| /* |
| * Copyright (C) 1991, 1992 Linus Torvalds |
| * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs |
| * |
| * Pentium III FXSR, SSE support |
| * Gareth Hughes <gareth@valinux.com>, May 2000 |
| */ |
| |
| /* |
| * 'Traps.c' handles hardware traps and faults after we have saved some |
| * state in 'entry.S'. |
| */ |
| #include <linux/moduleparam.h> |
| #include <linux/interrupt.h> |
| #include <linux/kallsyms.h> |
| #include <linux/spinlock.h> |
| #include <linux/kprobes.h> |
| #include <linux/uaccess.h> |
| #include <linux/utsname.h> |
| #include <linux/kdebug.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/ptrace.h> |
| #include <linux/string.h> |
| #include <linux/unwind.h> |
| #include <linux/delay.h> |
| #include <linux/errno.h> |
| #include <linux/kexec.h> |
| #include <linux/sched.h> |
| #include <linux/timer.h> |
| #include <linux/init.h> |
| #include <linux/bug.h> |
| #include <linux/nmi.h> |
| #include <linux/mm.h> |
| #include <linux/smp.h> |
| #include <linux/io.h> |
| |
| #if defined(CONFIG_EDAC) |
| #include <linux/edac.h> |
| #endif |
| |
| #include <asm/stacktrace.h> |
| #include <asm/processor.h> |
| #include <asm/debugreg.h> |
| #include <asm/atomic.h> |
| #include <asm/system.h> |
| #include <asm/unwind.h> |
| #include <asm/desc.h> |
| #include <asm/i387.h> |
| #include <asm/pgalloc.h> |
| #include <asm/proto.h> |
| #include <asm/pda.h> |
| #include <asm/traps.h> |
| |
| #include <mach_traps.h> |
| |
| static int ignore_nmis; |
| |
| static inline void conditional_sti(struct pt_regs *regs) |
| { |
| if (regs->flags & X86_EFLAGS_IF) |
| local_irq_enable(); |
| } |
| |
| static inline void preempt_conditional_sti(struct pt_regs *regs) |
| { |
| inc_preempt_count(); |
| if (regs->flags & X86_EFLAGS_IF) |
| local_irq_enable(); |
| } |
| |
| static inline void preempt_conditional_cli(struct pt_regs *regs) |
| { |
| if (regs->flags & X86_EFLAGS_IF) |
| local_irq_disable(); |
| /* Make sure to not schedule here because we could be running |
| on an exception stack. */ |
| dec_preempt_count(); |
| } |
| |
| static void __kprobes |
| do_trap(int trapnr, int signr, char *str, struct pt_regs *regs, |
| long error_code, siginfo_t *info) |
| { |
| struct task_struct *tsk = current; |
| |
| if (!user_mode(regs)) |
| goto kernel_trap; |
| |
| /* |
| * We want error_code and trap_no set for userspace faults and |
| * kernelspace faults which result in die(), but not |
| * kernelspace faults which are fixed up. die() gives the |
| * process no chance to handle the signal and notice the |
| * kernel fault information, so that won't result in polluting |
| * the information about previously queued, but not yet |
| * delivered, faults. See also do_general_protection below. |
| */ |
| tsk->thread.error_code = error_code; |
| tsk->thread.trap_no = trapnr; |
| |
| if (show_unhandled_signals && unhandled_signal(tsk, signr) && |
| printk_ratelimit()) { |
| printk(KERN_INFO |
| "%s[%d] trap %s ip:%lx sp:%lx error:%lx", |
| tsk->comm, tsk->pid, str, |
| regs->ip, regs->sp, error_code); |
| print_vma_addr(" in ", regs->ip); |
| printk("\n"); |
| } |
| |
| if (info) |
| force_sig_info(signr, info, tsk); |
| else |
| force_sig(signr, tsk); |
| return; |
| |
| kernel_trap: |
| if (!fixup_exception(regs)) { |
| tsk->thread.error_code = error_code; |
| tsk->thread.trap_no = trapnr; |
| die(str, regs, error_code); |
| } |
| return; |
| } |
| |
| #define DO_ERROR(trapnr, signr, str, name) \ |
| dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \ |
| { \ |
| if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \ |
| == NOTIFY_STOP) \ |
| return; \ |
| conditional_sti(regs); \ |
| do_trap(trapnr, signr, str, regs, error_code, NULL); \ |
| } |
| |
| #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \ |
| dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \ |
| { \ |
