| /* Basic authentication token and access key management | 
 |  * | 
 |  * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved. | 
 |  * Written by David Howells (dhowells@redhat.com) | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public License | 
 |  * as published by the Free Software Foundation; either version | 
 |  * 2 of the License, or (at your option) any later version. | 
 |  */ | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/init.h> | 
 | #include <linux/poison.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/security.h> | 
 | #include <linux/workqueue.h> | 
 | #include <linux/random.h> | 
 | #include <linux/err.h> | 
 | #include <linux/user_namespace.h> | 
 | #include "internal.h" | 
 |  | 
 | static struct kmem_cache	*key_jar; | 
 | struct rb_root		key_serial_tree; /* tree of keys indexed by serial */ | 
 | DEFINE_SPINLOCK(key_serial_lock); | 
 |  | 
 | struct rb_root	key_user_tree; /* tree of quota records indexed by UID */ | 
 | DEFINE_SPINLOCK(key_user_lock); | 
 |  | 
 | unsigned int key_quota_root_maxkeys = 200;	/* root's key count quota */ | 
 | unsigned int key_quota_root_maxbytes = 20000;	/* root's key space quota */ | 
 | unsigned int key_quota_maxkeys = 200;		/* general key count quota */ | 
 | unsigned int key_quota_maxbytes = 20000;	/* general key space quota */ | 
 |  | 
 | static LIST_HEAD(key_types_list); | 
 | static DECLARE_RWSEM(key_types_sem); | 
 |  | 
 | static void key_cleanup(struct work_struct *work); | 
 | static DECLARE_WORK(key_cleanup_task, key_cleanup); | 
 |  | 
 | /* We serialise key instantiation and link */ | 
 | DEFINE_MUTEX(key_construction_mutex); | 
 |  | 
 | /* Any key who's type gets unegistered will be re-typed to this */ | 
 | static struct key_type key_type_dead = { | 
 | 	.name		= "dead", | 
 | }; | 
 |  | 
 | #ifdef KEY_DEBUGGING | 
 | void __key_check(const struct key *key) | 
 | { | 
 | 	printk("__key_check: key %p {%08x} should be {%08x}\n", | 
 | 	       key, key->magic, KEY_DEBUG_MAGIC); | 
 | 	BUG(); | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Get the key quota record for a user, allocating a new record if one doesn't | 
 |  * already exist. | 
 |  */ | 
 | struct key_user *key_user_lookup(uid_t uid, struct user_namespace *user_ns) | 
 | { | 
 | 	struct key_user *candidate = NULL, *user; | 
 | 	struct rb_node *parent = NULL; | 
 | 	struct rb_node **p; | 
 |  | 
 | try_again: | 
 | 	p = &key_user_tree.rb_node; | 
 | 	spin_lock(&key_user_lock); | 
 |  | 
 | 	/* search the tree for a user record with a matching UID */ | 
 | 	while (*p) { | 
 | 		parent = *p; | 
 | 		user = rb_entry(parent, struct key_user, node); | 
 |  | 
 | 		if (uid < user->uid) | 
 | 			p = &(*p)->rb_left; | 
 | 		else if (uid > user->uid) | 
 | 			p = &(*p)->rb_right; | 
 | 		else if (user_ns < user->user_ns) | 
 | 			p = &(*p)->rb_left; | 
 | 		else if (user_ns > user->user_ns) | 
 | 			p = &(*p)->rb_right; | 
 | 		else | 
 | 			goto found; | 
 | 	} | 
 |  | 
 | 	/* if we get here, we failed to find a match in the tree */ | 
 | 	if (!candidate) { | 
 | 		/* allocate a candidate user record if we don't already have | 
 | 		 * one */ | 
 | 		spin_unlock(&key_user_lock); | 
 |  | 
 | 		user = NULL; | 
 | 		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL); | 
 | 		if (unlikely(!candidate)) | 
 | 			goto out; | 
 |  | 
 | 		/* the allocation may have scheduled, so we need to repeat the | 
 | 		 * search lest someone else added the record whilst we were | 
 | 		 * asleep */ | 
 | 		goto try_again; | 
 | 	} | 
 |  | 
 | 	/* if we get here, then the user record still hadn't appeared on the | 
 | 	 * second pass - so we use the candidate record */ | 
 | 	atomic_set(&candidate->usage, 1); | 
 | 	atomic_set(&candidate->nkeys, 0); | 
 | 	atomic_set(&candidate->nikeys, 0); | 
 | 	candidate->uid = uid; | 
 | 	candidate->user_ns = get_user_ns(user_ns); | 
 | 	candidate->qnkeys = 0; | 
 | 	candidate->qnbytes = 0; | 
 | 	spin_lock_init(&candidate->lock); | 
 | 	mutex_init(&candidate->cons_lock); | 
 |  | 
 | 	rb_link_node(&candidate->node, parent, p); | 
 | 	rb_insert_color(&candidate->node, &key_user_tree); | 
 | 	spin_unlock(&key_user_lock); | 
 | 	user = candidate; | 
 | 	goto out; | 
 |  | 
 | 	/* okay - we found a user record for this UID */ | 
 | found: | 
 | 	atomic_inc(&user->usage); | 
 | 	spin_unlock(&key_user_lock); | 
 | 	kfree(candidate); | 
 | out: | 
 | 	return user; | 
 | } | 
 |  | 
 | /* | 
