|  | /* | 
|  | * Blackfin architecture-dependent process handling | 
|  | * | 
|  | * Copyright 2004-2009 Analog Devices Inc. | 
|  | * | 
|  | * Licensed under the GPL-2 or later | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/unistd.h> | 
|  | #include <linux/user.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/tick.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/err.h> | 
|  |  | 
|  | #include <asm/blackfin.h> | 
|  | #include <asm/fixed_code.h> | 
|  | #include <asm/mem_map.h> | 
|  |  | 
|  | asmlinkage void ret_from_fork(void); | 
|  |  | 
|  | /* Points to the SDRAM backup memory for the stack that is currently in | 
|  | * L1 scratchpad memory. | 
|  | */ | 
|  | void *current_l1_stack_save; | 
|  |  | 
|  | /* The number of tasks currently using a L1 stack area.  The SRAM is | 
|  | * allocated/deallocated whenever this changes from/to zero. | 
|  | */ | 
|  | int nr_l1stack_tasks; | 
|  |  | 
|  | /* Start and length of the area in L1 scratchpad memory which we've allocated | 
|  | * for process stacks. | 
|  | */ | 
|  | void *l1_stack_base; | 
|  | unsigned long l1_stack_len; | 
|  |  | 
|  | /* | 
|  | * Powermanagement idle function, if any.. | 
|  | */ | 
|  | void (*pm_idle)(void) = NULL; | 
|  | EXPORT_SYMBOL(pm_idle); | 
|  |  | 
|  | void (*pm_power_off)(void) = NULL; | 
|  | EXPORT_SYMBOL(pm_power_off); | 
|  |  | 
|  | /* | 
|  | * The idle loop on BFIN | 
|  | */ | 
|  | #ifdef CONFIG_IDLE_L1 | 
|  | static void default_idle(void)__attribute__((l1_text)); | 
|  | void cpu_idle(void)__attribute__((l1_text)); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * This is our default idle handler.  We need to disable | 
|  | * interrupts here to ensure we don't miss a wakeup call. | 
|  | */ | 
|  | static void default_idle(void) | 
|  | { | 
|  | #ifdef CONFIG_IPIPE | 
|  | ipipe_suspend_domain(); | 
|  | #endif | 
|  | hard_local_irq_disable(); | 
|  | if (!need_resched()) | 
|  | idle_with_irq_disabled(); | 
|  |  | 
|  | hard_local_irq_enable(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The idle thread.  We try to conserve power, while trying to keep | 
|  | * overall latency low.  The architecture specific idle is passed | 
|  | * a value to indicate the level of "idleness" of the system. | 
|  | */ | 
|  | void cpu_idle(void) | 
|  | { | 
|  | /* endless idle loop with no priority at all */ | 
|  | while (1) { | 
|  | void (*idle)(void) = pm_idle; | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | if (cpu_is_offline(smp_processor_id())) | 
|  | cpu_die(); | 
|  | #endif | 
|  | if (!idle) | 
|  | idle = default_idle; | 
|  | tick_nohz_stop_sched_tick(1); | 
|  | while (!need_resched()) | 
|  | idle(); | 
|  | tick_nohz_restart_sched_tick(); | 
|  | preempt_enable_no_resched(); | 
|  | schedule(); | 
|  | preempt_disable(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This gets run with P1 containing the | 
|  | * function to call, and R1 containing | 
|  | * the "args".  Note P0 is clobbered on the way here. | 
|  | */ | 
|  | void kernel_thread_helper(void); | 
|  | __asm__(".section .text\n" | 
|  | ".align 4\n" | 
|  | "_kernel_thread_helper:\n\t" | 
|  | "\tsp += -12;\n\t" | 
|  | "\tr0 = r1;\n\t" "\tcall (p1);\n\t" "\tcall _do_exit;\n" ".previous"); | 
|  |  | 
|  | /* | 
|  | * Create a kernel thread. | 
|  | */ | 
|  | pid_t kernel_thread(int (*fn) (void *), void *arg, unsigned long flags) | 