| siginfo_t info; \ |
| info.si_signo = signr; \ |
| info.si_errno = 0; \ |
| info.si_code = sicode; \ |
| info.si_addr = (void __user *)siaddr; \ |
| if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \ |
| == NOTIFY_STOP) \ |
| return; \ |
| conditional_sti(regs); \ |
| do_trap(trapnr, signr, str, regs, error_code, &info); \ |
| } |
| |
| DO_ERROR_INFO(0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->ip) |
| DO_ERROR(4, SIGSEGV, "overflow", overflow) |
| DO_ERROR(5, SIGSEGV, "bounds", bounds) |
| DO_ERROR_INFO(6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->ip) |
| DO_ERROR(9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun) |
| DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS) |
| DO_ERROR(11, SIGBUS, "segment not present", segment_not_present) |
| DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0) |
| |
| /* Runs on IST stack */ |
| dotraplinkage void do_stack_segment(struct pt_regs *regs, long error_code) |
| { |
| if (notify_die(DIE_TRAP, "stack segment", regs, error_code, |
| 12, SIGBUS) == NOTIFY_STOP) |
| return; |
| preempt_conditional_sti(regs); |
| do_trap(12, SIGBUS, "stack segment", regs, error_code, NULL); |
| preempt_conditional_cli(regs); |
| } |
| |
| dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code) |
| { |
| static const char str[] = "double fault"; |
| struct task_struct *tsk = current; |
| |
| /* Return not checked because double check cannot be ignored */ |
| notify_die(DIE_TRAP, str, regs, error_code, 8, SIGSEGV); |
| |
| tsk->thread.error_code = error_code; |
| tsk->thread.trap_no = 8; |
| |
| /* This is always a kernel trap and never fixable (and thus must |
| never return). */ |
| for (;;) |
| die(str, regs, error_code); |
| } |
| |
| dotraplinkage void __kprobes |
| do_general_protection(struct pt_regs *regs, long error_code) |
| { |
| struct task_struct *tsk; |
| |
| conditional_sti(regs); |
| |
| tsk = current; |
| if (!user_mode(regs)) |
| goto gp_in_kernel; |
| |
| tsk->thread.error_code = error_code; |
| tsk->thread.trap_no = 13; |
| |
| if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) && |
| printk_ratelimit()) { |
| printk(KERN_INFO |
| "%s[%d] general protection ip:%lx sp:%lx error:%lx", |
| tsk->comm, tsk->pid, |
| regs->ip, regs->sp, error_code); |
| print_vma_addr(" in ", regs->ip); |
| printk("\n"); |
| } |
| |
| force_sig(SIGSEGV, tsk); |
| return; |
| |
| gp_in_kernel: |
| if (fixup_exception(regs)) |
| return; |
| |
| tsk->thread.error_code = error_code; |
| tsk->thread.trap_no = 13; |
| if (notify_die(DIE_GPF, "general protection fault", regs, |
| error_code, 13, SIGSEGV) == NOTIFY_STOP) |
| return; |
| die("general protection fault", regs, error_code); |
| } |
| |
| static notrace __kprobes void |
| mem_parity_error(unsigned char reason, struct pt_regs *regs) |
| { |
| printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x.\n", |
| reason); |
| printk(KERN_EMERG "You have some hardware problem, likely on the PCI bus.\n"); |
| |
| #if defined(CONFIG_EDAC) |
| if (edac_handler_set()) { |
| edac_atomic_assert_error(); |
| return; |
| } |
| #endif |
| |
| if (panic_on_unrecovered_nmi) |
| panic("NMI: Not continuing"); |
| |
| printk(KERN_EMERG "Dazed and confused, but trying to continue\n"); |
| |
| /* Clear and disable the memory parity error line. */ |
| reason = (reason & 0xf) | 4; |
| outb(reason, 0x61); |
| } |
| |
| static notrace __kprobes void |
| io_check_error(unsigned char reason, struct pt_regs *regs) |
| { |
| printk("NMI: IOCK error (debug interrupt?)\n"); |
| show_registers(regs); |
| |
| /* Re-enable the IOCK line, wait for a few seconds */ |
| reason = (reason & 0xf) | 8; |
| outb(reason, 0x61); |
| mdelay(2000); |
| reason &= ~8; |
| outb(reason, 0x61); |
| } |
| |
| static notrace __kprobes void |
| unknown_nmi_error(unsigned char reason, struct pt_regs *regs) |
| { |