 |  * Dispose of a user structure | 
 |  */ | 
 | void key_user_put(struct key_user *user) | 
 | { | 
 | 	if (atomic_dec_and_lock(&user->usage, &key_user_lock)) { | 
 | 		rb_erase(&user->node, &key_user_tree); | 
 | 		spin_unlock(&key_user_lock); | 
 | 		put_user_ns(user->user_ns); | 
 |  | 
 | 		kfree(user); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate a serial number for a key.  These are assigned randomly to avoid | 
 |  * security issues through covert channel problems. | 
 |  */ | 
 | static inline void key_alloc_serial(struct key *key) | 
 | { | 
 | 	struct rb_node *parent, **p; | 
 | 	struct key *xkey; | 
 |  | 
 | 	/* propose a random serial number and look for a hole for it in the | 
 | 	 * serial number tree */ | 
 | 	do { | 
 | 		get_random_bytes(&key->serial, sizeof(key->serial)); | 
 |  | 
 | 		key->serial >>= 1; /* negative numbers are not permitted */ | 
 | 	} while (key->serial < 3); | 
 |  | 
 | 	spin_lock(&key_serial_lock); | 
 |  | 
 | attempt_insertion: | 
 | 	parent = NULL; | 
 | 	p = &key_serial_tree.rb_node; | 
 |  | 
 | 	while (*p) { | 
 | 		parent = *p; | 
 | 		xkey = rb_entry(parent, struct key, serial_node); | 
 |  | 
 | 		if (key->serial < xkey->serial) | 
 | 			p = &(*p)->rb_left; | 
 | 		else if (key->serial > xkey->serial) | 
 | 			p = &(*p)->rb_right; | 
 | 		else | 
 | 			goto serial_exists; | 
 | 	} | 
 |  | 
 | 	/* we've found a suitable hole - arrange for this key to occupy it */ | 
 | 	rb_link_node(&key->serial_node, parent, p); | 
 | 	rb_insert_color(&key->serial_node, &key_serial_tree); | 
 |  | 
 | 	spin_unlock(&key_serial_lock); | 
 | 	return; | 
 |  | 
 | 	/* we found a key with the proposed serial number - walk the tree from | 
 | 	 * that point looking for the next unused serial number */ | 
 | serial_exists: | 
 | 	for (;;) { | 
 | 		key->serial++; | 
 | 		if (key->serial < 3) { | 
 | 			key->serial = 3; | 
 | 			goto attempt_insertion; | 
 | 		} | 
 |  | 
 | 		parent = rb_next(parent); | 
 | 		if (!parent) | 
 | 			goto attempt_insertion; | 
 |  | 
 | 		xkey = rb_entry(parent, struct key, serial_node); | 
 | 		if (key->serial < xkey->serial) | 
 | 			goto attempt_insertion; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * key_alloc - Allocate a key of the specified type. | 
 |  * @type: The type of key to allocate. | 
 |  * @desc: The key description to allow the key to be searched out. | 
 |  * @uid: The owner of the new key. | 
 |  * @gid: The group ID for the new key's group permissions. | 
 |  * @cred: The credentials specifying UID namespace. | 
 |  * @perm: The permissions mask of the new key. | 
 |  * @flags: Flags specifying quota properties. | 
 |  * | 
 |  * Allocate a key of the specified type with the attributes given.  The key is | 
 |  * returned in an uninstantiated state and the caller needs to instantiate the | 
 |  * key before returning. | 
 |  * | 
 |  * The user's key count quota is updated to reflect the creation of the key and | 
 |  * the user's key data quota has the default for the key type reserved.  The | 
 |  * instantiation function should amend this as necessary.  If insufficient | 
 |  * quota is available, -EDQUOT will be returned. | 
 |  * | 
 |  * The LSM security modules can prevent a key being created, in which case | 
 |  * -EACCES will be returned. | 
 |  * | 
 |  * Returns a pointer to the new key if successful and an error code otherwise. | 
 |  * | 
 |  * Note that the caller needs to ensure the key type isn't uninstantiated. | 
 |  * Internally this can be done by locking key_types_sem.  Externally, this can | 
 |  * be done by either never unregistering the key type, or making sure | 
 |  * key_alloc() calls don't race with module unloading. | 
 |  */ | 
 | struct key *key_alloc(struct key_type *type, const char *desc, | 
 | 		      uid_t uid, gid_t gid, const struct cred *cred, | 
 | 		      key_perm_t perm, unsigned long flags) | 
 | { | 
 | 	struct key_user *user = NULL; | 
 | 	struct key *key; | 
 | 	size_t desclen, quotalen; | 
 | 	int ret; | 
 |  | 
 | 	key = ERR_PTR(-EINVAL); | 
 | 	if (!desc || !*desc) | 
 | 		goto error; | 
 |  | 
 | 	if (type->vet_description) { | 
 | 		ret = type->vet_description(desc); | 
 | 		if (ret < 0) { | 
 | 			key = ERR_PTR(ret); | 
 | 			goto error; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	desclen = strlen(desc) + 1; | 
 | 	quotalen = desclen + type->def_datalen; | 
 |  | 
 | 	/* get hold of the key tracking for this user */ | 