|  | { | 
|  | struct pt_regs regs; | 
|  |  | 
|  | memset(®s, 0, sizeof(regs)); | 
|  |  | 
|  | regs.r1 = (unsigned long)arg; | 
|  | regs.p1 = (unsigned long)fn; | 
|  | regs.pc = (unsigned long)kernel_thread_helper; | 
|  | regs.orig_p0 = -1; | 
|  | /* Set bit 2 to tell ret_from_fork we should be returning to kernel | 
|  | mode.  */ | 
|  | regs.ipend = 0x8002; | 
|  | __asm__ __volatile__("%0 = syscfg;":"=da"(regs.syscfg):); | 
|  | return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, | 
|  | NULL); | 
|  | } | 
|  | EXPORT_SYMBOL(kernel_thread); | 
|  |  | 
|  | /* | 
|  | * Do necessary setup to start up a newly executed thread. | 
|  | * | 
|  | * pass the data segment into user programs if it exists, | 
|  | * it can't hurt anything as far as I can tell | 
|  | */ | 
|  | void start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp) | 
|  | { | 
|  | set_fs(USER_DS); | 
|  | regs->pc = new_ip; | 
|  | if (current->mm) | 
|  | regs->p5 = current->mm->start_data; | 
|  | #ifndef CONFIG_SMP | 
|  | task_thread_info(current)->l1_task_info.stack_start = | 
|  | (void *)current->mm->context.stack_start; | 
|  | task_thread_info(current)->l1_task_info.lowest_sp = (void *)new_sp; | 
|  | memcpy(L1_SCRATCH_TASK_INFO, &task_thread_info(current)->l1_task_info, | 
|  | sizeof(*L1_SCRATCH_TASK_INFO)); | 
|  | #endif | 
|  | wrusp(new_sp); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(start_thread); | 
|  |  | 
|  | void flush_thread(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | asmlinkage int bfin_vfork(struct pt_regs *regs) | 
|  | { | 
|  | return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, rdusp(), regs, 0, NULL, | 
|  | NULL); | 
|  | } | 
|  |  | 
|  | asmlinkage int bfin_clone(struct pt_regs *regs) | 
|  | { | 
|  | unsigned long clone_flags; | 
|  | unsigned long newsp; | 
|  |  | 
|  | #ifdef __ARCH_SYNC_CORE_DCACHE | 
|  | if (current->rt.nr_cpus_allowed == num_possible_cpus()) | 
|  | set_cpus_allowed_ptr(current, cpumask_of(smp_processor_id())); | 
|  | #endif | 
|  |  | 
|  | /* syscall2 puts clone_flags in r0 and usp in r1 */ | 
|  | clone_flags = regs->r0; | 
|  | newsp = regs->r1; | 
|  | if (!newsp) | 
|  | newsp = rdusp(); | 
|  | else | 
|  | newsp -= 12; | 
|  | return do_fork(clone_flags, newsp, regs, 0, NULL, NULL); | 
|  | } | 
|  |  | 
|  | int | 
|  | copy_thread(unsigned long clone_flags, | 
|  | unsigned long usp, unsigned long topstk, | 
|  | struct task_struct *p, struct pt_regs *regs) | 
|  | { | 
|  | struct pt_regs *childregs; | 
|  |  | 
|  | childregs = (struct pt_regs *) (task_stack_page(p) + THREAD_SIZE) - 1; | 
|  | *childregs = *regs; | 
|  | childregs->r0 = 0; | 
|  |  | 
|  | p->thread.usp = usp; | 
|  | p->thread.ksp = (unsigned long)childregs; | 
|  | p->thread.pc = (unsigned long)ret_from_fork; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sys_execve() executes a new program. | 
|  | */ | 
|  | asmlinkage int sys_execve(const char __user *name, | 
|  | const char __user *const __user *argv, | 
|  | const char __user *const __user *envp) | 
|  | { | 
|  | int error; | 
|  | char *filename; | 
|  | struct pt_regs *regs = (struct pt_regs *)((&name) + 6); | 
|  |  | 
|  | filename = getname(name); | 
|  | error = PTR_ERR(filename); | 
|  | if (IS_ERR(filename)) | 
|  | return error; | 
|  | error = do_execve(filename, argv, envp, regs); | 
