| /* | 
 |  * linux/kernel/posix-timers.c | 
 |  * | 
 |  * | 
 |  * 2002-10-15  Posix Clocks & timers | 
 |  *                           by George Anzinger george@mvista.com | 
 |  * | 
 |  *			     Copyright (C) 2002 2003 by MontaVista Software. | 
 |  * | 
 |  * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug. | 
 |  *			     Copyright (C) 2004 Boris Hu | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation; either version 2 of the License, or (at | 
 |  * your option) any later version. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, but | 
 |  * WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | 
 |  * General Public License for more details. | 
 |  | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write to the Free Software | 
 |  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
 |  * | 
 |  * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA | 
 |  */ | 
 |  | 
 | /* These are all the functions necessary to implement | 
 |  * POSIX clocks & timers | 
 |  */ | 
 | #include <linux/mm.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/time.h> | 
 | #include <linux/mutex.h> | 
 |  | 
 | #include <asm/uaccess.h> | 
 | #include <linux/list.h> | 
 | #include <linux/init.h> | 
 | #include <linux/compiler.h> | 
 | #include <linux/idr.h> | 
 | #include <linux/posix-clock.h> | 
 | #include <linux/posix-timers.h> | 
 | #include <linux/syscalls.h> | 
 | #include <linux/wait.h> | 
 | #include <linux/workqueue.h> | 
 | #include <linux/module.h> | 
 |  | 
 | /* | 
 |  * Management arrays for POSIX timers.	 Timers are kept in slab memory | 
 |  * Timer ids are allocated by an external routine that keeps track of the | 
 |  * id and the timer.  The external interface is: | 
 |  * | 
 |  * void *idr_find(struct idr *idp, int id);           to find timer_id <id> | 
 |  * int idr_get_new(struct idr *idp, void *ptr);       to get a new id and | 
 |  *                                                    related it to <ptr> | 
 |  * void idr_remove(struct idr *idp, int id);          to release <id> | 
 |  * void idr_init(struct idr *idp);                    to initialize <idp> | 
 |  *                                                    which we supply. | 
 |  * The idr_get_new *may* call slab for more memory so it must not be | 
 |  * called under a spin lock.  Likewise idr_remore may release memory | 
 |  * (but it may be ok to do this under a lock...). | 
 |  * idr_find is just a memory look up and is quite fast.  A -1 return | 
 |  * indicates that the requested id does not exist. | 
 |  */ | 
 |  | 
 | /* | 
 |  * Lets keep our timers in a slab cache :-) | 
 |  */ | 
 | static struct kmem_cache *posix_timers_cache; | 
 | static struct idr posix_timers_id; | 
 | static DEFINE_SPINLOCK(idr_lock); | 
 |  | 
 | /* | 
 |  * we assume that the new SIGEV_THREAD_ID shares no bits with the other | 
 |  * SIGEV values.  Here we put out an error if this assumption fails. | 
 |  */ | 
 | #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \ | 
 |                        ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD)) | 
 | #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!" | 
 | #endif | 
 |  | 
 | /* | 
 |  * parisc wants ENOTSUP instead of EOPNOTSUPP | 
 |  */ | 
 | #ifndef ENOTSUP | 
 | # define ENANOSLEEP_NOTSUP EOPNOTSUPP | 
 | #else | 
 | # define ENANOSLEEP_NOTSUP ENOTSUP | 
 | #endif | 
 |  | 
 | /* | 
 |  * The timer ID is turned into a timer address by idr_find(). | 
 |  * Verifying a valid ID consists of: | 
 |  * | 
 |  * a) checking that idr_find() returns other than -1. | 
 |  * b) checking that the timer id matches the one in the timer itself. | 
 |  * c) that the timer owner is in the callers thread group. | 
 |  */ | 
 |  | 
 | /* | 
 |  * CLOCKs: The POSIX standard calls for a couple of clocks and allows us | 
 |  *	    to implement others.  This structure defines the various | 
 |  *	    clocks. | 
 |  * | 
 |  * RESOLUTION: Clock resolution is used to round up timer and interval | 
 |  *	    times, NOT to report clock times, which are reported with as | 
 |  *	    much resolution as the system can muster.  In some cases this | 
 |  *	    resolution may depend on the underlying clock hardware and | 
 |  *	    may not be quantifiable until run time, and only then is the | 
 |  *	    necessary code is written.	The standard says we should say | 
 |  *	    something about this issue in the documentation... | 
 |  * | 
