|  | /*---------------------------------------------------------------------------+ | 
|  | |  poly_tan.c                                                               | | 
|  | |                                                                           | | 
|  | | Compute the tan of a FPU_REG, using a polynomial approximation.           | | 
|  | |                                                                           | | 
|  | | Copyright (C) 1992,1993,1994,1997,1999                                    | | 
|  | |                       W. Metzenthen, 22 Parker St, Ormond, Vic 3163,      | | 
|  | |                       Australia.  E-mail   billm@melbpc.org.au            | | 
|  | |                                                                           | | 
|  | |                                                                           | | 
|  | +---------------------------------------------------------------------------*/ | 
|  |  | 
|  | #include "exception.h" | 
|  | #include "reg_constant.h" | 
|  | #include "fpu_emu.h" | 
|  | #include "fpu_system.h" | 
|  | #include "control_w.h" | 
|  | #include "poly.h" | 
|  |  | 
|  | #define	HiPOWERop	3	/* odd poly, positive terms */ | 
|  | static const unsigned long long oddplterm[HiPOWERop] = { | 
|  | 0x0000000000000000LL, | 
|  | 0x0051a1cf08fca228LL, | 
|  | 0x0000000071284ff7LL | 
|  | }; | 
|  |  | 
|  | #define	HiPOWERon	2	/* odd poly, negative terms */ | 
|  | static const unsigned long long oddnegterm[HiPOWERon] = { | 
|  | 0x1291a9a184244e80LL, | 
|  | 0x0000583245819c21LL | 
|  | }; | 
|  |  | 
|  | #define	HiPOWERep	2	/* even poly, positive terms */ | 
|  | static const unsigned long long evenplterm[HiPOWERep] = { | 
|  | 0x0e848884b539e888LL, | 
|  | 0x00003c7f18b887daLL | 
|  | }; | 
|  |  | 
|  | #define	HiPOWERen	2	/* even poly, negative terms */ | 
|  | static const unsigned long long evennegterm[HiPOWERen] = { | 
|  | 0xf1f0200fd51569ccLL, | 
|  | 0x003afb46105c4432LL | 
|  | }; | 
|  |  | 
|  | static const unsigned long long twothirds = 0xaaaaaaaaaaaaaaabLL; | 
|  |  | 
|  | /*--- poly_tan() ------------------------------------------------------------+ | 
|  | |                                                                           | | 
|  | +---------------------------------------------------------------------------*/ | 
|  | void poly_tan(FPU_REG *st0_ptr) | 
|  | { | 
|  | long int exponent; | 
|  | int invert; | 
|  | Xsig argSq, argSqSq, accumulatoro, accumulatore, accum, | 
|  | argSignif, fix_up; | 
|  | unsigned long adj; | 
|  |  | 
|  | exponent = exponent(st0_ptr); | 
|  |  | 
|  | #ifdef PARANOID | 
|  | if (signnegative(st0_ptr)) {	/* Can't hack a number < 0.0 */ | 
|  | arith_invalid(0); | 
|  | return; | 
|  | }			/* Need a positive number */ | 
|  | #endif /* PARANOID */ | 
|  |  | 
|  | /* Split the problem into two domains, smaller and larger than pi/4 */ | 
|  | if ((exponent == 0) | 
|  | || ((exponent == -1) && (st0_ptr->sigh > 0xc90fdaa2))) { | 
|  | /* The argument is greater than (approx) pi/4 */ | 
|  | invert = 1; | 
|  | accum.lsw = 0; | 
|  | XSIG_LL(accum) = significand(st0_ptr); | 
|  |  | 
|  | if (exponent == 0) { | 
|  | /* The argument is >= 1.0 */ | 
|  | /* Put the binary point at the left. */ | 
|  | XSIG_LL(accum) <<= 1; | 
|  | } | 
|  | /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */ | 
|  | XSIG_LL(accum) = 0x921fb54442d18469LL - XSIG_LL(accum); | 
|  | /* This is a special case which arises due to rounding. */ | 
|  | if (XSIG_LL(accum) == 0xffffffffffffffffLL) { | 
|  | FPU_settag0(TAG_Valid); | 
|  | significand(st0_ptr) = 0x8a51e04daabda360LL; | 
|  | setexponent16(st0_ptr, | 
|  | (0x41 + EXTENDED_Ebias) | SIGN_Negative); | 
|  | return; | 
|  | } | 
|  |  | 
|  | argSignif.lsw = accum.lsw; | 
|  | XSIG_LL(argSignif) = XSIG_LL(accum); | 
|  | exponent = -1 + norm_Xsig(&argSignif); | 
|  | } else { | 
|  | invert = 0; | 
|  | argSignif.lsw = 0; | 
|  | XSIG_LL(accum) = XSIG_LL(argSignif) = significand(st0_ptr); | 
|  |  | 
|  | if (exponent < -1) { | 
|  | /* shift the argument right by the required places */ | 
|  | if (FPU_shrx(&XSIG_LL(accum), -1 - exponent) >= | 
