|  | /* | 
|  | * Copyright (C) 2007 Oracle.  All rights reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public | 
|  | * License v2 as published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public | 
|  | * License along with this program; if not, write to the | 
|  | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | 
|  | * Boston, MA 021110-1307, USA. | 
|  | */ | 
|  | #include <linux/sched.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/sort.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/slab.h> | 
|  | #include "compat.h" | 
|  | #include "hash.h" | 
|  | #include "ctree.h" | 
|  | #include "disk-io.h" | 
|  | #include "print-tree.h" | 
|  | #include "transaction.h" | 
|  | #include "volumes.h" | 
|  | #include "locking.h" | 
|  | #include "free-space-cache.h" | 
|  |  | 
|  | static int update_block_group(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | u64 bytenr, u64 num_bytes, int alloc); | 
|  | static int update_reserved_bytes(struct btrfs_block_group_cache *cache, | 
|  | u64 num_bytes, int reserve, int sinfo); | 
|  | static int __btrfs_free_extent(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | u64 bytenr, u64 num_bytes, u64 parent, | 
|  | u64 root_objectid, u64 owner_objectid, | 
|  | u64 owner_offset, int refs_to_drop, | 
|  | struct btrfs_delayed_extent_op *extra_op); | 
|  | static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, | 
|  | struct extent_buffer *leaf, | 
|  | struct btrfs_extent_item *ei); | 
|  | static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | u64 parent, u64 root_objectid, | 
|  | u64 flags, u64 owner, u64 offset, | 
|  | struct btrfs_key *ins, int ref_mod); | 
|  | static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | u64 parent, u64 root_objectid, | 
|  | u64 flags, struct btrfs_disk_key *key, | 
|  | int level, struct btrfs_key *ins); | 
|  | static int do_chunk_alloc(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *extent_root, u64 alloc_bytes, | 
|  | u64 flags, int force); | 
|  | static int find_next_key(struct btrfs_path *path, int level, | 
|  | struct btrfs_key *key); | 
|  | static void dump_space_info(struct btrfs_space_info *info, u64 bytes, | 
|  | int dump_block_groups); | 
|  |  | 
|  | static noinline int | 
|  | block_group_cache_done(struct btrfs_block_group_cache *cache) | 
|  | { | 
|  | smp_mb(); | 
|  | return cache->cached == BTRFS_CACHE_FINISHED; | 
|  | } | 
|  |  | 
|  | static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) | 
|  | { | 
|  | return (cache->flags & bits) == bits; | 
|  | } | 
|  |  | 
|  | void btrfs_get_block_group(struct btrfs_block_group_cache *cache) | 
|  | { | 
|  | atomic_inc(&cache->count); | 
|  | } | 
|  |  | 
|  | void btrfs_put_block_group(struct btrfs_block_group_cache *cache) | 
|  | { | 
|  | if (atomic_dec_and_test(&cache->count)) { | 
|  | WARN_ON(cache->pinned > 0); | 
|  | WARN_ON(cache->reserved > 0); | 
|  | WARN_ON(cache->reserved_pinned > 0); | 
|  | kfree(cache); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this adds the block group to the fs_info rb tree for the block group | 
|  | * cache | 
|  | */ | 
|  | static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, | 
|  | struct btrfs_block_group_cache *block_group) | 
|  | { | 
|  | struct rb_node **p; | 
|  | struct rb_node *parent = NULL; | 
|  | struct btrfs_block_group_cache *cache; | 
|  |  | 
|  | spin_lock(&info->block_group_cache_lock); | 
|  | p = &info->block_group_cache_tree.rb_node; | 
|  |  | 
|  | while (*p) { | 
|  | parent = *p; | 
|  | cache = rb_entry(parent, struct btrfs_block_group_cache, | 
|  | cache_node); | 
|  | if (block_group->key.objectid < cache->key.objectid) { | 
|  | p = &(*p)->rb_left; | 
|  | } else if (block_group->key.objectid > cache->key.objectid) { | 
|  | p = &(*p)->rb_right; | 
|  | } else { | 
|  | spin_unlock(&info->block_group_cache_lock); | 
|  | return -EEXIST; | 
|  | } | 
|  | } | 
|  |  | 
|  | rb_link_node(&block_group->cache_node, parent, p); | 