 |  * FUNCTIONS: The CLOCKs structure defines possible functions to | 
 |  *	    handle various clock functions. | 
 |  * | 
 |  *	    The standard POSIX timer management code assumes the | 
 |  *	    following: 1.) The k_itimer struct (sched.h) is used for | 
 |  *	    the timer.  2.) The list, it_lock, it_clock, it_id and | 
 |  *	    it_pid fields are not modified by timer code. | 
 |  * | 
 |  * Permissions: It is assumed that the clock_settime() function defined | 
 |  *	    for each clock will take care of permission checks.	 Some | 
 |  *	    clocks may be set able by any user (i.e. local process | 
 |  *	    clocks) others not.	 Currently the only set able clock we | 
 |  *	    have is CLOCK_REALTIME and its high res counter part, both of | 
 |  *	    which we beg off on and pass to do_sys_settimeofday(). | 
 |  */ | 
 |  | 
 | static struct k_clock posix_clocks[MAX_CLOCKS]; | 
 |  | 
 | /* | 
 |  * These ones are defined below. | 
 |  */ | 
 | static int common_nsleep(const clockid_t, int flags, struct timespec *t, | 
 | 			 struct timespec __user *rmtp); | 
 | static int common_timer_create(struct k_itimer *new_timer); | 
 | static void common_timer_get(struct k_itimer *, struct itimerspec *); | 
 | static int common_timer_set(struct k_itimer *, int, | 
 | 			    struct itimerspec *, struct itimerspec *); | 
 | static int common_timer_del(struct k_itimer *timer); | 
 |  | 
 | static enum hrtimer_restart posix_timer_fn(struct hrtimer *data); | 
 |  | 
 | static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags); | 
 |  | 
 | #define lock_timer(tid, flags)						   \ | 
 | ({	struct k_itimer *__timr;					   \ | 
 | 	__cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags));  \ | 
 | 	__timr;								   \ | 
 | }) | 
 |  | 
 | static inline void unlock_timer(struct k_itimer *timr, unsigned long flags) | 
 | { | 
 | 	spin_unlock_irqrestore(&timr->it_lock, flags); | 
 | } | 
 |  | 
 | /* Get clock_realtime */ | 
 | static int posix_clock_realtime_get(clockid_t which_clock, struct timespec *tp) | 
 | { | 
 | 	ktime_get_real_ts(tp); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Set clock_realtime */ | 
 | static int posix_clock_realtime_set(const clockid_t which_clock, | 
 | 				    const struct timespec *tp) | 
 | { | 
 | 	return do_sys_settimeofday(tp, NULL); | 
 | } | 
 |  | 
 | static int posix_clock_realtime_adj(const clockid_t which_clock, | 
 | 				    struct timex *t) | 
 | { | 
 | 	return do_adjtimex(t); | 
 | } | 
 |  | 
 | /* | 
 |  * Get monotonic time for posix timers | 
 |  */ | 
 | static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp) | 
 | { | 
 | 	ktime_get_ts(tp); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Get monotonic-raw time for posix timers | 
 |  */ | 
 | static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp) | 
 | { | 
 | 	getrawmonotonic(tp); | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp) | 
 | { | 
 | 	*tp = current_kernel_time(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int posix_get_monotonic_coarse(clockid_t which_clock, | 
 | 						struct timespec *tp) | 
 | { | 
 | 	*tp = get_monotonic_coarse(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp) | 
 | { | 
 | 	*tp = ktime_to_timespec(KTIME_LOW_RES); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int posix_get_boottime(const clockid_t which_clock, struct timespec *tp) | 
 | { | 
 | 	get_monotonic_boottime(tp); | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Initialize everything, well, just everything in Posix clocks/timers ;) | 
 |  */ | 
 | static __init int init_posix_timers(void) | 
 | { | 
 | 	struct k_clock clock_realtime = { | 
 | 		.clock_getres	= hrtimer_get_res, | 
 | 		.clock_get	= posix_clock_realtime_get, | 
 | 		.clock_set	= posix_clock_realtime_set, | 
 | 		.clock_adj	= posix_clock_realtime_adj, | 
 | 		.nsleep		= common_nsleep, | 
 | 		.nsleep_restart	= hrtimer_nanosleep_restart, | 
 | 		.timer_create	= common_timer_create, | 
 | 		.timer_set	= common_timer_set, | 
 | 		.timer_get	= common_timer_get, | 
 | 		.timer_del	= common_timer_del, | 
 | 	}; | 
 | 	struct k_clock clock_monotonic = { | 
 | 		.clock_getres	= hrtimer_get_res, | 
 | 		.clock_get	= posix_ktime_get_ts, | 
 | 		.nsleep		= common_nsleep, | 
 | 		.nsleep_restart	= hrtimer_nanosleep_restart, | 
 | 		.timer_create	= common_timer_create, | 
 | 		.timer_set	= common_timer_set, | 
 | 		.timer_get	= common_timer_get, | 
 | 		.timer_del	= common_timer_del, | 
 | 	}; | 