 | 	user = key_user_lookup(uid, cred->user->user_ns); | 
 | 	if (!user) | 
 | 		goto no_memory_1; | 
 |  | 
 | 	/* check that the user's quota permits allocation of another key and | 
 | 	 * its description */ | 
 | 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { | 
 | 		unsigned maxkeys = (uid == 0) ? | 
 | 			key_quota_root_maxkeys : key_quota_maxkeys; | 
 | 		unsigned maxbytes = (uid == 0) ? | 
 | 			key_quota_root_maxbytes : key_quota_maxbytes; | 
 |  | 
 | 		spin_lock(&user->lock); | 
 | 		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) { | 
 | 			if (user->qnkeys + 1 >= maxkeys || | 
 | 			    user->qnbytes + quotalen >= maxbytes || | 
 | 			    user->qnbytes + quotalen < user->qnbytes) | 
 | 				goto no_quota; | 
 | 		} | 
 |  | 
 | 		user->qnkeys++; | 
 | 		user->qnbytes += quotalen; | 
 | 		spin_unlock(&user->lock); | 
 | 	} | 
 |  | 
 | 	/* allocate and initialise the key and its description */ | 
 | 	key = kmem_cache_alloc(key_jar, GFP_KERNEL); | 
 | 	if (!key) | 
 | 		goto no_memory_2; | 
 |  | 
 | 	if (desc) { | 
 | 		key->description = kmemdup(desc, desclen, GFP_KERNEL); | 
 | 		if (!key->description) | 
 | 			goto no_memory_3; | 
 | 	} | 
 |  | 
 | 	atomic_set(&key->usage, 1); | 
 | 	init_rwsem(&key->sem); | 
 | 	key->type = type; | 
 | 	key->user = user; | 
 | 	key->quotalen = quotalen; | 
 | 	key->datalen = type->def_datalen; | 
 | 	key->uid = uid; | 
 | 	key->gid = gid; | 
 | 	key->perm = perm; | 
 | 	key->flags = 0; | 
 | 	key->expiry = 0; | 
 | 	key->payload.data = NULL; | 
 | 	key->security = NULL; | 
 |  | 
 | 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) | 
 | 		key->flags |= 1 << KEY_FLAG_IN_QUOTA; | 
 |  | 
 | 	memset(&key->type_data, 0, sizeof(key->type_data)); | 
 |  | 
 | #ifdef KEY_DEBUGGING | 
 | 	key->magic = KEY_DEBUG_MAGIC; | 
 | #endif | 
 |  | 
 | 	/* let the security module know about the key */ | 
 | 	ret = security_key_alloc(key, cred, flags); | 
 | 	if (ret < 0) | 
 | 		goto security_error; | 
 |  | 
 | 	/* publish the key by giving it a serial number */ | 
 | 	atomic_inc(&user->nkeys); | 
 | 	key_alloc_serial(key); | 
 |  | 
 | error: | 
 | 	return key; | 
 |  | 
 | security_error: | 
 | 	kfree(key->description); | 
 | 	kmem_cache_free(key_jar, key); | 
 | 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { | 
 | 		spin_lock(&user->lock); | 
 | 		user->qnkeys--; | 
 | 		user->qnbytes -= quotalen; | 
 | 		spin_unlock(&user->lock); | 
 | 	} | 
 | 	key_user_put(user); | 
 | 	key = ERR_PTR(ret); | 
 | 	goto error; | 
 |  | 
 | no_memory_3: | 
 | 	kmem_cache_free(key_jar, key); | 
 | no_memory_2: | 
 | 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { | 
 | 		spin_lock(&user->lock); | 
 | 		user->qnkeys--; | 
 | 		user->qnbytes -= quotalen; | 
 | 		spin_unlock(&user->lock); | 
 | 	} | 
 | 	key_user_put(user); | 
 | no_memory_1: | 
 | 	key = ERR_PTR(-ENOMEM); | 
 | 	goto error; | 
 |  | 
 | no_quota: | 
 | 	spin_unlock(&user->lock); | 
 | 	key_user_put(user); | 
 | 	key = ERR_PTR(-EDQUOT); | 
 | 	goto error; | 
 | } | 
 | EXPORT_SYMBOL(key_alloc); | 
 |  | 
 | /** | 
 |  * key_payload_reserve - Adjust data quota reservation for the key's payload | 
 |  * @key: The key to make the reservation for. | 
 |  * @datalen: The amount of data payload the caller now wants. | 
 |  * | 
 |  * Adjust the amount of the owning user's key data quota that a key reserves. | 
 |  * If the amount is increased, then -EDQUOT may be returned if there isn't | 
 |  * enough free quota available. | 
 |  * | 
 |  * If successful, 0 is returned. | 
 |  */ | 
 | int key_payload_reserve(struct key *key, size_t datalen) | 
 | { | 
 | 	int delta = (int)datalen - key->datalen; | 
 | 	int ret = 0; | 
 |  | 
 | 	key_check(key); | 
 |  | 
 | 	/* contemplate the quota adjustment */ | 
 | 	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) { | 
 | 		unsigned maxbytes = (key->user->uid == 0) ? | 
 | 			key_quota_root_maxbytes : key_quota_maxbytes; | 
 |  | 
 | 		spin_lock(&key->user->lock); | 
 |  | 
 | 		if (delta > 0 && | 
 | 		    (key->user->qnbytes + delta >= maxbytes || | 
 | 		     key->user->qnbytes + delta < key->user->qnbytes)) { | 
 | 			ret = -EDQUOT; | 
 | 		} | 
 | 		else { | 
 | 			key->user->qnbytes += delta; | 
 | 			key->quotalen += delta; | 
 | 		} | 
 | 		spin_unlock(&key->user->lock); | 
 | 	} | 
 |  | 
 | 	/* change the recorded data length if that didn't generate an error */ | 
 | 	if (ret == 0) | 