|  | rb_insert_color(&block_group->cache_node, | 
|  | &info->block_group_cache_tree); | 
|  | spin_unlock(&info->block_group_cache_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This will return the block group at or after bytenr if contains is 0, else | 
|  | * it will return the block group that contains the bytenr | 
|  | */ | 
|  | static struct btrfs_block_group_cache * | 
|  | block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, | 
|  | int contains) | 
|  | { | 
|  | struct btrfs_block_group_cache *cache, *ret = NULL; | 
|  | struct rb_node *n; | 
|  | u64 end, start; | 
|  |  | 
|  | spin_lock(&info->block_group_cache_lock); | 
|  | n = info->block_group_cache_tree.rb_node; | 
|  |  | 
|  | while (n) { | 
|  | cache = rb_entry(n, struct btrfs_block_group_cache, | 
|  | cache_node); | 
|  | end = cache->key.objectid + cache->key.offset - 1; | 
|  | start = cache->key.objectid; | 
|  |  | 
|  | if (bytenr < start) { | 
|  | if (!contains && (!ret || start < ret->key.objectid)) | 
|  | ret = cache; | 
|  | n = n->rb_left; | 
|  | } else if (bytenr > start) { | 
|  | if (contains && bytenr <= end) { | 
|  | ret = cache; | 
|  | break; | 
|  | } | 
|  | n = n->rb_right; | 
|  | } else { | 
|  | ret = cache; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (ret) | 
|  | btrfs_get_block_group(ret); | 
|  | spin_unlock(&info->block_group_cache_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int add_excluded_extent(struct btrfs_root *root, | 
|  | u64 start, u64 num_bytes) | 
|  | { | 
|  | u64 end = start + num_bytes - 1; | 
|  | set_extent_bits(&root->fs_info->freed_extents[0], | 
|  | start, end, EXTENT_UPTODATE, GFP_NOFS); | 
|  | set_extent_bits(&root->fs_info->freed_extents[1], | 
|  | start, end, EXTENT_UPTODATE, GFP_NOFS); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void free_excluded_extents(struct btrfs_root *root, | 
|  | struct btrfs_block_group_cache *cache) | 
|  | { | 
|  | u64 start, end; | 
|  |  | 
|  | start = cache->key.objectid; | 
|  | end = start + cache->key.offset - 1; | 
|  |  | 
|  | clear_extent_bits(&root->fs_info->freed_extents[0], | 
|  | start, end, EXTENT_UPTODATE, GFP_NOFS); | 
|  | clear_extent_bits(&root->fs_info->freed_extents[1], | 
|  | start, end, EXTENT_UPTODATE, GFP_NOFS); | 
|  | } | 
|  |  | 
|  | static int exclude_super_stripes(struct btrfs_root *root, | 
|  | struct btrfs_block_group_cache *cache) | 
|  | { | 
|  | u64 bytenr; | 
|  | u64 *logical; | 
|  | int stripe_len; | 
|  | int i, nr, ret; | 
|  |  | 
|  | if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { | 
|  | stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; | 
|  | cache->bytes_super += stripe_len; | 
|  | ret = add_excluded_extent(root, cache->key.objectid, | 
|  | stripe_len); | 
|  | BUG_ON(ret); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { | 
|  | bytenr = btrfs_sb_offset(i); | 
|  | ret = btrfs_rmap_block(&root->fs_info->mapping_tree, | 
|  | cache->key.objectid, bytenr, | 
|  | 0, &logical, &nr, &stripe_len); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | while (nr--) { | 
|  | cache->bytes_super += stripe_len; | 
|  | ret = add_excluded_extent(root, logical[nr], | 
|  | stripe_len); | 
|  | BUG_ON(ret); | 
|  | } | 
|  |  | 
|  | kfree(logical); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct btrfs_caching_control * | 
|  | get_caching_control(struct btrfs_block_group_cache *cache) | 
|  | { | 
|  | struct btrfs_caching_control *ctl; | 
|  |  | 
|  | spin_lock(&cache->lock); | 
|  | if (cache->cached != BTRFS_CACHE_STARTED) { | 
|  | spin_unlock(&cache->lock); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* We're loading it the fast way, so we don't have a caching_ctl. */ | 
|  | if (!cache->caching_ctl) { | 
|  | spin_unlock(&cache->lock); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | ctl = cache->caching_ctl; | 
|  | atomic_inc(&ctl->count); | 
|  | spin_unlock(&cache->lock); | 
|  | return ctl; | 