| if (notify_die(DIE_NMIUNKNOWN, "nmi", regs, reason, 2, SIGINT) == |
| NOTIFY_STOP) |
| return; |
| printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x.\n", |
| reason); |
| printk(KERN_EMERG "Do you have a strange power saving mode enabled?\n"); |
| |
| if (panic_on_unrecovered_nmi) |
| panic("NMI: Not continuing"); |
| |
| printk(KERN_EMERG "Dazed and confused, but trying to continue\n"); |
| } |
| |
| /* Runs on IST stack. This code must keep interrupts off all the time. |
| Nested NMIs are prevented by the CPU. */ |
| asmlinkage notrace __kprobes void default_do_nmi(struct pt_regs *regs) |
| { |
| unsigned char reason = 0; |
| int cpu; |
| |
| cpu = smp_processor_id(); |
| |
| /* Only the BSP gets external NMIs from the system. */ |
| if (!cpu) |
| reason = get_nmi_reason(); |
| |
| if (!(reason & 0xc0)) { |
| if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 2, SIGINT) |
| == NOTIFY_STOP) |
| return; |
| /* |
| * Ok, so this is none of the documented NMI sources, |
| * so it must be the NMI watchdog. |
| */ |
| if (nmi_watchdog_tick(regs, reason)) |
| return; |
| if (!do_nmi_callback(regs, cpu)) |
| unknown_nmi_error(reason, regs); |
| |
| return; |
| } |
| if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP) |
| return; |
| |
| /* AK: following checks seem to be broken on modern chipsets. FIXME */ |
| if (reason & 0x80) |
| mem_parity_error(reason, regs); |
| if (reason & 0x40) |
| io_check_error(reason, regs); |
| } |
| |
| dotraplinkage notrace __kprobes void |
| do_nmi(struct pt_regs *regs, long error_code) |
| { |
| nmi_enter(); |
| |
| add_pda(__nmi_count, 1); |
| |
| if (!ignore_nmis) |
| default_do_nmi(regs); |
| |
| nmi_exit(); |
| } |
| |
| void stop_nmi(void) |
| { |
| acpi_nmi_disable(); |
| ignore_nmis++; |
| } |
| |
| void restart_nmi(void) |
| { |
| ignore_nmis--; |
| acpi_nmi_enable(); |
| } |
| |
| /* runs on IST stack. */ |
| dotraplinkage void __kprobes do_int3(struct pt_regs *regs, long error_code) |
| { |
| if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP) |
| == NOTIFY_STOP) |
| return; |
| |
| preempt_conditional_sti(regs); |
| do_trap(3, SIGTRAP, "int3", regs, error_code, NULL); |
| preempt_conditional_cli(regs); |
| } |
| |
| /* Help handler running on IST stack to switch back to user stack |
| for scheduling or signal handling. The actual stack switch is done in |
| entry.S */ |
| asmlinkage __kprobes struct pt_regs *sync_regs(struct pt_regs *eregs) |
| { |
| struct pt_regs *regs = eregs; |
| /* Did already sync */ |
| if (eregs == (struct pt_regs *)eregs->sp) |
| ; |
| /* Exception from user space */ |
| else if (user_mode(eregs)) |
| regs = task_pt_regs(current); |
| /* Exception from kernel and interrupts are enabled. Move to |
| kernel process stack. */ |
| else if (eregs->flags & X86_EFLAGS_IF) |
| regs = (struct pt_regs *)(eregs->sp -= sizeof(struct pt_regs)); |
| if (eregs != regs) |
| *regs = *eregs; |
| return regs; |
| } |
| |
| /* runs on IST stack. */ |
| dotraplinkage void __kprobes do_debug(struct pt_regs *regs, long error_code) |
| { |
| struct task_struct *tsk = current; |
| unsigned long condition; |
| int si_code; |
| |
| get_debugreg(condition, 6); |
| |
| /* |
| * The processor cleared BTF, so don't mark that we need it set. |
| */ |
| clear_tsk_thread_flag(tsk, TIF_DEBUGCTLMSR); |
| tsk->thread.debugctlmsr = 0; |
| |
| if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code, |
| SIGTRAP) == NOTIFY_STOP) |
| return; |
| |
| /* It's safe to allow irq's after DR6 has been saved */ |
| preempt_conditional_sti(regs); |
| |
| /* Mask out spurious debug traps due to lazy DR7 setting */ |
| if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) { |
| if (!tsk->thread.debugreg7) |
| goto clear_dr7; |
| } |
| |
| /* Save debug status register where ptrace can see it */ |
| tsk->thread.debugreg6 = condition; |