|  | 0x80000000U) | 
|  | XSIG_LL(accum)++;	/* round up */ | 
|  | } | 
|  | } | 
|  |  | 
|  | XSIG_LL(argSq) = XSIG_LL(accum); | 
|  | argSq.lsw = accum.lsw; | 
|  | mul_Xsig_Xsig(&argSq, &argSq); | 
|  | XSIG_LL(argSqSq) = XSIG_LL(argSq); | 
|  | argSqSq.lsw = argSq.lsw; | 
|  | mul_Xsig_Xsig(&argSqSq, &argSqSq); | 
|  |  | 
|  | /* Compute the negative terms for the numerator polynomial */ | 
|  | accumulatoro.msw = accumulatoro.midw = accumulatoro.lsw = 0; | 
|  | polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddnegterm, | 
|  | HiPOWERon - 1); | 
|  | mul_Xsig_Xsig(&accumulatoro, &argSq); | 
|  | negate_Xsig(&accumulatoro); | 
|  | /* Add the positive terms */ | 
|  | polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddplterm, | 
|  | HiPOWERop - 1); | 
|  |  | 
|  | /* Compute the positive terms for the denominator polynomial */ | 
|  | accumulatore.msw = accumulatore.midw = accumulatore.lsw = 0; | 
|  | polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evenplterm, | 
|  | HiPOWERep - 1); | 
|  | mul_Xsig_Xsig(&accumulatore, &argSq); | 
|  | negate_Xsig(&accumulatore); | 
|  | /* Add the negative terms */ | 
|  | polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evennegterm, | 
|  | HiPOWERen - 1); | 
|  | /* Multiply by arg^2 */ | 
|  | mul64_Xsig(&accumulatore, &XSIG_LL(argSignif)); | 
|  | mul64_Xsig(&accumulatore, &XSIG_LL(argSignif)); | 
|  | /* de-normalize and divide by 2 */ | 
|  | shr_Xsig(&accumulatore, -2 * (1 + exponent) + 1); | 
|  | negate_Xsig(&accumulatore);	/* This does 1 - accumulator */ | 
|  |  | 
|  | /* Now find the ratio. */ | 
|  | if (accumulatore.msw == 0) { | 
|  | /* accumulatoro must contain 1.0 here, (actually, 0) but it | 
|  | really doesn't matter what value we use because it will | 
|  | have negligible effect in later calculations | 
|  | */ | 
|  | XSIG_LL(accum) = 0x8000000000000000LL; | 
|  | accum.lsw = 0; | 
|  | } else { | 
|  | div_Xsig(&accumulatoro, &accumulatore, &accum); | 
|  | } | 
|  |  | 
|  | /* Multiply by 1/3 * arg^3 */ | 
|  | mul64_Xsig(&accum, &XSIG_LL(argSignif)); | 
|  | mul64_Xsig(&accum, &XSIG_LL(argSignif)); | 
|  | mul64_Xsig(&accum, &XSIG_LL(argSignif)); | 
|  | mul64_Xsig(&accum, &twothirds); | 
|  | shr_Xsig(&accum, -2 * (exponent + 1)); | 
|  |  | 
|  | /* tan(arg) = arg + accum */ | 
|  | add_two_Xsig(&accum, &argSignif, &exponent); | 
|  |  | 
|  | if (invert) { | 
|  | /* We now have the value of tan(pi_2 - arg) where pi_2 is an | 
|  | approximation for pi/2 | 
|  | */ | 
|  | /* The next step is to fix the answer to compensate for the | 
|  | error due to the approximation used for pi/2 | 
|  | */ | 
|  |  | 
|  | /* This is (approx) delta, the error in our approx for pi/2 | 
|  | (see above). It has an exponent of -65 | 
|  | */ | 
|  | XSIG_LL(fix_up) = 0x898cc51701b839a2LL; | 
|  | fix_up.lsw = 0; | 
|  |  | 
|  | if (exponent == 0) | 
|  | adj = 0xffffffff;	/* We want approx 1.0 here, but | 
|  | this is close enough. */ | 
|  | else if (exponent > -30) { | 
|  | adj = accum.msw >> -(exponent + 1);	/* tan */ | 
|  | adj = mul_32_32(adj, adj);	/* tan^2 */ | 
|  | } else | 
|  | adj = 0; | 
|  | adj = mul_32_32(0x898cc517, adj);	/* delta * tan^2 */ | 
|  |  | 
|  | fix_up.msw += adj; | 
|  | if (!(fix_up.msw & 0x80000000)) {	/* did fix_up overflow ? */ | 
|  | /* Yes, we need to add an msb */ | 
|  | shr_Xsig(&fix_up, 1); | 
|  | fix_up.msw |= 0x80000000; | 
|  | shr_Xsig(&fix_up, 64 + exponent); | 
|  | } else | 
|  | shr_Xsig(&fix_up, 65 + exponent); | 
|  |  | 
|  | add_two_Xsig(&accum, &fix_up, &exponent); | 
|  |  | 
|  | /* accum now contains tan(pi/2 - arg). | 
|  | Use tan(arg) = 1.0 / tan(pi/2 - arg) | 
|  | */ | 
|  | accumulatoro.lsw = accumulatoro.midw = 0; | 
|  | accumulatoro.msw = 0x80000000; | 
|  | div_Xsig(&accumulatoro, &accum, &accum); | 
|  | exponent = -exponent - 1; | 
|  | } | 
|  |  | 
|  | /* Transfer the result */ | 
|  | round_Xsig(&accum); | 
|  | FPU_settag0(TAG_Valid); | 
|  | significand(st0_ptr) = XSIG_LL(accum); | 
|  | setexponent16(st0_ptr, exponent + EXTENDED_Ebias);	/* Result is positive. */ | 
|  |  | 
|  | } |