 | 	struct k_clock clock_monotonic_raw = { | 
 | 		.clock_getres	= hrtimer_get_res, | 
 | 		.clock_get	= posix_get_monotonic_raw, | 
 | 	}; | 
 | 	struct k_clock clock_realtime_coarse = { | 
 | 		.clock_getres	= posix_get_coarse_res, | 
 | 		.clock_get	= posix_get_realtime_coarse, | 
 | 	}; | 
 | 	struct k_clock clock_monotonic_coarse = { | 
 | 		.clock_getres	= posix_get_coarse_res, | 
 | 		.clock_get	= posix_get_monotonic_coarse, | 
 | 	}; | 
 | 	struct k_clock clock_boottime = { | 
 | 		.clock_getres	= hrtimer_get_res, | 
 | 		.clock_get	= posix_get_boottime, | 
 | 		.nsleep		= common_nsleep, | 
 | 		.nsleep_restart	= hrtimer_nanosleep_restart, | 
 | 		.timer_create	= common_timer_create, | 
 | 		.timer_set	= common_timer_set, | 
 | 		.timer_get	= common_timer_get, | 
 | 		.timer_del	= common_timer_del, | 
 | 	}; | 
 |  | 
 | 	posix_timers_register_clock(CLOCK_REALTIME, &clock_realtime); | 
 | 	posix_timers_register_clock(CLOCK_MONOTONIC, &clock_monotonic); | 
 | 	posix_timers_register_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw); | 
 | 	posix_timers_register_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse); | 
 | 	posix_timers_register_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse); | 
 | 	posix_timers_register_clock(CLOCK_BOOTTIME, &clock_boottime); | 
 |  | 
 | 	posix_timers_cache = kmem_cache_create("posix_timers_cache", | 
 | 					sizeof (struct k_itimer), 0, SLAB_PANIC, | 
 | 					NULL); | 
 | 	idr_init(&posix_timers_id); | 
 | 	return 0; | 
 | } | 
 |  | 
 | __initcall(init_posix_timers); | 
 |  | 
 | static void schedule_next_timer(struct k_itimer *timr) | 
 | { | 
 | 	struct hrtimer *timer = &timr->it.real.timer; | 
 |  | 
 | 	if (timr->it.real.interval.tv64 == 0) | 
 | 		return; | 
 |  | 
 | 	timr->it_overrun += (unsigned int) hrtimer_forward(timer, | 
 | 						timer->base->get_time(), | 
 | 						timr->it.real.interval); | 
 |  | 
 | 	timr->it_overrun_last = timr->it_overrun; | 
 | 	timr->it_overrun = -1; | 
 | 	++timr->it_requeue_pending; | 
 | 	hrtimer_restart(timer); | 
 | } | 
 |  | 
 | /* | 
 |  * This function is exported for use by the signal deliver code.  It is | 
 |  * called just prior to the info block being released and passes that | 
 |  * block to us.  It's function is to update the overrun entry AND to | 
 |  * restart the timer.  It should only be called if the timer is to be | 
 |  * restarted (i.e. we have flagged this in the sys_private entry of the | 
 |  * info block). | 
 |  * | 
 |  * To protect against the timer going away while the interrupt is queued, | 
 |  * we require that the it_requeue_pending flag be set. | 
 |  */ | 
 | void do_schedule_next_timer(struct siginfo *info) | 
 | { | 
 | 	struct k_itimer *timr; | 
 | 	unsigned long flags; | 
 |  | 
 | 	timr = lock_timer(info->si_tid, &flags); | 
 |  | 
 | 	if (timr && timr->it_requeue_pending == info->si_sys_private) { | 
 | 		if (timr->it_clock < 0) | 
 | 			posix_cpu_timer_schedule(timr); | 
 | 		else | 
 | 			schedule_next_timer(timr); | 
 |  | 
 | 		info->si_overrun += timr->it_overrun_last; | 
 | 	} | 
 |  | 
 | 	if (timr) | 
 | 		unlock_timer(timr, flags); | 
 | } | 
 |  | 
 | int posix_timer_event(struct k_itimer *timr, int si_private) | 
 | { | 
 | 	struct task_struct *task; | 
 | 	int shared, ret = -1; | 
 | 	/* | 
 | 	 * FIXME: if ->sigq is queued we can race with | 
 | 	 * dequeue_signal()->do_schedule_next_timer(). | 
 | 	 * | 
 | 	 * If dequeue_signal() sees the "right" value of | 
 | 	 * si_sys_private it calls do_schedule_next_timer(). | 
 | 	 * We re-queue ->sigq and drop ->it_lock(). | 
 | 	 * do_schedule_next_timer() locks the timer | 
 | 	 * and re-schedules it while ->sigq is pending. | 
 | 	 * Not really bad, but not that we want. | 
 | 	 */ | 
 | 	timr->sigq->info.si_sys_private = si_private; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	task = pid_task(timr->it_pid, PIDTYPE_PID); | 
 | 	if (task) { | 
 | 		shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID); | 
 | 		ret = send_sigqueue(timr->sigq, task, shared); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | 	/* If we failed to send the signal the timer stops. */ | 
 | 	return ret > 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(posix_timer_event); | 
 |  | 
 | /* | 
 |  * This function gets called when a POSIX.1b interval timer expires.  It | 
 |  * is used as a callback from the kernel internal timer.  The | 
 |  * run_timer_list code ALWAYS calls with interrupts on. | 
