| /* memcontrol.c - Memory Controller | 
 |  * | 
 |  * Copyright IBM Corporation, 2007 | 
 |  * Author Balbir Singh <balbir@linux.vnet.ibm.com> | 
 |  * | 
 |  * Copyright 2007 OpenVZ SWsoft Inc | 
 |  * Author: Pavel Emelianov <xemul@openvz.org> | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation; either version 2 of the License, or | 
 |  * (at your option) any later version. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  */ | 
 |  | 
 | #include <linux/res_counter.h> | 
 | #include <linux/memcontrol.h> | 
 | #include <linux/cgroup.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/page-flags.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/bit_spinlock.h> | 
 | #include <linux/rcupdate.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/seq_file.h> | 
 |  | 
 | #include <asm/uaccess.h> | 
 |  | 
 | struct cgroup_subsys mem_cgroup_subsys; | 
 | static const int MEM_CGROUP_RECLAIM_RETRIES = 5; | 
 |  | 
 | /* | 
 |  * Statistics for memory cgroup. | 
 |  */ | 
 | enum mem_cgroup_stat_index { | 
 | 	/* | 
 | 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. | 
 | 	 */ | 
 | 	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */ | 
 | 	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as rss */ | 
 |  | 
 | 	MEM_CGROUP_STAT_NSTATS, | 
 | }; | 
 |  | 
 | struct mem_cgroup_stat_cpu { | 
 | 	s64 count[MEM_CGROUP_STAT_NSTATS]; | 
 | } ____cacheline_aligned_in_smp; | 
 |  | 
 | struct mem_cgroup_stat { | 
 | 	struct mem_cgroup_stat_cpu cpustat[NR_CPUS]; | 
 | }; | 
 |  | 
 | /* | 
 |  * For accounting under irq disable, no need for increment preempt count. | 
 |  */ | 
 | static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat, | 
 | 		enum mem_cgroup_stat_index idx, int val) | 
 | { | 
 | 	int cpu = smp_processor_id(); | 
 | 	stat->cpustat[cpu].count[idx] += val; | 
 | } | 
 |  | 
 | static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat, | 
 | 		enum mem_cgroup_stat_index idx) | 
 | { | 
 | 	int cpu; | 
 | 	s64 ret = 0; | 
 | 	for_each_possible_cpu(cpu) | 
 | 		ret += stat->cpustat[cpu].count[idx]; | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * per-zone information in memory controller. | 
 |  */ | 
 |  | 
 | enum mem_cgroup_zstat_index { | 
 | 	MEM_CGROUP_ZSTAT_ACTIVE, | 
 | 	MEM_CGROUP_ZSTAT_INACTIVE, | 
 |  | 
 | 	NR_MEM_CGROUP_ZSTAT, | 
 | }; | 
 |  | 
 | struct mem_cgroup_per_zone { | 
 | 	/* | 
 | 	 * spin_lock to protect the per cgroup LRU | 
 | 	 */ | 
 | 	spinlock_t		lru_lock; | 
 | 	struct list_head	active_list; | 
 | 	struct list_head	inactive_list; | 
 | 	unsigned long count[NR_MEM_CGROUP_ZSTAT]; | 
 | }; | 
 | /* Macro for accessing counter */ | 
 | #define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)]) | 
 |  | 
 | struct mem_cgroup_per_node { | 
 | 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; | 
 | }; | 
 |  | 
 | struct mem_cgroup_lru_info { | 
 | 	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES]; | 
 | }; | 
 |  | 
 | /* | 
 |  * The memory controller data structure. The memory controller controls both | 
 |  * page cache and RSS per cgroup. We would eventually like to provide | 
 |  * statistics based on the statistics developed by Rik Van Riel for clock-pro, | 
 |  * to help the administrator determine what knobs to tune. | 
 |  * | 
 |  * TODO: Add a water mark for the memory controller. Reclaim will begin when | 
 |  * we hit the water mark. May be even add a low water mark, such that | 
 |  * no reclaim occurs from a cgroup at it's low water mark, this is | 
 |  * a feature that will be implemented much later in the future. | 
 |  */ | 
 | struct mem_cgroup { | 
 | 	struct cgroup_subsys_state css; | 
 | 	/* | 
 | 	 * the counter to account for memory usage | 
 | 	 */ | 
 | 	struct res_counter res; | 
 | 	/* | 
 | 	 * Per cgroup active and inactive list, similar to the | 
 | 	 * per zone LRU lists. | 
 | 	 */ | 
 | 	struct mem_cgroup_lru_info info; | 
 |  | 
 | 	int	prev_priority;	/* for recording reclaim priority */ | 
 | 	/* | 
 | 	 * statistics. | 
 | 	 */ | 
 | 	struct mem_cgroup_stat stat; | 
 | }; | 
 |  | 
 | /* | 
 |  * We use the lower bit of the page->page_cgroup pointer as a bit spin | 
 |  * lock. We need to ensure that page->page_cgroup is atleast two | 
 |  * byte aligned (based on comments from Nick Piggin) | 
 |  */ | 
 | #define PAGE_CGROUP_LOCK_BIT 	0x0 | 
 | #define PAGE_CGROUP_LOCK 		(1 << PAGE_CGROUP_LOCK_BIT) | 
 |  | 
 | /* | 
 |  * A page_cgroup page is associated with every page descriptor. The | 