|  | putname(filename); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | unsigned long get_wchan(struct task_struct *p) | 
|  | { | 
|  | unsigned long fp, pc; | 
|  | unsigned long stack_page; | 
|  | int count = 0; | 
|  | if (!p || p == current || p->state == TASK_RUNNING) | 
|  | return 0; | 
|  |  | 
|  | stack_page = (unsigned long)p; | 
|  | fp = p->thread.usp; | 
|  | do { | 
|  | if (fp < stack_page + sizeof(struct thread_info) || | 
|  | fp >= 8184 + stack_page) | 
|  | return 0; | 
|  | pc = ((unsigned long *)fp)[1]; | 
|  | if (!in_sched_functions(pc)) | 
|  | return pc; | 
|  | fp = *(unsigned long *)fp; | 
|  | } | 
|  | while (count++ < 16); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void finish_atomic_sections (struct pt_regs *regs) | 
|  | { | 
|  | int __user *up0 = (int __user *)regs->p0; | 
|  |  | 
|  | switch (regs->pc) { | 
|  | default: | 
|  | /* not in middle of an atomic step, so resume like normal */ | 
|  | return; | 
|  |  | 
|  | case ATOMIC_XCHG32 + 2: | 
|  | put_user(regs->r1, up0); | 
|  | break; | 
|  |  | 
|  | case ATOMIC_CAS32 + 2: | 
|  | case ATOMIC_CAS32 + 4: | 
|  | if (regs->r0 == regs->r1) | 
|  | case ATOMIC_CAS32 + 6: | 
|  | put_user(regs->r2, up0); | 
|  | break; | 
|  |  | 
|  | case ATOMIC_ADD32 + 2: | 
|  | regs->r0 = regs->r1 + regs->r0; | 
|  | /* fall through */ | 
|  | case ATOMIC_ADD32 + 4: | 
|  | put_user(regs->r0, up0); | 
|  | break; | 
|  |  | 
|  | case ATOMIC_SUB32 + 2: | 
|  | regs->r0 = regs->r1 - regs->r0; | 
|  | /* fall through */ | 
|  | case ATOMIC_SUB32 + 4: | 
|  | put_user(regs->r0, up0); | 
|  | break; | 
|  |  | 
|  | case ATOMIC_IOR32 + 2: | 
|  | regs->r0 = regs->r1 | regs->r0; | 
|  | /* fall through */ | 
|  | case ATOMIC_IOR32 + 4: | 
|  | put_user(regs->r0, up0); | 
|  | break; | 
|  |  | 
|  | case ATOMIC_AND32 + 2: | 
|  | regs->r0 = regs->r1 & regs->r0; | 
|  | /* fall through */ | 
|  | case ATOMIC_AND32 + 4: | 
|  | put_user(regs->r0, up0); | 
|  | break; | 
|  |  | 
|  | case ATOMIC_XOR32 + 2: | 
|  | regs->r0 = regs->r1 ^ regs->r0; | 
|  | /* fall through */ | 
|  | case ATOMIC_XOR32 + 4: | 
|  | put_user(regs->r0, up0); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We've finished the atomic section, and the only thing left for | 
|  | * userspace is to do a RTS, so we might as well handle that too | 
|  | * since we need to update the PC anyways. | 
|  | */ | 
|  | regs->pc = regs->rets; | 
|  | } | 
|  |  | 
|  | static inline | 
|  | int in_mem(unsigned long addr, unsigned long size, | 
|  | unsigned long start, unsigned long end) | 
|  | { | 
|  | return addr >= start && addr + size <= end; | 
|  | } | 
|  | static inline | 
|  | int in_mem_const_off(unsigned long addr, unsigned long size, unsigned long off, | 
|  | unsigned long const_addr, unsigned long const_size) | 
|  | { | 
|  | return const_size && | 
|  | in_mem(addr, size, const_addr + off, const_addr + const_size); | 
|  | } | 
|  | static inline | 
|  | int in_mem_const(unsigned long addr, unsigned long size, | 
|  | unsigned long const_addr, unsigned long const_size) | 
|  | { | 
|  | return in_mem_const_off(addr, size, 0, const_addr, const_size); | 
|  | } | 
|  | #define ASYNC_ENABLED(bnum, bctlnum) \ | 
|  | ({ \ | 
|  | (bfin_read_EBIU_AMGCTL() & 0xe) < ((bnum + 1) << 1) ? 0 : \ | 
|  | bfin_read_EBIU_AMBCTL##bctlnum() & B##bnum##RDYEN ? 0 : \ | 
|  | 1; \ | 
|  | }) | 
|  | /* | 