 |  | 
 |  * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers. | 
 |  */ | 
 | static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer) | 
 | { | 
 | 	struct k_itimer *timr; | 
 | 	unsigned long flags; | 
 | 	int si_private = 0; | 
 | 	enum hrtimer_restart ret = HRTIMER_NORESTART; | 
 |  | 
 | 	timr = container_of(timer, struct k_itimer, it.real.timer); | 
 | 	spin_lock_irqsave(&timr->it_lock, flags); | 
 |  | 
 | 	if (timr->it.real.interval.tv64 != 0) | 
 | 		si_private = ++timr->it_requeue_pending; | 
 |  | 
 | 	if (posix_timer_event(timr, si_private)) { | 
 | 		/* | 
 | 		 * signal was not sent because of sig_ignor | 
 | 		 * we will not get a call back to restart it AND | 
 | 		 * it should be restarted. | 
 | 		 */ | 
 | 		if (timr->it.real.interval.tv64 != 0) { | 
 | 			ktime_t now = hrtimer_cb_get_time(timer); | 
 |  | 
 | 			/* | 
 | 			 * FIXME: What we really want, is to stop this | 
 | 			 * timer completely and restart it in case the | 
 | 			 * SIG_IGN is removed. This is a non trivial | 
 | 			 * change which involves sighand locking | 
 | 			 * (sigh !), which we don't want to do late in | 
 | 			 * the release cycle. | 
 | 			 * | 
 | 			 * For now we just let timers with an interval | 
 | 			 * less than a jiffie expire every jiffie to | 
 | 			 * avoid softirq starvation in case of SIG_IGN | 
 | 			 * and a very small interval, which would put | 
 | 			 * the timer right back on the softirq pending | 
 | 			 * list. By moving now ahead of time we trick | 
 | 			 * hrtimer_forward() to expire the timer | 
 | 			 * later, while we still maintain the overrun | 
 | 			 * accuracy, but have some inconsistency in | 
 | 			 * the timer_gettime() case. This is at least | 
 | 			 * better than a starved softirq. A more | 
 | 			 * complex fix which solves also another related | 
 | 			 * inconsistency is already in the pipeline. | 
 | 			 */ | 
 | #ifdef CONFIG_HIGH_RES_TIMERS | 
 | 			{ | 
 | 				ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ); | 
 |  | 
 | 				if (timr->it.real.interval.tv64 < kj.tv64) | 
 | 					now = ktime_add(now, kj); | 
 | 			} | 
 | #endif | 
 | 			timr->it_overrun += (unsigned int) | 
 | 				hrtimer_forward(timer, now, | 
 | 						timr->it.real.interval); | 
 | 			ret = HRTIMER_RESTART; | 
 | 			++timr->it_requeue_pending; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	unlock_timer(timr, flags); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static struct pid *good_sigevent(sigevent_t * event) | 
 | { | 
 | 	struct task_struct *rtn = current->group_leader; | 
 |  | 
 | 	if ((event->sigev_notify & SIGEV_THREAD_ID ) && | 
 | 		(!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) || | 
 | 		 !same_thread_group(rtn, current) || | 
 | 		 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL)) | 
 | 		return NULL; | 
 |  | 
 | 	if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) && | 
 | 	    ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX))) | 
 | 		return NULL; | 
 |  | 
 | 	return task_pid(rtn); | 
 | } | 
 |  | 
 | void posix_timers_register_clock(const clockid_t clock_id, | 
 | 				 struct k_clock *new_clock) | 
 | { | 
 | 	if ((unsigned) clock_id >= MAX_CLOCKS) { | 
 | 		printk(KERN_WARNING "POSIX clock register failed for clock_id %d\n", | 
 | 		       clock_id); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (!new_clock->clock_get) { | 
 | 		printk(KERN_WARNING "POSIX clock id %d lacks clock_get()\n", | 
 | 		       clock_id); | 
 | 		return; | 
 | 	} | 
 | 	if (!new_clock->clock_getres) { | 
 | 		printk(KERN_WARNING "POSIX clock id %d lacks clock_getres()\n", | 
 | 		       clock_id); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	posix_clocks[clock_id] = *new_clock; | 
 | } | 
 | EXPORT_SYMBOL_GPL(posix_timers_register_clock); | 
 |  | 
 | static struct k_itimer * alloc_posix_timer(void) | 
 | { | 
 | 	struct k_itimer *tmr; | 
 | 	tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL); | 
 | 	if (!tmr) | 
 | 		return tmr; | 
 | 	if (unlikely(!(tmr->sigq = sigqueue_alloc()))) { | 
 | 		kmem_cache_free(posix_timers_cache, tmr); | 
 | 		return NULL; | 
 | 	} | 
 | 	memset(&tmr->sigq->info, 0, sizeof(siginfo_t)); | 
 | 	return tmr; | 
 | } | 
 |  | 
 | static void k_itimer_rcu_free(struct rcu_head *head) | 
 | { | 
 | 	struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu); | 
 |  | 
 | 	kmem_cache_free(posix_timers_cache, tmr); | 
 | } | 
 |  | 
 | #define IT_ID_SET	1 | 