 | 		key->datalen = datalen; | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(key_payload_reserve); | 
 |  | 
 | /* | 
 |  * Instantiate a key and link it into the target keyring atomically.  Must be | 
 |  * called with the target keyring's semaphore writelocked.  The target key's | 
 |  * semaphore need not be locked as instantiation is serialised by | 
 |  * key_construction_mutex. | 
 |  */ | 
 | static int __key_instantiate_and_link(struct key *key, | 
 | 				      const void *data, | 
 | 				      size_t datalen, | 
 | 				      struct key *keyring, | 
 | 				      struct key *authkey, | 
 | 				      unsigned long *_prealloc) | 
 | { | 
 | 	int ret, awaken; | 
 |  | 
 | 	key_check(key); | 
 | 	key_check(keyring); | 
 |  | 
 | 	awaken = 0; | 
 | 	ret = -EBUSY; | 
 |  | 
 | 	mutex_lock(&key_construction_mutex); | 
 |  | 
 | 	/* can't instantiate twice */ | 
 | 	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) { | 
 | 		/* instantiate the key */ | 
 | 		ret = key->type->instantiate(key, data, datalen); | 
 |  | 
 | 		if (ret == 0) { | 
 | 			/* mark the key as being instantiated */ | 
 | 			atomic_inc(&key->user->nikeys); | 
 | 			set_bit(KEY_FLAG_INSTANTIATED, &key->flags); | 
 |  | 
 | 			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) | 
 | 				awaken = 1; | 
 |  | 
 | 			/* and link it into the destination keyring */ | 
 | 			if (keyring) | 
 | 				__key_link(keyring, key, _prealloc); | 
 |  | 
 | 			/* disable the authorisation key */ | 
 | 			if (authkey) | 
 | 				key_revoke(authkey); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&key_construction_mutex); | 
 |  | 
 | 	/* wake up anyone waiting for a key to be constructed */ | 
 | 	if (awaken) | 
 | 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * key_instantiate_and_link - Instantiate a key and link it into the keyring. | 
 |  * @key: The key to instantiate. | 
 |  * @data: The data to use to instantiate the keyring. | 
 |  * @datalen: The length of @data. | 
 |  * @keyring: Keyring to create a link in on success (or NULL). | 
 |  * @authkey: The authorisation token permitting instantiation. | 
 |  * | 
 |  * Instantiate a key that's in the uninstantiated state using the provided data | 
 |  * and, if successful, link it in to the destination keyring if one is | 
 |  * supplied. | 
 |  * | 
 |  * If successful, 0 is returned, the authorisation token is revoked and anyone | 
 |  * waiting for the key is woken up.  If the key was already instantiated, | 
 |  * -EBUSY will be returned. | 
 |  */ | 
 | int key_instantiate_and_link(struct key *key, | 
 | 			     const void *data, | 
 | 			     size_t datalen, | 
 | 			     struct key *keyring, | 
 | 			     struct key *authkey) | 
 | { | 
 | 	unsigned long prealloc; | 
 | 	int ret; | 
 |  | 
 | 	if (keyring) { | 
 | 		ret = __key_link_begin(keyring, key->type, key->description, | 
 | 				       &prealloc); | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	ret = __key_instantiate_and_link(key, data, datalen, keyring, authkey, | 
 | 					 &prealloc); | 
 |  | 
 | 	if (keyring) | 
 | 		__key_link_end(keyring, key->type, prealloc); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(key_instantiate_and_link); | 
 |  | 
 | /** | 
 |  * key_reject_and_link - Negatively instantiate a key and link it into the keyring. | 
 |  * @key: The key to instantiate. | 
 |  * @timeout: The timeout on the negative key. | 
 |  * @error: The error to return when the key is hit. | 
 |  * @keyring: Keyring to create a link in on success (or NULL). | 
 |  * @authkey: The authorisation token permitting instantiation. | 
 |  * | 
 |  * Negatively instantiate a key that's in the uninstantiated state and, if | 
 |  * successful, set its timeout and stored error and link it in to the | 
 |  * destination keyring if one is supplied.  The key and any links to the key | 
 |  * will be automatically garbage collected after the timeout expires. | 
 |  * | 
 |  * Negative keys are used to rate limit repeated request_key() calls by causing | 
 |  * them to return the stored error code (typically ENOKEY) until the negative | 
 |  * key expires. | 
 |  * | 
 |  * If successful, 0 is returned, the authorisation token is revoked and anyone | 
 |  * waiting for the key is woken up.  If the key was already instantiated, | 
 |  * -EBUSY will be returned. | 
 |  */ | 
 | int key_reject_and_link(struct key *key, | 
 | 			unsigned timeout, | 
 | 			unsigned error, | 
 | 			struct key *keyring, | 
 | 			struct key *authkey) | 