 |  * page_cgroup helps us identify information about the cgroup | 
 |  */ | 
 | struct page_cgroup { | 
 | 	struct list_head lru;		/* per cgroup LRU list */ | 
 | 	struct page *page; | 
 | 	struct mem_cgroup *mem_cgroup; | 
 | 	atomic_t ref_cnt;		/* Helpful when pages move b/w  */ | 
 | 					/* mapped and cached states     */ | 
 | 	int	 flags; | 
 | }; | 
 | #define PAGE_CGROUP_FLAG_CACHE	(0x1)	/* charged as cache */ | 
 | #define PAGE_CGROUP_FLAG_ACTIVE (0x2)	/* page is active in this cgroup */ | 
 |  | 
 | static inline int page_cgroup_nid(struct page_cgroup *pc) | 
 | { | 
 | 	return page_to_nid(pc->page); | 
 | } | 
 |  | 
 | static inline enum zone_type page_cgroup_zid(struct page_cgroup *pc) | 
 | { | 
 | 	return page_zonenum(pc->page); | 
 | } | 
 |  | 
 | enum { | 
 | 	MEM_CGROUP_TYPE_UNSPEC = 0, | 
 | 	MEM_CGROUP_TYPE_MAPPED, | 
 | 	MEM_CGROUP_TYPE_CACHED, | 
 | 	MEM_CGROUP_TYPE_ALL, | 
 | 	MEM_CGROUP_TYPE_MAX, | 
 | }; | 
 |  | 
 | enum charge_type { | 
 | 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0, | 
 | 	MEM_CGROUP_CHARGE_TYPE_MAPPED, | 
 | }; | 
 |  | 
 |  | 
 | /* | 
 |  * Always modified under lru lock. Then, not necessary to preempt_disable() | 
 |  */ | 
 | static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags, | 
 | 					bool charge) | 
 | { | 
 | 	int val = (charge)? 1 : -1; | 
 | 	struct mem_cgroup_stat *stat = &mem->stat; | 
 | 	VM_BUG_ON(!irqs_disabled()); | 
 |  | 
 | 	if (flags & PAGE_CGROUP_FLAG_CACHE) | 
 | 		__mem_cgroup_stat_add_safe(stat, | 
 | 					MEM_CGROUP_STAT_CACHE, val); | 
 | 	else | 
 | 		__mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val); | 
 | } | 
 |  | 
 | static inline struct mem_cgroup_per_zone * | 
 | mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid) | 
 | { | 
 | 	BUG_ON(!mem->info.nodeinfo[nid]); | 
 | 	return &mem->info.nodeinfo[nid]->zoneinfo[zid]; | 
 | } | 
 |  | 
 | static inline struct mem_cgroup_per_zone * | 
 | page_cgroup_zoneinfo(struct page_cgroup *pc) | 
 | { | 
 | 	struct mem_cgroup *mem = pc->mem_cgroup; | 
 | 	int nid = page_cgroup_nid(pc); | 
 | 	int zid = page_cgroup_zid(pc); | 
 |  | 
 | 	return mem_cgroup_zoneinfo(mem, nid, zid); | 
 | } | 
 |  | 
 | static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem, | 
 | 					enum mem_cgroup_zstat_index idx) | 
 | { | 
 | 	int nid, zid; | 
 | 	struct mem_cgroup_per_zone *mz; | 
 | 	u64 total = 0; | 
 |  | 
 | 	for_each_online_node(nid) | 
 | 		for (zid = 0; zid < MAX_NR_ZONES; zid++) { | 
 | 			mz = mem_cgroup_zoneinfo(mem, nid, zid); | 
 | 			total += MEM_CGROUP_ZSTAT(mz, idx); | 
 | 		} | 
 | 	return total; | 
 | } | 
 |  | 
 | static struct mem_cgroup init_mem_cgroup; | 
 |  | 
 | static inline | 
 | struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont) | 
 | { | 
 | 	return container_of(cgroup_subsys_state(cont, | 
 | 				mem_cgroup_subsys_id), struct mem_cgroup, | 
 | 				css); | 
 | } | 
 |  | 
 | static inline | 
 | struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) | 
 | { | 
 | 	return container_of(task_subsys_state(p, mem_cgroup_subsys_id), | 
 | 				struct mem_cgroup, css); | 
 | } | 
 |  | 
 | void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p) | 
 | { | 
 | 	struct mem_cgroup *mem; | 
 |  | 
 | 	mem = mem_cgroup_from_task(p); | 
 | 	css_get(&mem->css); | 
 | 	mm->mem_cgroup = mem; | 
 | } | 
 |  | 
 | void mm_free_cgroup(struct mm_struct *mm) | 
 | { | 
 | 	css_put(&mm->mem_cgroup->css); | 
 | } | 
 |  | 
 | static inline int page_cgroup_locked(struct page *page) | 
 | { | 
 | 	return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT, | 
 | 					&page->page_cgroup); | 
 | } | 
 |  | 
 | void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc) | 
 | { | 
 | 	int locked; | 
 |  | 
 | 	/* | 
 | 	 * While resetting the page_cgroup we might not hold the | 
 | 	 * page_cgroup lock. free_hot_cold_page() is an example | 
 | 	 * of such a scenario | 
 | 	 */ | 
 | 	if (pc) | 
 | 		VM_BUG_ON(!page_cgroup_locked(page)); | 
 | 	locked = (page->page_cgroup & PAGE_CGROUP_LOCK); | 
 | 	page->page_cgroup = ((unsigned long)pc | locked); | 
 | } | 
 |  | 
 | struct page_cgroup *page_get_page_cgroup(struct page *page) | 
 | { | 
 | 	return (struct page_cgroup *) | 
 | 		(page->page_cgroup & ~PAGE_CGROUP_LOCK); | 
 | } | 
 |  | 
 | static void __always_inline lock_page_cgroup(struct page *page) | 
 | { | 
 | 	bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup); | 
 | 	VM_BUG_ON(!page_cgroup_locked(page)); | 
 | } | 
 |  | 
 | static void __always_inline unlock_page_cgroup(struct page *page) | 