 | #define IT_ID_NOT_SET	0 | 
 | static void release_posix_timer(struct k_itimer *tmr, int it_id_set) | 
 | { | 
 | 	if (it_id_set) { | 
 | 		unsigned long flags; | 
 | 		spin_lock_irqsave(&idr_lock, flags); | 
 | 		idr_remove(&posix_timers_id, tmr->it_id); | 
 | 		spin_unlock_irqrestore(&idr_lock, flags); | 
 | 	} | 
 | 	put_pid(tmr->it_pid); | 
 | 	sigqueue_free(tmr->sigq); | 
 | 	call_rcu(&tmr->it.rcu, k_itimer_rcu_free); | 
 | } | 
 |  | 
 | static struct k_clock *clockid_to_kclock(const clockid_t id) | 
 | { | 
 | 	if (id < 0) | 
 | 		return (id & CLOCKFD_MASK) == CLOCKFD ? | 
 | 			&clock_posix_dynamic : &clock_posix_cpu; | 
 |  | 
 | 	if (id >= MAX_CLOCKS || !posix_clocks[id].clock_getres) | 
 | 		return NULL; | 
 | 	return &posix_clocks[id]; | 
 | } | 
 |  | 
 | static int common_timer_create(struct k_itimer *new_timer) | 
 | { | 
 | 	hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Create a POSIX.1b interval timer. */ | 
 |  | 
 | SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock, | 
 | 		struct sigevent __user *, timer_event_spec, | 
 | 		timer_t __user *, created_timer_id) | 
 | { | 
 | 	struct k_clock *kc = clockid_to_kclock(which_clock); | 
 | 	struct k_itimer *new_timer; | 
 | 	int error, new_timer_id; | 
 | 	sigevent_t event; | 
 | 	int it_id_set = IT_ID_NOT_SET; | 
 |  | 
 | 	if (!kc) | 
 | 		return -EINVAL; | 
 | 	if (!kc->timer_create) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	new_timer = alloc_posix_timer(); | 
 | 	if (unlikely(!new_timer)) | 
 | 		return -EAGAIN; | 
 |  | 
 | 	spin_lock_init(&new_timer->it_lock); | 
 |  retry: | 
 | 	if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) { | 
 | 		error = -EAGAIN; | 
 | 		goto out; | 
 | 	} | 
 | 	spin_lock_irq(&idr_lock); | 
 | 	error = idr_get_new(&posix_timers_id, new_timer, &new_timer_id); | 
 | 	spin_unlock_irq(&idr_lock); | 
 | 	if (error) { | 
 | 		if (error == -EAGAIN) | 
 | 			goto retry; | 
 | 		/* | 
 | 		 * Weird looking, but we return EAGAIN if the IDR is | 
 | 		 * full (proper POSIX return value for this) | 
 | 		 */ | 
 | 		error = -EAGAIN; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	it_id_set = IT_ID_SET; | 
 | 	new_timer->it_id = (timer_t) new_timer_id; | 
 | 	new_timer->it_clock = which_clock; | 
 | 	new_timer->it_overrun = -1; | 
 |  | 
 | 	if (timer_event_spec) { | 
 | 		if (copy_from_user(&event, timer_event_spec, sizeof (event))) { | 
 | 			error = -EFAULT; | 
 | 			goto out; | 
 | 		} | 
 | 		rcu_read_lock(); | 
 | 		new_timer->it_pid = get_pid(good_sigevent(&event)); | 
 | 		rcu_read_unlock(); | 
 | 		if (!new_timer->it_pid) { | 
 | 			error = -EINVAL; | 
 | 			goto out; | 
 | 		} | 
 | 	} else { | 
 | 		event.sigev_notify = SIGEV_SIGNAL; | 
 | 		event.sigev_signo = SIGALRM; | 
 | 		event.sigev_value.sival_int = new_timer->it_id; | 
 | 		new_timer->it_pid = get_pid(task_tgid(current)); | 
 | 	} | 
 |  | 
 | 	new_timer->it_sigev_notify     = event.sigev_notify; | 
 | 	new_timer->sigq->info.si_signo = event.sigev_signo; | 
 | 	new_timer->sigq->info.si_value = event.sigev_value; | 
 | 	new_timer->sigq->info.si_tid   = new_timer->it_id; | 
 | 	new_timer->sigq->info.si_code  = SI_TIMER; | 
 |  | 
 | 	if (copy_to_user(created_timer_id, | 
 | 			 &new_timer_id, sizeof (new_timer_id))) { | 
 | 		error = -EFAULT; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	error = kc->timer_create(new_timer); | 
 | 	if (error) | 
 | 		goto out; | 
 |  | 
 | 	spin_lock_irq(¤t->sighand->siglock); | 
 | 	new_timer->it_signal = current->signal; | 
 | 	list_add(&new_timer->list, ¤t->signal->posix_timers); | 
 | 	spin_unlock_irq(¤t->sighand->siglock); | 
 |  | 
 | 	return 0; | 
 | 	/* | 
 | 	 * In the case of the timer belonging to another task, after | 
 | 	 * the task is unlocked, the timer is owned by the other task | 
 | 	 * and may cease to exist at any time.  Don't use or modify | 
 | 	 * new_timer after the unlock call. | 
 | 	 */ | 
 | out: | 
 | 	release_posix_timer(new_timer, it_id_set); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Locking issues: We need to protect the result of the id look up until | 
 |  * we get the timer locked down so it is not deleted under us.  The | 
 |  * removal is done under the idr spinlock so we use that here to bridge | 
 |  * the find to the timer lock.  To avoid a dead lock, the timer id MUST | 
 |  * be release with out holding the timer lock. | 
 |  */ | 
 | static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags) | 