 | { | 
 | 	unsigned long prealloc; | 
 | 	struct timespec now; | 
 | 	int ret, awaken, link_ret = 0; | 
 |  | 
 | 	key_check(key); | 
 | 	key_check(keyring); | 
 |  | 
 | 	awaken = 0; | 
 | 	ret = -EBUSY; | 
 |  | 
 | 	if (keyring) | 
 | 		link_ret = __key_link_begin(keyring, key->type, | 
 | 					    key->description, &prealloc); | 
 |  | 
 | 	mutex_lock(&key_construction_mutex); | 
 |  | 
 | 	/* can't instantiate twice */ | 
 | 	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) { | 
 | 		/* mark the key as being negatively instantiated */ | 
 | 		atomic_inc(&key->user->nikeys); | 
 | 		set_bit(KEY_FLAG_NEGATIVE, &key->flags); | 
 | 		set_bit(KEY_FLAG_INSTANTIATED, &key->flags); | 
 | 		key->type_data.reject_error = -error; | 
 | 		now = current_kernel_time(); | 
 | 		key->expiry = now.tv_sec + timeout; | 
 | 		key_schedule_gc(key->expiry + key_gc_delay); | 
 |  | 
 | 		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) | 
 | 			awaken = 1; | 
 |  | 
 | 		ret = 0; | 
 |  | 
 | 		/* and link it into the destination keyring */ | 
 | 		if (keyring && link_ret == 0) | 
 | 			__key_link(keyring, key, &prealloc); | 
 |  | 
 | 		/* disable the authorisation key */ | 
 | 		if (authkey) | 
 | 			key_revoke(authkey); | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&key_construction_mutex); | 
 |  | 
 | 	if (keyring) | 
 | 		__key_link_end(keyring, key->type, prealloc); | 
 |  | 
 | 	/* wake up anyone waiting for a key to be constructed */ | 
 | 	if (awaken) | 
 | 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT); | 
 |  | 
 | 	return ret == 0 ? link_ret : ret; | 
 | } | 
 | EXPORT_SYMBOL(key_reject_and_link); | 
 |  | 
 | /* | 
 |  * Garbage collect keys in process context so that we don't have to disable | 
 |  * interrupts all over the place. | 
 |  * | 
 |  * key_put() schedules this rather than trying to do the cleanup itself, which | 
 |  * means key_put() doesn't have to sleep. | 
 |  */ | 
 | static void key_cleanup(struct work_struct *work) | 
 | { | 
 | 	struct rb_node *_n; | 
 | 	struct key *key; | 
 |  | 
 | go_again: | 
 | 	/* look for a dead key in the tree */ | 
 | 	spin_lock(&key_serial_lock); | 
 |  | 
 | 	for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) { | 
 | 		key = rb_entry(_n, struct key, serial_node); | 
 |  | 
 | 		if (atomic_read(&key->usage) == 0) | 
 | 			goto found_dead_key; | 
 | 	} | 
 |  | 
 | 	spin_unlock(&key_serial_lock); | 
 | 	return; | 
 |  | 
 | found_dead_key: | 
 | 	/* we found a dead key - once we've removed it from the tree, we can | 
 | 	 * drop the lock */ | 
 | 	rb_erase(&key->serial_node, &key_serial_tree); | 
 | 	spin_unlock(&key_serial_lock); | 
 |  | 
 | 	key_check(key); | 
 |  | 
 | 	security_key_free(key); | 
 |  | 
 | 	/* deal with the user's key tracking and quota */ | 
 | 	if (test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) { | 
 | 		spin_lock(&key->user->lock); | 
 | 		key->user->qnkeys--; | 
 | 		key->user->qnbytes -= key->quotalen; | 
 | 		spin_unlock(&key->user->lock); | 
 | 	} | 
 |  | 
 | 	atomic_dec(&key->user->nkeys); | 
 | 	if (test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) | 
 | 		atomic_dec(&key->user->nikeys); | 
 |  | 
 | 	key_user_put(key->user); | 
 |  | 
 | 	/* now throw away the key memory */ | 
 | 	if (key->type->destroy) | 
 | 		key->type->destroy(key); | 
 |  | 
 | 	kfree(key->description); | 
 |  | 
 | #ifdef KEY_DEBUGGING | 
 | 	key->magic = KEY_DEBUG_MAGIC_X; | 
 | #endif | 
 | 	kmem_cache_free(key_jar, key); | 
 |  | 
 | 	/* there may, of course, be more than one key to destroy */ | 
 | 	goto go_again; | 
 | } | 
 |  | 
 | /** | 
 |  * key_put - Discard a reference to a key. | 
 |  * @key: The key to discard a reference from. | 
 |  * | 
 |  * Discard a reference to a key, and when all the references are gone, we | 
 |  * schedule the cleanup task to come and pull it out of the tree in process | 
 |  * context at some later time. | 
 |  */ | 
 | void key_put(struct key *key) | 
 | { | 
 | 	if (key) { | 
 | 		key_check(key); | 
 |  | 
 | 		if (atomic_dec_and_test(&key->usage)) | 
 | 			schedule_work(&key_cleanup_task); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(key_put); | 
 |  | 
 | /* | 
 |  * Find a key by its serial number. | 
 |  */ | 
 | struct key *key_lookup(key_serial_t id) | 
 | { | 
 | 	struct rb_node *n; | 
 | 	struct key *key; | 
 |  | 
 | 	spin_lock(&key_serial_lock); | 
 |  | 
 | 	/* search the tree for the specified key */ | 