 | { | 
 | 	bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup); | 
 | } | 
 |  | 
 | /* | 
 |  * Tie new page_cgroup to struct page under lock_page_cgroup() | 
 |  * This can fail if the page has been tied to a page_cgroup. | 
 |  * If success, returns 0. | 
 |  */ | 
 | static int page_cgroup_assign_new_page_cgroup(struct page *page, | 
 | 						struct page_cgroup *pc) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	lock_page_cgroup(page); | 
 | 	if (!page_get_page_cgroup(page)) | 
 | 		page_assign_page_cgroup(page, pc); | 
 | 	else /* A page is tied to other pc. */ | 
 | 		ret = 1; | 
 | 	unlock_page_cgroup(page); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Clear page->page_cgroup member under lock_page_cgroup(). | 
 |  * If given "pc" value is different from one page->page_cgroup, | 
 |  * page->cgroup is not cleared. | 
 |  * Returns a value of page->page_cgroup at lock taken. | 
 |  * A can can detect failure of clearing by following | 
 |  *  clear_page_cgroup(page, pc) == pc | 
 |  */ | 
 |  | 
 | static struct page_cgroup *clear_page_cgroup(struct page *page, | 
 | 						struct page_cgroup *pc) | 
 | { | 
 | 	struct page_cgroup *ret; | 
 | 	/* lock and clear */ | 
 | 	lock_page_cgroup(page); | 
 | 	ret = page_get_page_cgroup(page); | 
 | 	if (likely(ret == pc)) | 
 | 		page_assign_page_cgroup(page, NULL); | 
 | 	unlock_page_cgroup(page); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void __mem_cgroup_remove_list(struct page_cgroup *pc) | 
 | { | 
 | 	int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE; | 
 | 	struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc); | 
 |  | 
 | 	if (from) | 
 | 		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1; | 
 | 	else | 
 | 		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1; | 
 |  | 
 | 	mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false); | 
 | 	list_del_init(&pc->lru); | 
 | } | 
 |  | 
 | static void __mem_cgroup_add_list(struct page_cgroup *pc) | 
 | { | 
 | 	int to = pc->flags & PAGE_CGROUP_FLAG_ACTIVE; | 
 | 	struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc); | 
 |  | 
 | 	if (!to) { | 
 | 		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1; | 
 | 		list_add(&pc->lru, &mz->inactive_list); | 
 | 	} else { | 
 | 		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1; | 
 | 		list_add(&pc->lru, &mz->active_list); | 
 | 	} | 
 | 	mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true); | 
 | } | 
 |  | 
 | static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active) | 
 | { | 
 | 	int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE; | 
 | 	struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc); | 
 |  | 
 | 	if (from) | 
 | 		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1; | 
 | 	else | 
 | 		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1; | 
 |  | 
 | 	if (active) { | 
 | 		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1; | 
 | 		pc->flags |= PAGE_CGROUP_FLAG_ACTIVE; | 
 | 		list_move(&pc->lru, &mz->active_list); | 
 | 	} else { | 
 | 		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1; | 
 | 		pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE; | 
 | 		list_move(&pc->lru, &mz->inactive_list); | 
 | 	} | 
 | } | 
 |  | 
 | int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	task_lock(task); | 
 | 	ret = task->mm && mm_cgroup(task->mm) == mem; | 
 | 	task_unlock(task); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * This routine assumes that the appropriate zone's lru lock is already held | 
 |  */ | 
 | void mem_cgroup_move_lists(struct page_cgroup *pc, bool active) | 
 | { | 
 | 	struct mem_cgroup_per_zone *mz; | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (!pc) | 
 | 		return; | 
 |  | 
 | 	mz = page_cgroup_zoneinfo(pc); | 
 | 	spin_lock_irqsave(&mz->lru_lock, flags); | 
 | 	__mem_cgroup_move_lists(pc, active); | 
 | 	spin_unlock_irqrestore(&mz->lru_lock, flags); | 
 | } | 
 |  | 
 | /* | 
 |  * Calculate mapped_ratio under memory controller. This will be used in | 
 |  * vmscan.c for deteremining we have to reclaim mapped pages. | 
 |  */ | 
 | int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem) | 
 | { | 
 | 	long total, rss; | 
 |  | 
 | 	/* | 
 | 	 * usage is recorded in bytes. But, here, we assume the number of | 
 | 	 * physical pages can be represented by "long" on any arch. | 
 | 	 */ | 
 | 	total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L; | 
 | 	rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS); | 
