARLY); | 
 | 	return 0; | 
 | } | 
 |  | 
 | void __meminit | 
 | memmap_init (unsigned long size, int nid, unsigned long zone, | 
 | 	     unsigned long start_pfn) | 
 | { | 
 | 	if (!vmem_map) | 
 | 		memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY); | 
 | 	else { | 
 | 		struct page *start; | 
 | 		struct memmap_init_callback_data args; | 
 |  | 
 | 		start = pfn_to_page(start_pfn); | 
 | 		args.start = start; | 
 | 		args.end = start + size; | 
 | 		args.nid = nid; | 
 | 		args.zone = zone; | 
 |  | 
 | 		efi_memmap_walk(virtual_memmap_init, &args); | 
 | 	} | 
 | } | 
 |  | 
 | int | 
 | ia64_pfn_valid (unsigned long pfn) | 
 | { | 
 | 	char byte; | 
 | 	struct page *pg = pfn_to_page(pfn); | 
 |  | 
 | 	return     (__get_user(byte, (char __user *) pg) == 0) | 
 | 		&& ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK)) | 
 | 			|| (__get_user(byte, (char __user *) (pg + 1) - 1) == 0)); | 
 | } | 
 | EXPORT_SYMBOL(ia64_pfn_valid); | 
 |  | 
 | int __init find_largest_hole(u64 start, u64 end, void *arg) | 
 | { | 
 | 	u64 *max_gap = arg; | 
 |  | 
 | 	static u64 last_end = PAGE_OFFSET; | 
 |  | 
 | 	/* NOTE: this algorithm assumes efi memmap table is ordered */ | 
 |  | 
 | 	if (*max_gap < (start - last_end)) | 
 | 		*max_gap = start - last_end; | 
 | 	last_end = end; | 
 | 	return 0; | 
 | } | 
 |  | 
 | #endif /* CONFIG_VIRTUAL_MEM_MAP */ | 
 |  | 
 | int __init register_active_ranges(u64 start, u64 len, int nid) | 
 | { | 
 | 	u64 end = start + len; | 
 |  | 
 | #ifdef CONFIG_KEXEC | 
 | 	if (start > crashk_res.start && start < crashk_res.end) | 
 | 		start = crashk_res.end; | 
 | 	if (end > crashk_res.start && end < crashk_res.end) | 
 | 		end = crashk_res.start; | 
 | #endif | 
 |  | 
 | 	if (start < end) | 
 | 		memblock_add_node(__pa(start), end - start, nid); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __init | 
 | count_reserved_pages(u64 start, u64 end, void *arg) | 
 | { | 
 | 	unsigned long num_reserved = 0; | 
 | 	unsigned long *count = arg; | 
 |  | 
 | 	for (; start < end; start += PAGE_SIZE) | 
 | 		if (PageReserved(virt_to_page(start))) | 
 | 			++num_reserved; | 
 | 	*count += num_reserved; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int | 
 | find_max_min_low_pfn (u64 start, u64 end, void *arg) | 
 | { | 
 | 	unsigned long pfn_start, pfn_end; | 
 | #ifdef CONFIG_FLATMEM | 
 | 	pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT; | 
 | 	pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT; | 
 | #else | 
 | 	pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT; | 
 | 	pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT; | 
 | #endif | 
 | 	min_low_pfn = min(min_low_pfn, pfn_start); | 
 | 	max_low_pfn = max(max_low_pfn, pfn_end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Boot command-line option "nolwsys" can be used to disable the use of any light-weight | 
 |  * system call handler.  When this option is in effect, all fsyscalls will end up bubbling | 
 |  * down into the kernel and calling the normal (heavy-weight) syscall handler.  This is | 
 |  * useful for performance testing, but conceivably could also come in handy for debugging | 
 |  * purposes. | 
 |  */ | 
 |  | 
 | static int nolwsys __initdata; | 
 |  | 
 | static int __init | 
 | nolwsys_setup (char *s) | 
 | { | 
 | 	nolwsys = 1; | 
 | 	return 1; | 
 | } | 
 |  | 
 | __setup("nolwsys", nolwsys_setup); | 
 |  | 
 | void __init | 
 | mem_init (void) | 
 | { | 
 | 	long reserved_pages, codesize, datasize, initsize; | 