|  | } | 
|  |  | 
|  | static void put_caching_control(struct btrfs_caching_control *ctl) | 
|  | { | 
|  | if (atomic_dec_and_test(&ctl->count)) | 
|  | kfree(ctl); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this is only called by cache_block_group, since we could have freed extents | 
|  | * we need to check the pinned_extents for any extents that can't be used yet | 
|  | * since their free space will be released as soon as the transaction commits. | 
|  | */ | 
|  | static u64 add_new_free_space(struct btrfs_block_group_cache *block_group, | 
|  | struct btrfs_fs_info *info, u64 start, u64 end) | 
|  | { | 
|  | u64 extent_start, extent_end, size, total_added = 0; | 
|  | int ret; | 
|  |  | 
|  | while (start < end) { | 
|  | ret = find_first_extent_bit(info->pinned_extents, start, | 
|  | &extent_start, &extent_end, | 
|  | EXTENT_DIRTY | EXTENT_UPTODATE); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | if (extent_start <= start) { | 
|  | start = extent_end + 1; | 
|  | } else if (extent_start > start && extent_start < end) { | 
|  | size = extent_start - start; | 
|  | total_added += size; | 
|  | ret = btrfs_add_free_space(block_group, start, | 
|  | size); | 
|  | BUG_ON(ret); | 
|  | start = extent_end + 1; | 
|  | } else { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (start < end) { | 
|  | size = end - start; | 
|  | total_added += size; | 
|  | ret = btrfs_add_free_space(block_group, start, size); | 
|  | BUG_ON(ret); | 
|  | } | 
|  |  | 
|  | return total_added; | 
|  | } | 
|  |  | 
|  | static int caching_kthread(void *data) | 
|  | { | 
|  | struct btrfs_block_group_cache *block_group = data; | 
|  | struct btrfs_fs_info *fs_info = block_group->fs_info; | 
|  | struct btrfs_caching_control *caching_ctl = block_group->caching_ctl; | 
|  | struct btrfs_root *extent_root = fs_info->extent_root; | 
|  | struct btrfs_path *path; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_key key; | 
|  | u64 total_found = 0; | 
|  | u64 last = 0; | 
|  | u32 nritems; | 
|  | int ret = 0; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); | 
|  |  | 
|  | /* | 
|  | * We don't want to deadlock with somebody trying to allocate a new | 
|  | * extent for the extent root while also trying to search the extent | 
|  | * root to add free space.  So we skip locking and search the commit | 
|  | * root, since its read-only | 
|  | */ | 
|  | path->skip_locking = 1; | 
|  | path->search_commit_root = 1; | 
|  | path->reada = 2; | 
|  |  | 
|  | key.objectid = last; | 
|  | key.offset = 0; | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | again: | 
|  | mutex_lock(&caching_ctl->mutex); | 
|  | /* need to make sure the commit_root doesn't disappear */ | 
|  | down_read(&fs_info->extent_commit_sem); | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto err; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | nritems = btrfs_header_nritems(leaf); | 
|  |  | 
|  | while (1) { | 
|  | smp_mb(); | 
|  | if (fs_info->closing > 1) { | 
|  | last = (u64)-1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (path->slots[0] < nritems) { | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  | } else { | 
|  | ret = find_next_key(path, 0, &key); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | caching_ctl->progress = last; | 
|  | btrfs_release_path(extent_root, path); | 
|  | up_read(&fs_info->extent_commit_sem); | 
|  | mutex_unlock(&caching_ctl->mutex); | 
|  | if (btrfs_transaction_in_commit(fs_info)) | 
|  | schedule_timeout(1); | 
|  | else | 
|  | cond_resched(); | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | if (key.objectid < block_group->key.objectid) { | 
|  | path->slots[0]++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (key.objectid >= block_group->key.objectid + | 
|  | block_group->key.offset) | 
|  | break; | 
|  |  | 
|  | if (key.type == BTRFS_EXTENT_ITEM_KEY) { | 
|  | total_found += add_new_free_space(block_group, | 
|  | fs_info, last, | 