 | 	return (int)((rss * 100L) / total); | 
 | } | 
 | /* | 
 |  * This function is called from vmscan.c. In page reclaiming loop. balance | 
 |  * between active and inactive list is calculated. For memory controller | 
 |  * page reclaiming, we should use using mem_cgroup's imbalance rather than | 
 |  * zone's global lru imbalance. | 
 |  */ | 
 | long mem_cgroup_reclaim_imbalance(struct mem_cgroup *mem) | 
 | { | 
 | 	unsigned long active, inactive; | 
 | 	/* active and inactive are the number of pages. 'long' is ok.*/ | 
 | 	active = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_ACTIVE); | 
 | 	inactive = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_INACTIVE); | 
 | 	return (long) (active / (inactive + 1)); | 
 | } | 
 |  | 
 | /* | 
 |  * prev_priority control...this will be used in memory reclaim path. | 
 |  */ | 
 | int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem) | 
 | { | 
 | 	return mem->prev_priority; | 
 | } | 
 |  | 
 | void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority) | 
 | { | 
 | 	if (priority < mem->prev_priority) | 
 | 		mem->prev_priority = priority; | 
 | } | 
 |  | 
 | void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority) | 
 | { | 
 | 	mem->prev_priority = priority; | 
 | } | 
 |  | 
 | /* | 
 |  * Calculate # of pages to be scanned in this priority/zone. | 
 |  * See also vmscan.c | 
 |  * | 
 |  * priority starts from "DEF_PRIORITY" and decremented in each loop. | 
 |  * (see include/linux/mmzone.h) | 
 |  */ | 
 |  | 
 | long mem_cgroup_calc_reclaim_active(struct mem_cgroup *mem, | 
 | 				   struct zone *zone, int priority) | 
 | { | 
 | 	long nr_active; | 
 | 	int nid = zone->zone_pgdat->node_id; | 
 | 	int zid = zone_idx(zone); | 
 | 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid); | 
 |  | 
 | 	nr_active = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE); | 
 | 	return (nr_active >> priority); | 
 | } | 
 |  | 
 | long mem_cgroup_calc_reclaim_inactive(struct mem_cgroup *mem, | 
 | 					struct zone *zone, int priority) | 
 | { | 
 | 	long nr_inactive; | 
 | 	int nid = zone->zone_pgdat->node_id; | 
 | 	int zid = zone_idx(zone); | 
 | 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid); | 
 |  | 
 | 	nr_inactive = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE); | 
 |  | 
 | 	return (nr_inactive >> priority); | 
 | } | 
 |  | 
 | unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, | 
 | 					struct list_head *dst, | 
 | 					unsigned long *scanned, int order, | 
 | 					int mode, struct zone *z, | 
 | 					struct mem_cgroup *mem_cont, | 
 | 					int active) | 
 | { | 
 | 	unsigned long nr_taken = 0; | 
 | 	struct page *page; | 
 | 	unsigned long scan; | 
 | 	LIST_HEAD(pc_list); | 
 | 	struct list_head *src; | 
 | 	struct page_cgroup *pc, *tmp; | 
 | 	int nid = z->zone_pgdat->node_id; | 
 | 	int zid = zone_idx(z); | 
 | 	struct mem_cgroup_per_zone *mz; | 
 |  | 
 | 	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); | 
 | 	if (active) | 
 | 		src = &mz->active_list; | 
 | 	else | 
 | 		src = &mz->inactive_list; | 
 |  | 
 |  | 
 | 	spin_lock(&mz->lru_lock); | 
 | 	scan = 0; | 
 | 	list_for_each_entry_safe_reverse(pc, tmp, src, lru) { | 
 | 		if (scan >= nr_to_scan) | 
 | 			break; | 
 | 		page = pc->page; | 
 | 		VM_BUG_ON(!pc); | 
 |  | 
 | 		if (unlikely(!PageLRU(page))) | 
 | 			continue; | 
 |  | 
 | 		if (PageActive(page) && !active) { | 
 | 			__mem_cgroup_move_lists(pc, true); | 
 | 			continue; | 
 | 		} | 
 | 		if (!PageActive(page) && active) { | 
 | 			__mem_cgroup_move_lists(pc, false); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		scan++; | 
 | 		list_move(&pc->lru, &pc_list); | 
 |  | 
 | 		if (__isolate_lru_page(page, mode) == 0) { | 
 | 			list_move(&page->lru, dst); | 
 | 			nr_taken++; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	list_splice(&pc_list, src); | 
 | 	spin_unlock(&mz->lru_lock); | 
 |  | 
 | 	*scanned = scan; | 
 | 	return nr_taken; | 
 | } | 
 |  | 
 | /* | 
 |  * Charge the memory controller for page usage. | 
 |  * Return | 
 |  * 0 if the charge was successful | 
 |  * < 0 if the cgroup is over its limit | 
 |  */ | 
 | static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, | 
 | 				gfp_t gfp_mask, enum charge_type ctype) | 
 | { | 
 | 	struct mem_cgroup *mem; | 
 | 	struct page_cgroup *pc; | 
 | 	unsigned long flags; | 
 | 	unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | 
 | 	struct mem_cgroup_per_zone *mz; | 
 |  | 
 | 	/* | 
 | 	 * Should page_cgroup's go to their own slab? | 