 | 	pg_data_t *pgdat; | 
 | 	int i; | 
 |  | 
 | 	BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE); | 
 | 	BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE); | 
 | 	BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE); | 
 |  | 
 | #ifdef CONFIG_PCI | 
 | 	/* | 
 | 	 * This needs to be called _after_ the command line has been parsed but _before_ | 
 | 	 * any drivers that may need the PCI DMA interface are initialized or bootmem has | 
 | 	 * been freed. | 
 | 	 */ | 
 | 	platform_dma_init(); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_FLATMEM | 
 | 	BUG_ON(!mem_map); | 
 | 	max_mapnr = max_low_pfn; | 
 | #endif | 
 |  | 
 | 	high_memory = __va(max_low_pfn * PAGE_SIZE); | 
 |  | 
 | 	for_each_online_pgdat(pgdat) | 
 | 		if (pgdat->bdata->node_bootmem_map) | 
 | 			totalram_pages += free_all_bootmem_node(pgdat); | 
 |  | 
 | 	reserved_pages = 0; | 
 | 	efi_memmap_walk(count_reserved_pages, &reserved_pages); | 
 |  | 
 | 	codesize =  (unsigned long) _etext - (unsigned long) _stext; | 
 | 	datasize =  (unsigned long) _edata - (unsigned long) _etext; | 
 | 	initsize =  (unsigned long) __init_end - (unsigned long) __init_begin; | 
 |  | 
 | 	printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, " | 
 | 	       "%luk data, %luk init)\n", nr_free_pages() << (PAGE_SHIFT - 10), | 
 | 	       num_physpages << (PAGE_SHIFT - 10), codesize >> 10, | 
 | 	       reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10); | 
 |  | 
 |  | 
 | 	/* | 
 | 	 * For fsyscall entrpoints with no light-weight handler, use the ordinary | 
 | 	 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry | 
 | 	 * code can tell them apart. | 
 | 	 */ | 
 | 	for (i = 0; i < NR_syscalls; ++i) { | 
 | 		extern unsigned long sys_call_table[NR_syscalls]; | 
 | 		unsigned long *fsyscall_table = paravirt_get_fsyscall_table(); | 
 |  | 
 | 		if (!fsyscall_table[i] || nolwsys) | 
 | 			fsyscall_table[i] = sys_call_table[i] | 1; | 
 | 	} | 
 | 	setup_gate(); | 
 | } | 
 |  | 
 | #ifdef CONFIG_MEMORY_HOTPLUG | 
 | int arch_add_memory(int nid, u64 start, u64 size) | 
 | { | 
 | 	pg_data_t *pgdat; | 
 | 	struct zone *zone; | 
 | 	unsigned long start_pfn = start >> PAGE_SHIFT; | 
 | 	unsigned long nr_pages = size >> PAGE_SHIFT; | 
 | 	int ret; | 
 |  | 
 | 	pgdat = NODE_DATA(nid); | 
 |  | 
 | 	zone = pgdat->node_zones + ZONE_NORMAL; | 
 | 	ret = __add_pages(nid, zone, start_pfn, nr_pages); | 
 |  | 
 | 	if (ret) | 
 | 		printk("%s: Problem encountered in __add_pages() as ret=%d\n", | 
 | 		       __func__,  ret); | 
 |  | 
 | 	return ret; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Even when CONFIG_IA32_SUPPORT is not enabled it is | 
 |  * useful to have the Linux/x86 domain registered to | 
 |  * avoid an attempted module load when emulators call | 
 |  * personality(PER_LINUX32). This saves several milliseconds | 
 |  * on each such call. | 
 |  */ | 
 | static struct exec_domain ia32_exec_domain; | 
 |  | 
 | static int __init | 
 | per_linux32_init(void) | 
 | { | 
 | 	ia32_exec_domain.name = "Linux/x86"; | 
 | 	ia32_exec_domain.handler = NULL; | 
 | 	ia32_exec_domain.pers_low = PER_LINUX32; | 
 | 	ia32_exec_domain.pers_high = PER_LINUX32; | 
 | 	ia32_exec_domain.signal_map = default_exec_domain.signal_map; | 
 | 	ia32_exec_domain.signal_invmap = default_exec_domain.signal_invmap; | 
 | 	register_exec_domain(&ia32_exec_domain); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | __initcall(per_linux32_init); |