|  | * We can't read EBIU banks that aren't enabled or we end up hanging | 
|  | * on the access to the async space.  Make sure we validate accesses | 
|  | * that cross async banks too. | 
|  | *	0 - found, but unusable | 
|  | *	1 - found & usable | 
|  | *	2 - not found | 
|  | */ | 
|  | static | 
|  | int in_async(unsigned long addr, unsigned long size) | 
|  | { | 
|  | if (addr >= ASYNC_BANK0_BASE && addr < ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE) { | 
|  | if (!ASYNC_ENABLED(0, 0)) | 
|  | return 0; | 
|  | if (addr + size <= ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE) | 
|  | return 1; | 
|  | size -= ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE - addr; | 
|  | addr = ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE; | 
|  | } | 
|  | if (addr >= ASYNC_BANK1_BASE && addr < ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE) { | 
|  | if (!ASYNC_ENABLED(1, 0)) | 
|  | return 0; | 
|  | if (addr + size <= ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE) | 
|  | return 1; | 
|  | size -= ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE - addr; | 
|  | addr = ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE; | 
|  | } | 
|  | if (addr >= ASYNC_BANK2_BASE && addr < ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE) { | 
|  | if (!ASYNC_ENABLED(2, 1)) | 
|  | return 0; | 
|  | if (addr + size <= ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE) | 
|  | return 1; | 
|  | size -= ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE - addr; | 
|  | addr = ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE; | 
|  | } | 
|  | if (addr >= ASYNC_BANK3_BASE && addr < ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE) { | 
|  | if (ASYNC_ENABLED(3, 1)) | 
|  | return 0; | 
|  | if (addr + size <= ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* not within async bounds */ | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | int bfin_mem_access_type(unsigned long addr, unsigned long size) | 
|  | { | 
|  | int cpu = raw_smp_processor_id(); | 
|  |  | 
|  | /* Check that things do not wrap around */ | 
|  | if (addr > ULONG_MAX - size) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (in_mem(addr, size, FIXED_CODE_START, physical_mem_end)) | 
|  | return BFIN_MEM_ACCESS_CORE; | 
|  |  | 
|  | if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH)) | 
|  | return cpu == 0 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA; | 
|  | if (in_mem_const(addr, size, L1_SCRATCH_START, L1_SCRATCH_LENGTH)) | 
|  | return cpu == 0 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT; | 
|  | if (in_mem_const(addr, size, L1_DATA_A_START, L1_DATA_A_LENGTH)) | 
|  | return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA; | 
|  | if (in_mem_const(addr, size, L1_DATA_B_START, L1_DATA_B_LENGTH)) | 
|  | return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA; | 
|  | #ifdef COREB_L1_CODE_START | 
|  | if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH)) | 
|  | return cpu == 1 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA; | 
|  | if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH)) | 
|  | return cpu == 1 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT; | 
|  | if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH)) | 
|  | return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA; | 
|  | if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH)) | 