 | 	 * One could optimize the performance of the charging routine | 
 | 	 * by saving a bit in the page_flags and using it as a lock | 
 | 	 * to see if the cgroup page already has a page_cgroup associated | 
 | 	 * with it | 
 | 	 */ | 
 | retry: | 
 | 	if (page) { | 
 | 		lock_page_cgroup(page); | 
 | 		pc = page_get_page_cgroup(page); | 
 | 		/* | 
 | 		 * The page_cgroup exists and | 
 | 		 * the page has already been accounted. | 
 | 		 */ | 
 | 		if (pc) { | 
 | 			if (unlikely(!atomic_inc_not_zero(&pc->ref_cnt))) { | 
 | 				/* this page is under being uncharged ? */ | 
 | 				unlock_page_cgroup(page); | 
 | 				cpu_relax(); | 
 | 				goto retry; | 
 | 			} else { | 
 | 				unlock_page_cgroup(page); | 
 | 				goto done; | 
 | 			} | 
 | 		} | 
 | 		unlock_page_cgroup(page); | 
 | 	} | 
 |  | 
 | 	pc = kzalloc(sizeof(struct page_cgroup), gfp_mask); | 
 | 	if (pc == NULL) | 
 | 		goto err; | 
 |  | 
 | 	/* | 
 | 	 * We always charge the cgroup the mm_struct belongs to. | 
 | 	 * The mm_struct's mem_cgroup changes on task migration if the | 
 | 	 * thread group leader migrates. It's possible that mm is not | 
 | 	 * set, if so charge the init_mm (happens for pagecache usage). | 
 | 	 */ | 
 | 	if (!mm) | 
 | 		mm = &init_mm; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	mem = rcu_dereference(mm->mem_cgroup); | 
 | 	/* | 
 | 	 * For every charge from the cgroup, increment reference | 
 | 	 * count | 
 | 	 */ | 
 | 	css_get(&mem->css); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	/* | 
 | 	 * If we created the page_cgroup, we should free it on exceeding | 
 | 	 * the cgroup limit. | 
 | 	 */ | 
 | 	while (res_counter_charge(&mem->res, PAGE_SIZE)) { | 
 | 		if (!(gfp_mask & __GFP_WAIT)) | 
 | 			goto out; | 
 |  | 
 | 		if (try_to_free_mem_cgroup_pages(mem, gfp_mask)) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 |  		 * try_to_free_mem_cgroup_pages() might not give us a full | 
 |  		 * picture of reclaim. Some pages are reclaimed and might be | 
 |  		 * moved to swap cache or just unmapped from the cgroup. | 
 |  		 * Check the limit again to see if the reclaim reduced the | 
 |  		 * current usage of the cgroup before giving up | 
 |  		 */ | 
 | 		if (res_counter_check_under_limit(&mem->res)) | 
 | 			continue; | 
 |  | 
 | 		if (!nr_retries--) { | 
 | 			mem_cgroup_out_of_memory(mem, gfp_mask); | 
 | 			goto out; | 
 | 		} | 
 | 		congestion_wait(WRITE, HZ/10); | 
 | 	} | 
 |  | 
 | 	atomic_set(&pc->ref_cnt, 1); | 
 | 	pc->mem_cgroup = mem; | 
 | 	pc->page = page; | 
 | 	pc->flags = PAGE_CGROUP_FLAG_ACTIVE; | 
 | 	if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE) | 
 | 		pc->flags |= PAGE_CGROUP_FLAG_CACHE; | 
 |  | 
 | 	if (!page || page_cgroup_assign_new_page_cgroup(page, pc)) { | 
 | 		/* | 
 | 		 * Another charge has been added to this page already. | 
 | 		 * We take lock_page_cgroup(page) again and read | 
 | 		 * page->cgroup, increment refcnt.... just retry is OK. | 
 | 		 */ | 
 | 		res_counter_uncharge(&mem->res, PAGE_SIZE); | 
 | 		css_put(&mem->css); | 
 | 		kfree(pc); | 
 | 		if (!page) | 
 | 			goto done; | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	mz = page_cgroup_zoneinfo(pc); | 
 | 	spin_lock_irqsave(&mz->lru_lock, flags); | 
 | 	/* Update statistics vector */ | 
 | 	__mem_cgroup_add_list(pc); | 
 | 	spin_unlock_irqrestore(&mz->lru_lock, flags); | 
 |  | 
 | done: | 
 | 	return 0; | 
 | out: | 
 | 	css_put(&mem->css); | 
 | 	kfree(pc); | 
 | err: | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | int mem_cgroup_charge(struct page *page, struct mm_struct *mm, | 
 | 			gfp_t gfp_mask) | 
 | { | 
 | 	return mem_cgroup_charge_common(page, mm, gfp_mask, | 
 | 			MEM_CGROUP_CHARGE_TYPE_MAPPED); | 
 | } | 
 |  | 
 | /* | 
 |  * See if the cached pages should be charged at all? | 
 |  */ | 
 | int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, | 
 | 				gfp_t gfp_mask) | 
 | { | 
 | 	int ret = 0; | 
 | 	if (!mm) | 
 | 		mm = &init_mm; | 
 |  | 
 | 	ret = mem_cgroup_charge_common(page, mm, gfp_mask, | 
 | 				MEM_CGROUP_CHARGE_TYPE_CACHE); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Uncharging is always a welcome operation, we never complain, simply | 
 |  * uncharge. This routine should be called with lock_page_cgroup held | 
 |  */ | 
 | void mem_cgroup_uncharge(struct page_cgroup *pc) | 
 | { | 
 | 	struct mem_cgroup *mem; | 
 | 	struct mem_cgroup_per_zone *mz; | 
 | 	struct page *page; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* | 
 | 	 * Check if our page_cgroup is valid | 