 | 	n = key_serial_tree.rb_node; | 
 | 	while (n) { | 
 | 		key = rb_entry(n, struct key, serial_node); | 
 |  | 
 | 		if (id < key->serial) | 
 | 			n = n->rb_left; | 
 | 		else if (id > key->serial) | 
 | 			n = n->rb_right; | 
 | 		else | 
 | 			goto found; | 
 | 	} | 
 |  | 
 | not_found: | 
 | 	key = ERR_PTR(-ENOKEY); | 
 | 	goto error; | 
 |  | 
 | found: | 
 | 	/* pretend it doesn't exist if it is awaiting deletion */ | 
 | 	if (atomic_read(&key->usage) == 0) | 
 | 		goto not_found; | 
 |  | 
 | 	/* this races with key_put(), but that doesn't matter since key_put() | 
 | 	 * doesn't actually change the key | 
 | 	 */ | 
 | 	atomic_inc(&key->usage); | 
 |  | 
 | error: | 
 | 	spin_unlock(&key_serial_lock); | 
 | 	return key; | 
 | } | 
 |  | 
 | /* | 
 |  * Find and lock the specified key type against removal. | 
 |  * | 
 |  * We return with the sem read-locked if successful.  If the type wasn't | 
 |  * available -ENOKEY is returned instead. | 
 |  */ | 
 | struct key_type *key_type_lookup(const char *type) | 
 | { | 
 | 	struct key_type *ktype; | 
 |  | 
 | 	down_read(&key_types_sem); | 
 |  | 
 | 	/* look up the key type to see if it's one of the registered kernel | 
 | 	 * types */ | 
 | 	list_for_each_entry(ktype, &key_types_list, link) { | 
 | 		if (strcmp(ktype->name, type) == 0) | 
 | 			goto found_kernel_type; | 
 | 	} | 
 |  | 
 | 	up_read(&key_types_sem); | 
 | 	ktype = ERR_PTR(-ENOKEY); | 
 |  | 
 | found_kernel_type: | 
 | 	return ktype; | 
 | } | 
 |  | 
 | /* | 
 |  * Unlock a key type locked by key_type_lookup(). | 
 |  */ | 
 | void key_type_put(struct key_type *ktype) | 
 | { | 
 | 	up_read(&key_types_sem); | 
 | } | 
 |  | 
 | /* | 
 |  * Attempt to update an existing key. | 
 |  * | 
 |  * The key is given to us with an incremented refcount that we need to discard | 
 |  * if we get an error. | 
 |  */ | 
 | static inline key_ref_t __key_update(key_ref_t key_ref, | 
 | 				     const void *payload, size_t plen) | 
 | { | 
 | 	struct key *key = key_ref_to_ptr(key_ref); | 
 | 	int ret; | 
 |  | 
 | 	/* need write permission on the key to update it */ | 
 | 	ret = key_permission(key_ref, KEY_WRITE); | 
 | 	if (ret < 0) | 
 | 		goto error; | 
 |  | 
 | 	ret = -EEXIST; | 
 | 	if (!key->type->update) | 
 | 		goto error; | 
 |  | 
 | 	down_write(&key->sem); | 
 |  | 
 | 	ret = key->type->update(key, payload, plen); | 
 | 	if (ret == 0) | 
 | 		/* updating a negative key instantiates it */ | 
 | 		clear_bit(KEY_FLAG_NEGATIVE, &key->flags); | 
 |  | 
 | 	up_write(&key->sem); | 
 |  | 
 | 	if (ret < 0) | 
 | 		goto error; | 
 | out: | 
 | 	return key_ref; | 
 |  | 
 | error: | 
 | 	key_put(key); | 
 | 	key_ref = ERR_PTR(ret); | 
 | 	goto out; | 
 | } | 
 |  | 
 | /** | 
 |  * key_create_or_update - Update or create and instantiate a key. | 
 |  * @keyring_ref: A pointer to the destination keyring with possession flag. | 
 |  * @type: The type of key. | 
 |  * @description: The searchable description for the key. | 
 |  * @payload: The data to use to instantiate or update the key. | 
 |  * @plen: The length of @payload. | 
 |  * @perm: The permissions mask for a new key. | 
 |  * @flags: The quota flags for a new key. | 
 |  * | 
 |  * Search the destination keyring for a key of the same description and if one | 
 |  * is found, update it, otherwise create and instantiate a new one and create a | 
 |  * link to it from that keyring. | 
 |  * | 
 |  * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be | 
 |  * concocted. | 
 |  * | 
 |  * Returns a pointer to the new key if successful, -ENODEV if the key type | 
 |  * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the | 
 |  * caller isn't permitted to modify the keyring or the LSM did not permit | 
 |  * creation of the key. | 
 |  * | 
 |  * On success, the possession flag from the keyring ref will be tacked on to | 
 |  * the key ref before it is returned. | 
 |  */ | 
 | key_ref_t key_create_or_update(key_ref_t keyring_ref, | 
 | 			       const char *type, | 
 | 			       const char *description, | 
 | 			       const void *payload, | 
 | 			       size_t plen, | 
 | 			       key_perm_t perm, | 
 | 			       unsigned long flags) | 
 | { | 
 | 	unsigned long prealloc; | 
 | 	const struct cred *cred = current_cred(); | 
 | 	struct key_type *ktype; | 
 | 	struct key *keyring, *key = NULL; | 
 | 	key_ref_t key_ref; | 
 | 	int ret; | 
 |  | 
 | 	/* look up the key type to see if it's one of the registered kernel | 