| |
| /* |
| * Single-stepping through TF: make sure we ignore any events in |
| * kernel space (but re-enable TF when returning to user mode). |
| */ |
| if (condition & DR_STEP) { |
| if (!user_mode(regs)) |
| goto clear_TF_reenable; |
| } |
| |
| si_code = get_si_code(condition); |
| /* Ok, finally something we can handle */ |
| send_sigtrap(tsk, regs, error_code, si_code); |
| |
| /* |
| * Disable additional traps. They'll be re-enabled when |
| * the signal is delivered. |
| */ |
| clear_dr7: |
| set_debugreg(0, 7); |
| preempt_conditional_cli(regs); |
| return; |
| |
| clear_TF_reenable: |
| set_tsk_thread_flag(tsk, TIF_SINGLESTEP); |
| regs->flags &= ~X86_EFLAGS_TF; |
| preempt_conditional_cli(regs); |
| return; |
| } |
| |
| static int kernel_math_error(struct pt_regs *regs, const char *str, int trapnr) |
| { |
| if (fixup_exception(regs)) |
| return 1; |
| |
| notify_die(DIE_GPF, str, regs, 0, trapnr, SIGFPE); |
| /* Illegal floating point operation in the kernel */ |
| current->thread.trap_no = trapnr; |
| die(str, regs, 0); |
| return 0; |
| } |
| |
| /* |
| * Note that we play around with the 'TS' bit in an attempt to get |
| * the correct behaviour even in the presence of the asynchronous |
| * IRQ13 behaviour |
| */ |
| void math_error(void __user *ip) |
| { |
| struct task_struct *task; |
| siginfo_t info; |
| unsigned short cwd, swd; |
| |
| /* |
| * Save the info for the exception handler and clear the error. |
| */ |
| task = current; |
| save_init_fpu(task); |
| task->thread.trap_no = 16; |
| task->thread.error_code = 0; |
| info.si_signo = SIGFPE; |
| info.si_errno = 0; |
| info.si_code = __SI_FAULT; |
| info.si_addr = ip; |
| /* |
| * (~cwd & swd) will mask out exceptions that are not set to unmasked |
| * status. 0x3f is the exception bits in these regs, 0x200 is the |
| * C1 reg you need in case of a stack fault, 0x040 is the stack |
| * fault bit. We should only be taking one exception at a time, |
| * so if this combination doesn't produce any single exception, |
| * then we have a bad program that isn't synchronizing its FPU usage |
| * and it will suffer the consequences since we won't be able to |
| * fully reproduce the context of the exception |
| */ |
| cwd = get_fpu_cwd(task); |
| swd = get_fpu_swd(task); |
| switch (swd & ~cwd & 0x3f) { |
| case 0x000: /* No unmasked exception */ |
| default: /* Multiple exceptions */ |
| break; |
| case 0x001: /* Invalid Op */ |
| /* |
| * swd & 0x240 == 0x040: Stack Underflow |
| * swd & 0x240 == 0x240: Stack Overflow |
| * User must clear the SF bit (0x40) if set |
| */ |
| info.si_code = FPE_FLTINV; |
| break; |
| case 0x002: /* Denormalize */ |
| case 0x010: /* Underflow */ |
| info.si_code = FPE_FLTUND; |
| break; |
| case 0x004: /* Zero Divide */ |
| info.si_code = FPE_FLTDIV; |
| break; |
| case 0x008: /* Overflow */ |
| info.si_code = FPE_FLTOVF; |
| break; |
| case 0x020: /* Precision */ |
| info.si_code = FPE_FLTRES; |
| break; |
| } |
| force_sig_info(SIGFPE, &info, task); |
| } |
| |
| dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code) |
| { |
| conditional_sti(regs); |
| if (!user_mode(regs) && |
| kernel_math_error(regs, "kernel x87 math error", 16)) |
| return; |
| math_error((void __user *)regs->ip); |
| } |
| |
| asmlinkage void bad_intr(void) |
| { |
| printk("bad interrupt"); |
| } |
| |
| static void simd_math_error(void __user *ip) |
| { |
| struct task_struct *task; |
| siginfo_t info; |
| unsigned short mxcsr; |
| |
| /* |
| * Save the info for the exception handler and clear the error. |
| */ |
| task = current; |
| save_init_fpu(task); |
| task->thread.trap_no = 19; |
| task->thread.error_code = 0; |
| info.si_signo = SIGFPE; |
| info.si_errno = 0; |
| info.si_code = __SI_FAULT; |
| info.si_addr = ip; |
| /* |
| * The SIMD FPU exceptions are handled a little differently, as there |