 | 	 */ | 
 | 	if (!pc) | 
 | 		return; | 
 |  | 
 | 	if (atomic_dec_and_test(&pc->ref_cnt)) { | 
 | 		page = pc->page; | 
 | 		mz = page_cgroup_zoneinfo(pc); | 
 | 		/* | 
 | 		 * get page->cgroup and clear it under lock. | 
 | 		 * force_empty can drop page->cgroup without checking refcnt. | 
 | 		 */ | 
 | 		unlock_page_cgroup(page); | 
 | 		if (clear_page_cgroup(page, pc) == pc) { | 
 | 			mem = pc->mem_cgroup; | 
 | 			css_put(&mem->css); | 
 | 			res_counter_uncharge(&mem->res, PAGE_SIZE); | 
 | 			spin_lock_irqsave(&mz->lru_lock, flags); | 
 | 			__mem_cgroup_remove_list(pc); | 
 | 			spin_unlock_irqrestore(&mz->lru_lock, flags); | 
 | 			kfree(pc); | 
 | 		} | 
 | 		lock_page_cgroup(page); | 
 | 	} | 
 | } | 
 |  | 
 | void mem_cgroup_uncharge_page(struct page *page) | 
 | { | 
 | 	lock_page_cgroup(page); | 
 | 	mem_cgroup_uncharge(page_get_page_cgroup(page)); | 
 | 	unlock_page_cgroup(page); | 
 | } | 
 |  | 
 | /* | 
 |  * Returns non-zero if a page (under migration) has valid page_cgroup member. | 
 |  * Refcnt of page_cgroup is incremented. | 
 |  */ | 
 |  | 
 | int mem_cgroup_prepare_migration(struct page *page) | 
 | { | 
 | 	struct page_cgroup *pc; | 
 | 	int ret = 0; | 
 | 	lock_page_cgroup(page); | 
 | 	pc = page_get_page_cgroup(page); | 
 | 	if (pc && atomic_inc_not_zero(&pc->ref_cnt)) | 
 | 		ret = 1; | 
 | 	unlock_page_cgroup(page); | 
 | 	return ret; | 
 | } | 
 |  | 
 | void mem_cgroup_end_migration(struct page *page) | 
 | { | 
 | 	struct page_cgroup *pc; | 
 |  | 
 | 	lock_page_cgroup(page); | 
 | 	pc = page_get_page_cgroup(page); | 
 | 	mem_cgroup_uncharge(pc); | 
 | 	unlock_page_cgroup(page); | 
 | } | 
 | /* | 
 |  * We know both *page* and *newpage* are now not-on-LRU and Pg_locked. | 
 |  * And no race with uncharge() routines because page_cgroup for *page* | 
 |  * has extra one reference by mem_cgroup_prepare_migration. | 
 |  */ | 
 |  | 
 | void mem_cgroup_page_migration(struct page *page, struct page *newpage) | 
 | { | 
 | 	struct page_cgroup *pc; | 
 | 	struct mem_cgroup *mem; | 
 | 	unsigned long flags; | 
 | 	struct mem_cgroup_per_zone *mz; | 
 | retry: | 
 | 	pc = page_get_page_cgroup(page); | 
 | 	if (!pc) | 
 | 		return; | 
 | 	mem = pc->mem_cgroup; | 
 | 	mz = page_cgroup_zoneinfo(pc); | 
 | 	if (clear_page_cgroup(page, pc) != pc) | 
 | 		goto retry; | 
 | 	spin_lock_irqsave(&mz->lru_lock, flags); | 
 |  | 
 | 	__mem_cgroup_remove_list(pc); | 
 | 	spin_unlock_irqrestore(&mz->lru_lock, flags); | 
 |  | 
 | 	pc->page = newpage; | 
 | 	lock_page_cgroup(newpage); | 
 | 	page_assign_page_cgroup(newpage, pc); | 
 | 	unlock_page_cgroup(newpage); | 
 |  | 
 | 	mz = page_cgroup_zoneinfo(pc); | 
 | 	spin_lock_irqsave(&mz->lru_lock, flags); | 
 | 	__mem_cgroup_add_list(pc); | 
 | 	spin_unlock_irqrestore(&mz->lru_lock, flags); | 
 | 	return; | 
 | } | 
 |  | 
 | /* | 
 |  * This routine traverse page_cgroup in given list and drop them all. | 
 |  * This routine ignores page_cgroup->ref_cnt. | 
 |  * *And* this routine doesn't reclaim page itself, just removes page_cgroup. | 
 |  */ | 
 | #define FORCE_UNCHARGE_BATCH	(128) | 
 | static void | 
 | mem_cgroup_force_empty_list(struct mem_cgroup *mem, | 
 | 			    struct mem_cgroup_per_zone *mz, | 
 | 			    int active) | 
 | { | 
 | 	struct page_cgroup *pc; | 
 | 	struct page *page; | 
 | 	int count; | 
 | 	unsigned long flags; | 
 | 	struct list_head *list; | 
 |  | 
 | 	if (active) | 
 | 		list = &mz->active_list; | 
 | 	else | 
 | 		list = &mz->inactive_list; | 
 |  | 
 | 	if (list_empty(list)) | 
 | 		return; | 
 | retry: | 
 | 	count = FORCE_UNCHARGE_BATCH; | 
 | 	spin_lock_irqsave(&mz->lru_lock, flags); | 
 |  | 
 | 	while (--count && !list_empty(list)) { | 
 | 		pc = list_entry(list->prev, struct page_cgroup, lru); | 
 | 		page = pc->page; | 
 | 		/* Avoid race with charge */ | 
 | 		atomic_set(&pc->ref_cnt, 0); | 
 | 		if (clear_page_cgroup(page, pc) == pc) { | 
 | 			css_put(&mem->css); | 
 | 			res_counter_uncharge(&mem->res, PAGE_SIZE); | 
 | 			__mem_cgroup_remove_list(pc); | 
 | 			kfree(pc); | 
 | 		} else 	/* being uncharged ? ...do relax */ | 
 | 			break; | 
 | 	} | 
 | 	spin_unlock_irqrestore(&mz->lru_lock, flags); | 
 | 	if (!list_empty(list)) { | 
 | 		cond_resched(); | 
 | 		goto retry; | 
 | 	} | 
 | 	return; | 
 | } | 
 |  | 
 | /* | 
 |  * make mem_cgroup's charge to be 0 if there is no task. | 
 |  * This enables deleting this mem_cgroup. | 
 |  */ | 
 |  | 
 | int mem_cgroup_force_empty(struct mem_cgroup *mem) | 
 | { | 
 | 	int ret = -EBUSY; | 