 | 	 * types */ | 
 | 	ktype = key_type_lookup(type); | 
 | 	if (IS_ERR(ktype)) { | 
 | 		key_ref = ERR_PTR(-ENODEV); | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	key_ref = ERR_PTR(-EINVAL); | 
 | 	if (!ktype->match || !ktype->instantiate) | 
 | 		goto error_2; | 
 |  | 
 | 	keyring = key_ref_to_ptr(keyring_ref); | 
 |  | 
 | 	key_check(keyring); | 
 |  | 
 | 	key_ref = ERR_PTR(-ENOTDIR); | 
 | 	if (keyring->type != &key_type_keyring) | 
 | 		goto error_2; | 
 |  | 
 | 	ret = __key_link_begin(keyring, ktype, description, &prealloc); | 
 | 	if (ret < 0) | 
 | 		goto error_2; | 
 |  | 
 | 	/* if we're going to allocate a new key, we're going to have | 
 | 	 * to modify the keyring */ | 
 | 	ret = key_permission(keyring_ref, KEY_WRITE); | 
 | 	if (ret < 0) { | 
 | 		key_ref = ERR_PTR(ret); | 
 | 		goto error_3; | 
 | 	} | 
 |  | 
 | 	/* if it's possible to update this type of key, search for an existing | 
 | 	 * key of the same type and description in the destination keyring and | 
 | 	 * update that instead if possible | 
 | 	 */ | 
 | 	if (ktype->update) { | 
 | 		key_ref = __keyring_search_one(keyring_ref, ktype, description, | 
 | 					       0); | 
 | 		if (!IS_ERR(key_ref)) | 
 | 			goto found_matching_key; | 
 | 	} | 
 |  | 
 | 	/* if the client doesn't provide, decide on the permissions we want */ | 
 | 	if (perm == KEY_PERM_UNDEF) { | 
 | 		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR; | 
 | 		perm |= KEY_USR_VIEW | KEY_USR_SEARCH | KEY_USR_LINK | KEY_USR_SETATTR; | 
 |  | 
 | 		if (ktype->read) | 
 | 			perm |= KEY_POS_READ | KEY_USR_READ; | 
 |  | 
 | 		if (ktype == &key_type_keyring || ktype->update) | 
 | 			perm |= KEY_USR_WRITE; | 
 | 	} | 
 |  | 
 | 	/* allocate a new key */ | 
 | 	key = key_alloc(ktype, description, cred->fsuid, cred->fsgid, cred, | 
 | 			perm, flags); | 
 | 	if (IS_ERR(key)) { | 
 | 		key_ref = ERR_CAST(key); | 
 | 		goto error_3; | 
 | 	} | 
 |  | 
 | 	/* instantiate it and link it into the target keyring */ | 
 | 	ret = __key_instantiate_and_link(key, payload, plen, keyring, NULL, | 
 | 					 &prealloc); | 
 | 	if (ret < 0) { | 
 | 		key_put(key); | 
 | 		key_ref = ERR_PTR(ret); | 
 | 		goto error_3; | 
 | 	} | 
 |  | 
 | 	key_ref = make_key_ref(key, is_key_possessed(keyring_ref)); | 
 |  | 
 |  error_3: | 
 | 	__key_link_end(keyring, ktype, prealloc); | 
 |  error_2: | 
 | 	key_type_put(ktype); | 
 |  error: | 
 | 	return key_ref; | 
 |  | 
 |  found_matching_key: | 
 | 	/* we found a matching key, so we're going to try to update it | 
 | 	 * - we can drop the locks first as we have the key pinned | 
 | 	 */ | 
 | 	__key_link_end(keyring, ktype, prealloc); | 
 | 	key_type_put(ktype); | 
 |  | 
 | 	key_ref = __key_update(key_ref, payload, plen); | 
 | 	goto error; | 
 | } | 
 | EXPORT_SYMBOL(key_create_or_update); | 
 |  | 
 | /** | 
 |  * key_update - Update a key's contents. | 
 |  * @key_ref: The pointer (plus possession flag) to the key. | 
 |  * @payload: The data to be used to update the key. | 
 |  * @plen: The length of @payload. | 
 |  * | 
 |  * Attempt to update the contents of a key with the given payload data.  The | 
 |  * caller must be granted Write permission on the key.  Negative keys can be | 
 |  * instantiated by this method. | 
 |  * | 
 |  * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key | 
 |  * type does not support updating.  The key type may return other errors. | 
 |  */ | 
 | int key_update(key_ref_t key_ref, const void *payload, size_t plen) | 
 | { | 
 | 	struct key *key = key_ref_to_ptr(key_ref); | 
 | 	int ret; | 
 |  | 
 | 	key_check(key); | 
 |  | 
 | 	/* the key must be writable */ | 
 | 	ret = key_permission(key_ref, KEY_WRITE); | 
 | 	if (ret < 0) | 
 | 		goto error; | 
 |  | 
 | 	/* attempt to update it if supported */ | 
 | 	ret = -EOPNOTSUPP; | 
 | 	if (key->type->update) { | 
 | 		down_write(&key->sem); | 
 |  | 
 | 		ret = key->type->update(key, payload, plen); | 
 | 		if (ret == 0) | 
 | 			/* updating a negative key instantiates it */ | 
 | 			clear_bit(KEY_FLAG_NEGATIVE, &key->flags); | 
 |  | 
 | 		up_write(&key->sem); | 
 | 	} | 
 |  | 
 |  error: | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(key_update); | 
 |  | 
 | /** | 
 |  * key_revoke - Revoke a key. | 
 |  * @key: The key to be revoked. | 
 |  * | 
 |  * Mark a key as being revoked and ask the type to free up its resources.  The | 
 |  * revocation timeout is set and the key and all its links will be | 