| * is only a single status/control register. Thus, to determine which |
| * unmasked exception was caught we must mask the exception mask bits |
| * at 0x1f80, and then use these to mask the exception bits at 0x3f. |
| */ |
| mxcsr = get_fpu_mxcsr(task); |
| switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) { |
| case 0x000: |
| default: |
| break; |
| case 0x001: /* Invalid Op */ |
| info.si_code = FPE_FLTINV; |
| break; |
| case 0x002: /* Denormalize */ |
| case 0x010: /* Underflow */ |
| info.si_code = FPE_FLTUND; |
| break; |
| case 0x004: /* Zero Divide */ |
| info.si_code = FPE_FLTDIV; |
| break; |
| case 0x008: /* Overflow */ |
| info.si_code = FPE_FLTOVF; |
| break; |
| case 0x020: /* Precision */ |
| info.si_code = FPE_FLTRES; |
| break; |
| } |
| force_sig_info(SIGFPE, &info, task); |
| } |
| |
| dotraplinkage void |
| do_simd_coprocessor_error(struct pt_regs *regs, long error_code) |
| { |
| conditional_sti(regs); |
| if (!user_mode(regs) && |
| kernel_math_error(regs, "kernel simd math error", 19)) |
| return; |
| simd_math_error((void __user *)regs->ip); |
| } |
| |
| dotraplinkage void |
| do_spurious_interrupt_bug(struct pt_regs *regs, long error_code) |
| { |
| } |
| |
| asmlinkage void __attribute__((weak)) smp_thermal_interrupt(void) |
| { |
| } |
| |
| asmlinkage void __attribute__((weak)) mce_threshold_interrupt(void) |
| { |
| } |
| |
| /* |
| * 'math_state_restore()' saves the current math information in the |
| * old math state array, and gets the new ones from the current task |
| * |
| * Careful.. There are problems with IBM-designed IRQ13 behaviour. |
| * Don't touch unless you *really* know how it works. |
| */ |
| asmlinkage void math_state_restore(void) |
| { |
| struct thread_info *thread = current_thread_info(); |
| struct task_struct *tsk = thread->task; |
| |
| if (!tsk_used_math(tsk)) { |
| local_irq_enable(); |
| /* |
| * does a slab alloc which can sleep |
| */ |
| if (init_fpu(tsk)) { |
| /* |
| * ran out of memory! |
| */ |
| do_group_exit(SIGKILL); |
| return; |
| } |
| local_irq_disable(); |
| } |
| |
| clts(); /* Allow maths ops (or we recurse) */ |
| /* |
| * Paranoid restore. send a SIGSEGV if we fail to restore the state. |
| */ |
| if (unlikely(restore_fpu_checking(tsk))) { |
| stts(); |
| force_sig(SIGSEGV, tsk); |
| return; |
| } |
| thread->status |= TS_USEDFPU; /* So we fnsave on switch_to() */ |
| tsk->fpu_counter++; |
| } |
| EXPORT_SYMBOL_GPL(math_state_restore); |
| |
| dotraplinkage void __kprobes |
| do_device_not_available(struct pt_regs *regs, long error) |
| { |
| math_state_restore(); |
| } |
| |
| void __init trap_init(void) |
| { |
| set_intr_gate(0, ÷_error); |
| set_intr_gate_ist(1, &debug, DEBUG_STACK); |
| set_intr_gate_ist(2, &nmi, NMI_STACK); |
| /* int3 can be called from all */ |
| set_system_intr_gate_ist(3, &int3, DEBUG_STACK); |
| /* int4 can be called from all */ |
| set_system_intr_gate(4, &overflow); |
| set_intr_gate(5, &bounds); |
| set_intr_gate(6, &invalid_op); |
| set_intr_gate(7, &device_not_available); |
| set_intr_gate_ist(8, &double_fault, DOUBLEFAULT_STACK); |
| set_intr_gate(9, &coprocessor_segment_overrun); |
| set_intr_gate(10, &invalid_TSS); |
| set_intr_gate(11, &segment_not_present); |
| set_intr_gate_ist(12, &stack_segment, STACKFAULT_STACK); |
| set_intr_gate(13, &general_protection); |
| set_intr_gate(14, &page_fault); |
| set_intr_gate(15, &spurious_interrupt_bug); |
| set_intr_gate(16, &coprocessor_error); |
| set_intr_gate(17, &alignment_check); |
| #ifdef CONFIG_X86_MCE |
| set_intr_gate_ist(18, &machine_check, MCE_STACK); |
| #endif |
| set_intr_gate(19, &simd_coprocessor_error); |
| |
| #ifdef CONFIG_IA32_EMULATION |
| set_system_intr_gate(IA32_SYSCALL_VECTOR, ia32_syscall); |
| #endif |
| /* |
| * Should be a barrier for any external CPU state: |
| */ |
| cpu_init(); |
| } |