 | 	int node, zid; | 
 | 	css_get(&mem->css); | 
 | 	/* | 
 | 	 * page reclaim code (kswapd etc..) will move pages between | 
 | `	 * active_list <-> inactive_list while we don't take a lock. | 
 | 	 * So, we have to do loop here until all lists are empty. | 
 | 	 */ | 
 | 	while (mem->res.usage > 0) { | 
 | 		if (atomic_read(&mem->css.cgroup->count) > 0) | 
 | 			goto out; | 
 | 		for_each_node_state(node, N_POSSIBLE) | 
 | 			for (zid = 0; zid < MAX_NR_ZONES; zid++) { | 
 | 				struct mem_cgroup_per_zone *mz; | 
 | 				mz = mem_cgroup_zoneinfo(mem, node, zid); | 
 | 				/* drop all page_cgroup in active_list */ | 
 | 				mem_cgroup_force_empty_list(mem, mz, 1); | 
 | 				/* drop all page_cgroup in inactive_list */ | 
 | 				mem_cgroup_force_empty_list(mem, mz, 0); | 
 | 			} | 
 | 	} | 
 | 	ret = 0; | 
 | out: | 
 | 	css_put(&mem->css); | 
 | 	return ret; | 
 | } | 
 |  | 
 |  | 
 |  | 
 | int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp) | 
 | { | 
 | 	*tmp = memparse(buf, &buf); | 
 | 	if (*buf != '\0') | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * Round up the value to the closest page size | 
 | 	 */ | 
 | 	*tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static ssize_t mem_cgroup_read(struct cgroup *cont, | 
 | 			struct cftype *cft, struct file *file, | 
 | 			char __user *userbuf, size_t nbytes, loff_t *ppos) | 
 | { | 
 | 	return res_counter_read(&mem_cgroup_from_cont(cont)->res, | 
 | 				cft->private, userbuf, nbytes, ppos, | 
 | 				NULL); | 
 | } | 
 |  | 
 | static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft, | 
 | 				struct file *file, const char __user *userbuf, | 
 | 				size_t nbytes, loff_t *ppos) | 
 | { | 
 | 	return res_counter_write(&mem_cgroup_from_cont(cont)->res, | 
 | 				cft->private, userbuf, nbytes, ppos, | 
 | 				mem_cgroup_write_strategy); | 
 | } | 
 |  | 
 | static ssize_t mem_force_empty_write(struct cgroup *cont, | 
 | 				struct cftype *cft, struct file *file, | 
 | 				const char __user *userbuf, | 
 | 				size_t nbytes, loff_t *ppos) | 
 | { | 
 | 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont); | 
 | 	int ret; | 
 | 	ret = mem_cgroup_force_empty(mem); | 
 | 	if (!ret) | 
 | 		ret = nbytes; | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Note: This should be removed if cgroup supports write-only file. | 
 |  */ | 
 |  | 
 | static ssize_t mem_force_empty_read(struct cgroup *cont, | 
 | 				struct cftype *cft, | 
 | 				struct file *file, char __user *userbuf, | 
 | 				size_t nbytes, loff_t *ppos) | 
 | { | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 |  | 
 | static const struct mem_cgroup_stat_desc { | 
 | 	const char *msg; | 
 | 	u64 unit; | 
 | } mem_cgroup_stat_desc[] = { | 
 | 	[MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, }, | 
 | 	[MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, }, | 
 | }; | 
 |  | 
 | static int mem_control_stat_show(struct seq_file *m, void *arg) | 
 | { | 
 | 	struct cgroup *cont = m->private; | 
 | 	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont); | 
 | 	struct mem_cgroup_stat *stat = &mem_cont->stat; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) { | 
 | 		s64 val; | 
 |  | 
 | 		val = mem_cgroup_read_stat(stat, i); | 
 | 		val *= mem_cgroup_stat_desc[i].unit; | 
 | 		seq_printf(m, "%s %lld\n", mem_cgroup_stat_desc[i].msg, | 
 | 				(long long)val); | 
 | 	} | 
 | 	/* showing # of active pages */ | 
 | 	{ | 
 | 		unsigned long active, inactive; | 
 |  | 
 | 		inactive = mem_cgroup_get_all_zonestat(mem_cont, | 
 | 						MEM_CGROUP_ZSTAT_INACTIVE); | 
 | 		active = mem_cgroup_get_all_zonestat(mem_cont, | 
 | 						MEM_CGROUP_ZSTAT_ACTIVE); | 
 | 		seq_printf(m, "active %ld\n", (active) * PAGE_SIZE); | 
 | 		seq_printf(m, "inactive %ld\n", (inactive) * PAGE_SIZE); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct file_operations mem_control_stat_file_operations = { | 
 | 	.read = seq_read, | 
 | 	.llseek = seq_lseek, | 
 | 	.release = single_release, | 
 | }; | 
 |  | 
 | static int mem_control_stat_open(struct inode *unused, struct file *file) | 
 | { | 
 | 	/* XXX __d_cont */ | 
 | 	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata; | 
 |  | 
 | 	file->f_op = &mem_control_stat_file_operations; | 
 | 	return single_open(file, mem_control_stat_show, cont); | 
 | } | 
 |  | 
 |  | 
 |  | 
 | static struct cftype mem_cgroup_files[] = { | 
 | 	{ | 
 | 		.name = "usage_in_bytes", | 
 | 		.private = RES_USAGE, | 
 | 		.read = mem_cgroup_read, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "limit_in_bytes", | 