 |  * automatically garbage collected after key_gc_delay amount of time if they | 
 |  * are not manually dealt with first. | 
 |  */ | 
 | void key_revoke(struct key *key) | 
 | { | 
 | 	struct timespec now; | 
 | 	time_t time; | 
 |  | 
 | 	key_check(key); | 
 |  | 
 | 	/* make sure no one's trying to change or use the key when we mark it | 
 | 	 * - we tell lockdep that we might nest because we might be revoking an | 
 | 	 *   authorisation key whilst holding the sem on a key we've just | 
 | 	 *   instantiated | 
 | 	 */ | 
 | 	down_write_nested(&key->sem, 1); | 
 | 	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) && | 
 | 	    key->type->revoke) | 
 | 		key->type->revoke(key); | 
 |  | 
 | 	/* set the death time to no more than the expiry time */ | 
 | 	now = current_kernel_time(); | 
 | 	time = now.tv_sec; | 
 | 	if (key->revoked_at == 0 || key->revoked_at > time) { | 
 | 		key->revoked_at = time; | 
 | 		key_schedule_gc(key->revoked_at + key_gc_delay); | 
 | 	} | 
 |  | 
 | 	up_write(&key->sem); | 
 | } | 
 | EXPORT_SYMBOL(key_revoke); | 
 |  | 
 | /** | 
 |  * register_key_type - Register a type of key. | 
 |  * @ktype: The new key type. | 
 |  * | 
 |  * Register a new key type. | 
 |  * | 
 |  * Returns 0 on success or -EEXIST if a type of this name already exists. | 
 |  */ | 
 | int register_key_type(struct key_type *ktype) | 
 | { | 
 | 	struct key_type *p; | 
 | 	int ret; | 
 |  | 
 | 	ret = -EEXIST; | 
 | 	down_write(&key_types_sem); | 
 |  | 
 | 	/* disallow key types with the same name */ | 
 | 	list_for_each_entry(p, &key_types_list, link) { | 
 | 		if (strcmp(p->name, ktype->name) == 0) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	/* store the type */ | 
 | 	list_add(&ktype->link, &key_types_list); | 
 | 	ret = 0; | 
 |  | 
 | out: | 
 | 	up_write(&key_types_sem); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(register_key_type); | 
 |  | 
 | /** | 
 |  * unregister_key_type - Unregister a type of key. | 
 |  * @ktype: The key type. | 
 |  * | 
 |  * Unregister a key type and mark all the extant keys of this type as dead. | 
 |  * Those keys of this type are then destroyed to get rid of their payloads and | 
 |  * they and their links will be garbage collected as soon as possible. | 
 |  */ | 
 | void unregister_key_type(struct key_type *ktype) | 
 | { | 
 | 	struct rb_node *_n; | 
 | 	struct key *key; | 
 |  | 
 | 	down_write(&key_types_sem); | 
 |  | 
 | 	/* withdraw the key type */ | 
 | 	list_del_init(&ktype->link); | 
 |  | 
 | 	/* mark all the keys of this type dead */ | 
 | 	spin_lock(&key_serial_lock); | 
 |  | 
 | 	for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) { | 
 | 		key = rb_entry(_n, struct key, serial_node); | 
 |  | 
 | 		if (key->type == ktype) { | 
 | 			key->type = &key_type_dead; | 
 | 			set_bit(KEY_FLAG_DEAD, &key->flags); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	spin_unlock(&key_serial_lock); | 
 |  | 
 | 	/* make sure everyone revalidates their keys */ | 
 | 	synchronize_rcu(); | 
 |  | 
 | 	/* we should now be able to destroy the payloads of all the keys of | 
 | 	 * this type with impunity */ | 
 | 	spin_lock(&key_serial_lock); | 
 |  | 
 | 	for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) { | 
 | 		key = rb_entry(_n, struct key, serial_node); | 
 |  | 
 | 		if (key->type == ktype) { | 
 | 			if (ktype->destroy) | 
 | 				ktype->destroy(key); | 
 | 			memset(&key->payload, KEY_DESTROY, sizeof(key->payload)); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	spin_unlock(&key_serial_lock); | 
 | 	up_write(&key_types_sem); | 
 |  | 
 | 	key_schedule_gc(0); | 
 | } | 
 | EXPORT_SYMBOL(unregister_key_type); | 
 |  | 
 | /* | 
 |  * Initialise the key management state. | 
 |  */ | 
 | void __init key_init(void) | 
 | { | 
 | 	/* allocate a slab in which we can store keys */ | 
 | 	key_jar = kmem_cache_create("key_jar", sizeof(struct key), | 
 | 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); | 
 |  | 
 | 	/* add the special key types */ | 
 | 	list_add_tail(&key_type_keyring.link, &key_types_list); | 
 | 	list_add_tail(&key_type_dead.link, &key_types_list); | 
 | 	list_add_tail(&key_type_user.link, &key_types_list); | 
 |  | 
 | 	/* record the root user tracking */ | 
 | 	rb_link_node(&root_key_user.node, | 
 | 		     NULL, | 
 | 		     &key_user_tree.rb_node); | 
 |  | 
 | 	rb_insert_color(&root_key_user.node, | 
 | 			&key_user_tree); | 
 | } |