 | { | 
 | 	struct k_itimer *timr; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	timr = idr_find(&posix_timers_id, (int)timer_id); | 
 | 	if (timr) { | 
 | 		spin_lock_irqsave(&timr->it_lock, *flags); | 
 | 		if (timr->it_signal == current->signal) { | 
 | 			rcu_read_unlock(); | 
 | 			return timr; | 
 | 		} | 
 | 		spin_unlock_irqrestore(&timr->it_lock, *flags); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Get the time remaining on a POSIX.1b interval timer.  This function | 
 |  * is ALWAYS called with spin_lock_irq on the timer, thus it must not | 
 |  * mess with irq. | 
 |  * | 
 |  * We have a couple of messes to clean up here.  First there is the case | 
 |  * of a timer that has a requeue pending.  These timers should appear to | 
 |  * be in the timer list with an expiry as if we were to requeue them | 
 |  * now. | 
 |  * | 
 |  * The second issue is the SIGEV_NONE timer which may be active but is | 
 |  * not really ever put in the timer list (to save system resources). | 
 |  * This timer may be expired, and if so, we will do it here.  Otherwise | 
 |  * it is the same as a requeue pending timer WRT to what we should | 
 |  * report. | 
 |  */ | 
 | static void | 
 | common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting) | 
 | { | 
 | 	ktime_t now, remaining, iv; | 
 | 	struct hrtimer *timer = &timr->it.real.timer; | 
 |  | 
 | 	memset(cur_setting, 0, sizeof(struct itimerspec)); | 
 |  | 
 | 	iv = timr->it.real.interval; | 
 |  | 
 | 	/* interval timer ? */ | 
 | 	if (iv.tv64) | 
 | 		cur_setting->it_interval = ktime_to_timespec(iv); | 
 | 	else if (!hrtimer_active(timer) && | 
 | 		 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) | 
 | 		return; | 
 |  | 
 | 	now = timer->base->get_time(); | 
 |  | 
 | 	/* | 
 | 	 * When a requeue is pending or this is a SIGEV_NONE | 
 | 	 * timer move the expiry time forward by intervals, so | 
 | 	 * expiry is > now. | 
 | 	 */ | 
 | 	if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING || | 
 | 	    (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) | 
 | 		timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv); | 
 |  | 
 | 	remaining = ktime_sub(hrtimer_get_expires(timer), now); | 
 | 	/* Return 0 only, when the timer is expired and not pending */ | 
 | 	if (remaining.tv64 <= 0) { | 
 | 		/* | 
 | 		 * A single shot SIGEV_NONE timer must return 0, when | 
 | 		 * it is expired ! | 
 | 		 */ | 
 | 		if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) | 
 | 			cur_setting->it_value.tv_nsec = 1; | 
 | 	} else | 
 | 		cur_setting->it_value = ktime_to_timespec(remaining); | 
 | } | 
 |  | 
 | /* Get the time remaining on a POSIX.1b interval timer. */ | 
 | SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id, | 
 | 		struct itimerspec __user *, setting) | 
 | { | 
 | 	struct itimerspec cur_setting; | 
 | 	struct k_itimer *timr; | 
 | 	struct k_clock *kc; | 
 | 	unsigned long flags; | 
 | 	int ret = 0; | 
 |  | 
 | 	timr = lock_timer(timer_id, &flags); | 
 | 	if (!timr) | 
 | 		return -EINVAL; | 
 |  | 
 | 	kc = clockid_to_kclock(timr->it_clock); | 
 | 	if (WARN_ON_ONCE(!kc || !kc->timer_get)) | 
 | 		ret = -EINVAL; | 
 | 	else | 
 | 		kc->timer_get(timr, &cur_setting); | 
 |  | 
 | 	unlock_timer(timr, flags); | 
 |  | 
 | 	if (!ret && copy_to_user(setting, &cur_setting, sizeof (cur_setting))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Get the number of overruns of a POSIX.1b interval timer.  This is to | 
 |  * be the overrun of the timer last delivered.  At the same time we are | 
 |  * accumulating overruns on the next timer.  The overrun is frozen when | 
 |  * the signal is delivered, either at the notify time (if the info block | 
 |  * is not queued) or at the actual delivery time (as we are informed by | 
 |  * the call back to do_schedule_next_timer().  So all we need to do is | 
 |  * to pick up the frozen overrun. | 
 |  */ | 
 | SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id) | 
 | { | 
 | 	struct k_itimer *timr; | 
 | 	int overrun; | 
 | 	unsigned long flags; | 
 |  | 
 | 	timr = lock_timer(timer_id, &flags); | 
 | 	if (!timr) | 
 | 		return -EINVAL; | 
 |  | 
 | 	overrun = timr->it_overrun_last; | 
 | 	unlock_timer(timr, flags); | 
 |  | 
 | 	return overrun; | 
 | } | 
 |  | 
 | /* Set a POSIX.1b interval timer. */ | 
 | /* timr->it_lock is taken. */ | 
 | static int | 
 | common_timer_set(struct k_itimer *timr, int flags, | 