 | 		.private = RES_LIMIT, | 
 | 		.write = mem_cgroup_write, | 
 | 		.read = mem_cgroup_read, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "failcnt", | 
 | 		.private = RES_FAILCNT, | 
 | 		.read = mem_cgroup_read, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "force_empty", | 
 | 		.write = mem_force_empty_write, | 
 | 		.read = mem_force_empty_read, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "stat", | 
 | 		.open = mem_control_stat_open, | 
 | 	}, | 
 | }; | 
 |  | 
 | static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) | 
 | { | 
 | 	struct mem_cgroup_per_node *pn; | 
 | 	struct mem_cgroup_per_zone *mz; | 
 | 	int zone; | 
 | 	/* | 
 | 	 * This routine is called against possible nodes. | 
 | 	 * But it's BUG to call kmalloc() against offline node. | 
 | 	 * | 
 | 	 * TODO: this routine can waste much memory for nodes which will | 
 | 	 *       never be onlined. It's better to use memory hotplug callback | 
 | 	 *       function. | 
 | 	 */ | 
 | 	if (node_state(node, N_HIGH_MEMORY)) | 
 | 		pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, node); | 
 | 	else | 
 | 		pn = kmalloc(sizeof(*pn), GFP_KERNEL); | 
 | 	if (!pn) | 
 | 		return 1; | 
 |  | 
 | 	mem->info.nodeinfo[node] = pn; | 
 | 	memset(pn, 0, sizeof(*pn)); | 
 |  | 
 | 	for (zone = 0; zone < MAX_NR_ZONES; zone++) { | 
 | 		mz = &pn->zoneinfo[zone]; | 
 | 		INIT_LIST_HEAD(&mz->active_list); | 
 | 		INIT_LIST_HEAD(&mz->inactive_list); | 
 | 		spin_lock_init(&mz->lru_lock); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) | 
 | { | 
 | 	kfree(mem->info.nodeinfo[node]); | 
 | } | 
 |  | 
 |  | 
 | static struct mem_cgroup init_mem_cgroup; | 
 |  | 
 | static struct cgroup_subsys_state * | 
 | mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont) | 
 | { | 
 | 	struct mem_cgroup *mem; | 
 | 	int node; | 
 |  | 
 | 	if (unlikely((cont->parent) == NULL)) { | 
 | 		mem = &init_mem_cgroup; | 
 | 		init_mm.mem_cgroup = mem; | 
 | 	} else | 
 | 		mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL); | 
 |  | 
 | 	if (mem == NULL) | 
 | 		return NULL; | 
 |  | 
 | 	res_counter_init(&mem->res); | 
 |  | 
 | 	memset(&mem->info, 0, sizeof(mem->info)); | 
 |  | 
 | 	for_each_node_state(node, N_POSSIBLE) | 
 | 		if (alloc_mem_cgroup_per_zone_info(mem, node)) | 
 | 			goto free_out; | 
 |  | 
 | 	return &mem->css; | 
 | free_out: | 
 | 	for_each_node_state(node, N_POSSIBLE) | 
 | 		free_mem_cgroup_per_zone_info(mem, node); | 
 | 	if (cont->parent != NULL) | 
 | 		kfree(mem); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss, | 
 | 					struct cgroup *cont) | 
 | { | 
 | 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont); | 
 | 	mem_cgroup_force_empty(mem); | 
 | } | 
 |  | 
 | static void mem_cgroup_destroy(struct cgroup_subsys *ss, | 
 | 				struct cgroup *cont) | 
 | { | 
 | 	int node; | 
 | 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont); | 
 |  | 
 | 	for_each_node_state(node, N_POSSIBLE) | 
 | 		free_mem_cgroup_per_zone_info(mem, node); | 
 |  | 
 | 	kfree(mem_cgroup_from_cont(cont)); | 
 | } | 
 |  | 
 | static int mem_cgroup_populate(struct cgroup_subsys *ss, | 
 | 				struct cgroup *cont) | 
 | { | 
 | 	return cgroup_add_files(cont, ss, mem_cgroup_files, | 
 | 					ARRAY_SIZE(mem_cgroup_files)); | 
 | } | 
 |  | 
 | static void mem_cgroup_move_task(struct cgroup_subsys *ss, | 
 | 				struct cgroup *cont, | 
 | 				struct cgroup *old_cont, | 
 | 				struct task_struct *p) | 
 | { | 
 | 	struct mm_struct *mm; | 
 | 	struct mem_cgroup *mem, *old_mem; | 
 |  | 
 | 	mm = get_task_mm(p); | 
 | 	if (mm == NULL) | 
 | 		return; | 
 |  | 
 | 	mem = mem_cgroup_from_cont(cont); | 
 | 	old_mem = mem_cgroup_from_cont(old_cont); | 
 |  | 
 | 	if (mem == old_mem) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Only thread group leaders are allowed to migrate, the mm_struct is | 
 | 	 * in effect owned by the leader | 
 | 	 */ | 
 | 	if (p->tgid != p->pid) | 
 | 		goto out; | 
 |  | 
 | 	css_get(&mem->css); | 
 | 	rcu_assign_pointer(mm->mem_cgroup, mem); | 
 | 	css_put(&old_mem->css); | 
 |  | 
 | out: | 
 | 	mmput(mm); | 
 | 	return; | 
 | } | 
 |  | 
 | struct cgroup_subsys mem_cgroup_subsys = { | 
 | 	.name = "memory", | 
 | 	.subsys_id = mem_cgroup_subsys_id, | 
 | 	.create = mem_cgroup_create, | 
 | 	.pre_destroy = mem_cgroup_pre_destroy, | 
 | 	.destroy = mem_cgroup_destroy, | 
 | 	.populate = mem_cgroup_populate, | 
 | 	.attach = mem_cgroup_move_task, | 
 | 	.early_init = 0, | 
 | }; |