|  | return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA; | 
|  | #endif | 
|  | if (in_mem_const(addr, size, L2_START, L2_LENGTH)) | 
|  | return BFIN_MEM_ACCESS_CORE; | 
|  |  | 
|  | if (addr >= SYSMMR_BASE) | 
|  | return BFIN_MEM_ACCESS_CORE_ONLY; | 
|  |  | 
|  | switch (in_async(addr, size)) { | 
|  | case 0: return -EFAULT; | 
|  | case 1: return BFIN_MEM_ACCESS_CORE; | 
|  | case 2: /* fall through */; | 
|  | } | 
|  |  | 
|  | if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH)) | 
|  | return BFIN_MEM_ACCESS_CORE; | 
|  | if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH)) | 
|  | return BFIN_MEM_ACCESS_DMA; | 
|  |  | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_ACCESS_CHECK) | 
|  | #ifdef CONFIG_ACCESS_OK_L1 | 
|  | __attribute__((l1_text)) | 
|  | #endif | 
|  | /* Return 1 if access to memory range is OK, 0 otherwise */ | 
|  | int _access_ok(unsigned long addr, unsigned long size) | 
|  | { | 
|  | int aret; | 
|  |  | 
|  | if (size == 0) | 
|  | return 1; | 
|  | /* Check that things do not wrap around */ | 
|  | if (addr > ULONG_MAX - size) | 
|  | return 0; | 
|  | if (segment_eq(get_fs(), KERNEL_DS)) | 
|  | return 1; | 
|  | #ifdef CONFIG_MTD_UCLINUX | 
|  | if (1) | 
|  | #else | 
|  | if (0) | 
|  | #endif | 
|  | { | 
|  | if (in_mem(addr, size, memory_start, memory_end)) | 
|  | return 1; | 
|  | if (in_mem(addr, size, memory_mtd_end, physical_mem_end)) | 
|  | return 1; | 
|  | # ifndef CONFIG_ROMFS_ON_MTD | 
|  | if (0) | 
|  | # endif | 
|  | /* For XIP, allow user space to use pointers within the ROMFS.  */ | 
|  | if (in_mem(addr, size, memory_mtd_start, memory_mtd_end)) | 
|  | return 1; | 
|  | } else { | 
|  | if (in_mem(addr, size, memory_start, physical_mem_end)) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (in_mem(addr, size, (unsigned long)__init_begin, (unsigned long)__init_end)) | 
|  | return 1; | 
|  |  | 
|  | if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH)) | 
|  | return 1; | 
|  | if (in_mem_const_off(addr, size, _etext_l1 - _stext_l1, L1_CODE_START, L1_CODE_LENGTH)) | 
|  | return 1; | 
|  | if (in_mem_const_off(addr, size, _ebss_l1 - _sdata_l1, L1_DATA_A_START, L1_DATA_A_LENGTH)) | 
|  | return 1; | 
|  | if (in_mem_const_off(addr, size, _ebss_b_l1 - _sdata_b_l1, L1_DATA_B_START, L1_DATA_B_LENGTH)) | 
|  | return 1; | 
|  | #ifdef COREB_L1_CODE_START | 
|  | if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH)) | 
|  | return 1; | 
|  | if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH)) | 
|  | return 1; | 
|  | if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH)) | 
|  | return 1; | 
|  | if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH)) | 
|  | return 1; | 
|  | #endif | 
|  |  | 
|  | #ifndef CONFIG_EXCEPTION_L1_SCRATCH | 
|  | if (in_mem_const(addr, size, (unsigned long)l1_stack_base, l1_stack_len)) | 
|  | return 1; | 
|  | #endif | 
|  |  | 
|  | aret = in_async(addr, size); | 
|  | if (aret < 2) | 
|  | return aret; | 
|  |  | 
|  | if (in_mem_const_off(addr, size, _ebss_l2 - _stext_l2, L2_START, L2_LENGTH)) | 
|  | return 1; | 
|  |  | 
|  | if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH)) | 
|  | return 1; | 
|  | if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH)) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(_access_ok); | 
|  | #endif /* CONFIG_ACCESS_CHECK */ |