 | 		 struct itimerspec *new_setting, struct itimerspec *old_setting) | 
 | { | 
 | 	struct hrtimer *timer = &timr->it.real.timer; | 
 | 	enum hrtimer_mode mode; | 
 |  | 
 | 	if (old_setting) | 
 | 		common_timer_get(timr, old_setting); | 
 |  | 
 | 	/* disable the timer */ | 
 | 	timr->it.real.interval.tv64 = 0; | 
 | 	/* | 
 | 	 * careful here.  If smp we could be in the "fire" routine which will | 
 | 	 * be spinning as we hold the lock.  But this is ONLY an SMP issue. | 
 | 	 */ | 
 | 	if (hrtimer_try_to_cancel(timer) < 0) | 
 | 		return TIMER_RETRY; | 
 |  | 
 | 	timr->it_requeue_pending = (timr->it_requeue_pending + 2) &  | 
 | 		~REQUEUE_PENDING; | 
 | 	timr->it_overrun_last = 0; | 
 |  | 
 | 	/* switch off the timer when it_value is zero */ | 
 | 	if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) | 
 | 		return 0; | 
 |  | 
 | 	mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL; | 
 | 	hrtimer_init(&timr->it.real.timer, timr->it_clock, mode); | 
 | 	timr->it.real.timer.function = posix_timer_fn; | 
 |  | 
 | 	hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value)); | 
 |  | 
 | 	/* Convert interval */ | 
 | 	timr->it.real.interval = timespec_to_ktime(new_setting->it_interval); | 
 |  | 
 | 	/* SIGEV_NONE timers are not queued ! See common_timer_get */ | 
 | 	if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) { | 
 | 		/* Setup correct expiry time for relative timers */ | 
 | 		if (mode == HRTIMER_MODE_REL) { | 
 | 			hrtimer_add_expires(timer, timer->base->get_time()); | 
 | 		} | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	hrtimer_start_expires(timer, mode); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Set a POSIX.1b interval timer */ | 
 | SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags, | 
 | 		const struct itimerspec __user *, new_setting, | 
 | 		struct itimerspec __user *, old_setting) | 
 | { | 
 | 	struct k_itimer *timr; | 
 | 	struct itimerspec new_spec, old_spec; | 
 | 	int error = 0; | 
 | 	unsigned long flag; | 
 | 	struct itimerspec *rtn = old_setting ? &old_spec : NULL; | 
 | 	struct k_clock *kc; | 
 |  | 
 | 	if (!new_setting) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (copy_from_user(&new_spec, new_setting, sizeof (new_spec))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	if (!timespec_valid(&new_spec.it_interval) || | 
 | 	    !timespec_valid(&new_spec.it_value)) | 
 | 		return -EINVAL; | 
 | retry: | 
 | 	timr = lock_timer(timer_id, &flag); | 
 | 	if (!timr) | 
 | 		return -EINVAL; | 
 |  | 
 | 	kc = clockid_to_kclock(timr->it_clock); | 
 | 	if (WARN_ON_ONCE(!kc || !kc->timer_set)) | 
 | 		error = -EINVAL; | 
 | 	else | 
 | 		error = kc->timer_set(timr, flags, &new_spec, rtn); | 
 |  | 
 | 	unlock_timer(timr, flag); | 
 | 	if (error == TIMER_RETRY) { | 
 | 		rtn = NULL;	// We already got the old time... | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	if (old_setting && !error && | 
 | 	    copy_to_user(old_setting, &old_spec, sizeof (old_spec))) | 
 | 		error = -EFAULT; | 
 |  | 
 | 	return error; | 
 | } | 
 |  | 
 | static int common_timer_del(struct k_itimer *timer) | 
 | { | 
 | 	timer->it.real.interval.tv64 = 0; | 
 |  | 
 | 	if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0) | 
 | 		return TIMER_RETRY; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int timer_delete_hook(struct k_itimer *timer) | 
 | { | 
 | 	struct k_clock *kc = clockid_to_kclock(timer->it_clock); | 
 |  | 
 | 	if (WARN_ON_ONCE(!kc || !kc->timer_del)) | 
 | 		return -EINVAL; | 
 | 	return kc->timer_del(timer); | 
 | } | 
 |  | 
 | /* Delete a POSIX.1b interval timer. */ | 
 | SYSCALL_DEFINE1(timer_delete, timer_t, timer_id) | 
 | { | 
 | 	struct k_itimer *timer; | 
 | 	unsigned long flags; | 
 |  | 
 | retry_delete: | 
 | 	timer = lock_timer(timer_id, &flags); | 
 | 	if (!timer) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (timer_delete_hook(timer) == TIMER_RETRY) { | 
 | 		unlock_timer(timer, flags); | 
 | 		goto retry_delete; | 
 | 	} | 
 |  | 
 | 	spin_lock(¤t->sighand->siglock); | 
 | 	list_del(&timer->list); | 
 | 	spin_unlock(¤t->sighand->siglock); | 
 | 	/* | 
 | 	 * This keeps any tasks waiting on the spin lock from thinking | 
 | 	 * they got something (see the lock code above). | 
 | 	 */ | 
 | 	timer->it_signal = NULL; | 
 |  | 
 | 	unlock_timer(timer, flags); | 
 | 	release_posix_timer(timer, IT_ID_SET); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * return timer owned by the process, used by exit_itimers | 
 |  */ | 
 | static void itimer_delete(struct k_itimer *timer) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | retry_delete: | 
 | 	spin_lock_irqsave(&timer->it_lock, flags); | 
 |  | 
 | 	if (timer_delete_hook(timer) == TIMER_RETRY) { | 
 | 		unlock_timer(timer, flags); | 
 | 		goto retry_delete; | 
 | 	} | 
 | 	list_del(&timer->list); | 
 | 	/* | 
 | 	 * This keeps any tasks waiting on the spin lock from thinking | 
 | 	 * they got something (see the lock code above). | 
 | 	 */ | 
 | 	timer->it_signal = NULL; | 
 |  | 
 | 	unlock_timer(timer, flags); | 
 | 	release_posix_timer(timer, IT_ID_SET); | 
 | } | 
 |  | 
 | /* | 
 |  * This is called by do_exit or de_thread, only when there are no more | 
 |  * references to the shared signal_struct. | 
 |  */ | 
 | void exit_itimers(struct signal_struct *sig) | 
 | { | 
 | 	struct k_itimer *tmr; | 
 |  | 
 | 	while (!list_empty(&sig->posix_timers)) { | 
 | 		tmr = list_entry(sig->posix_timers.next, struct k_itimer, list); | 
 | 		itimer_delete(tmr); | 
 | 	} | 
 | } | 
 |  | 
 | SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock, | 
 | 		const struct timespec __user *, tp) | 
 | { | 
 | 	struct k_clock *kc = clockid_to_kclock(which_clock); | 
 | 	struct timespec new_tp; | 
 |  | 
 | 	if (!kc || !kc->clock_set) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (copy_from_user(&new_tp, tp, sizeof (*tp))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	return kc->clock_set(which_clock, &new_tp); | 
 | } | 
 |  | 
 | SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock, | 
 | 		struct timespec __user *,tp) | 
 | { | 
 | 	struct k_clock *kc = clockid_to_kclock(which_clock); | 
 | 	struct timespec kernel_tp; | 
 | 	int error; | 
 |  | 
 | 	if (!kc) | 
 | 		return -EINVAL; | 
 |  | 
 | 	error = kc->clock_get(which_clock, &kernel_tp); | 
 |  | 
 | 	if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp))) | 
 | 		error = -EFAULT; | 
 |  | 
 | 	return error; | 
 | } | 
 |  | 
 | SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock, | 
 | 		struct timex __user *, utx) | 
 | { | 
 | 	struct k_clock *kc = clockid_to_kclock(which_clock); | 
 | 	struct timex ktx; | 
 | 	int err; | 
 |  | 
 | 	if (!kc) | 
 | 		return -EINVAL; | 
 | 	if (!kc->clock_adj) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	if (copy_from_user(&ktx, utx, sizeof(ktx))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	err = kc->clock_adj(which_clock, &ktx); | 
 |  | 
 | 	if (!err && copy_to_user(utx, &ktx, sizeof(ktx))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock, | 
 | 		struct timespec __user *, tp) | 
 | { | 
 | 	struct k_clock *kc = clockid_to_kclock(which_clock); | 
 | 	struct timespec rtn_tp; | 
 | 	int error; | 
 |  | 
 | 	if (!kc) | 
 | 		return -EINVAL; | 
 |  | 
 | 	error = kc->clock_getres(which_clock, &rtn_tp); | 
 |  | 
 | 	if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) | 
 | 		error = -EFAULT; | 
 |  | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * nanosleep for monotonic and realtime clocks | 
 |  */ | 
 | static int common_nsleep(const clockid_t which_clock, int flags, | 
 | 			 struct timespec *tsave, struct timespec __user *rmtp) | 
 | { | 
 | 	return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ? | 
 | 				 HRTIMER_MODE_ABS : HRTIMER_MODE_REL, | 
 | 				 which_clock); | 
 | } | 
 |  | 
 | SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags, | 
 | 		const struct timespec __user *, rqtp, | 
 | 		struct timespec __user *, rmtp) | 
 | { | 
 | 	struct k_clock *kc = clockid_to_kclock(which_clock); | 
 | 	struct timespec t; | 
 |  | 
 | 	if (!kc) | 
 | 		return -EINVAL; | 
 | 	if (!kc->nsleep) | 
 | 		return -ENANOSLEEP_NOTSUP; | 
 |  | 
 | 	if (copy_from_user(&t, rqtp, sizeof (struct timespec))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	if (!timespec_valid(&t)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return kc->nsleep(which_clock, flags, &t, rmtp); | 
 | } | 
 |  | 
 | /* | 
 |  * This will restart clock_nanosleep. This is required only by | 
 |  * compat_clock_nanosleep_restart for now. | 
 |  */ | 
 | long clock_nanosleep_restart(struct restart_block *restart_block) | 
 | { | 
 | 	clockid_t which_clock = restart_block->nanosleep.clockid; | 
 | 	struct k_clock *kc = clockid_to_kclock(which_clock); | 
 |  | 
 | 	if (WARN_ON_ONCE(!kc || !kc->nsleep_restart)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return kc->nsleep_restart(restart_block); | 
 | } |