|  | key.objectid); | 
|  | last = key.objectid + key.offset; | 
|  |  | 
|  | if (total_found > (1024 * 1024 * 2)) { | 
|  | total_found = 0; | 
|  | wake_up(&caching_ctl->wait); | 
|  | } | 
|  | } | 
|  | path->slots[0]++; | 
|  | } | 
|  | ret = 0; | 
|  |  | 
|  | total_found += add_new_free_space(block_group, fs_info, last, | 
|  | block_group->key.objectid + | 
|  | block_group->key.offset); | 
|  | caching_ctl->progress = (u64)-1; | 
|  |  | 
|  | spin_lock(&block_group->lock); | 
|  | block_group->caching_ctl = NULL; | 
|  | block_group->cached = BTRFS_CACHE_FINISHED; | 
|  | spin_unlock(&block_group->lock); | 
|  |  | 
|  | err: | 
|  | btrfs_free_path(path); | 
|  | up_read(&fs_info->extent_commit_sem); | 
|  |  | 
|  | free_excluded_extents(extent_root, block_group); | 
|  |  | 
|  | mutex_unlock(&caching_ctl->mutex); | 
|  | wake_up(&caching_ctl->wait); | 
|  |  | 
|  | put_caching_control(caching_ctl); | 
|  | atomic_dec(&block_group->space_info->caching_threads); | 
|  | btrfs_put_block_group(block_group); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cache_block_group(struct btrfs_block_group_cache *cache, | 
|  | struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | int load_cache_only) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = cache->fs_info; | 
|  | struct btrfs_caching_control *caching_ctl; | 
|  | struct task_struct *tsk; | 
|  | int ret = 0; | 
|  |  | 
|  | smp_mb(); | 
|  | if (cache->cached != BTRFS_CACHE_NO) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * We can't do the read from on-disk cache during a commit since we need | 
|  | * to have the normal tree locking.  Also if we are currently trying to | 
|  | * allocate blocks for the tree root we can't do the fast caching since | 
|  | * we likely hold important locks. | 
|  | */ | 
|  | if (!trans->transaction->in_commit && | 
|  | (root && root != root->fs_info->tree_root)) { | 
|  | spin_lock(&cache->lock); | 
|  | if (cache->cached != BTRFS_CACHE_NO) { | 
|  | spin_unlock(&cache->lock); | 
|  | return 0; | 
|  | } | 
|  | cache->cached = BTRFS_CACHE_STARTED; | 
|  | spin_unlock(&cache->lock); | 
|  |  | 
|  | ret = load_free_space_cache(fs_info, cache); | 
|  |  | 
|  | spin_lock(&cache->lock); | 
|  | if (ret == 1) { | 
|  | cache->cached = BTRFS_CACHE_FINISHED; | 
|  | cache->last_byte_to_unpin = (u64)-1; | 
|  | } else { | 
|  | cache->cached = BTRFS_CACHE_NO; | 
|  | } | 
|  | spin_unlock(&cache->lock); | 
|  | if (ret == 1) { | 
|  | free_excluded_extents(fs_info->extent_root, cache); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (load_cache_only) | 
|  | return 0; | 
|  |  | 
|  | caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_KERNEL); | 
|  | BUG_ON(!caching_ctl); | 
|  |  | 
|  | INIT_LIST_HEAD(&caching_ctl->list); | 
|  | mutex_init(&caching_ctl->mutex); | 
|  | init_waitqueue_head(&caching_ctl->wait); | 
|  | caching_ctl->block_group = cache; | 
|  | caching_ctl->progress = cache->key.objectid; | 
|  | /* one for caching kthread, one for caching block group list */ | 
|  | atomic_set(&caching_ctl->count, 2); | 
|  |  | 
|  | spin_lock(&cache->lock); | 
|  | if (cache->cached != BTRFS_CACHE_NO) { | 
|  | spin_unlock(&cache->lock); | 
|  | kfree(caching_ctl); | 
|  | return 0; | 
|  | } | 
|  | cache->caching_ctl = caching_ctl; | 
|  | cache->cached = BTRFS_CACHE_STARTED; | 
|  | spin_unlock(&cache->lock); | 
|  |  | 
|  | down_write(&fs_info->extent_commit_sem); | 
|  | list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); | 
|  | up_write(&fs_info->extent_commit_sem); | 
|  |  | 
|  | atomic_inc(&cache->space_info->caching_threads); | 
|  | btrfs_get_block_group(cache); | 
|  |  | 
|  | tsk = kthread_run(caching_kthread, cache, "btrfs-cache-%llu\n", | 
|  | cache->key.objectid); | 
|  | if (IS_ERR(tsk)) { | 
|  | ret = PTR_ERR(tsk); | 
|  | printk(KERN_ERR "error running thread %d\n", ret); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * return the block group that starts at or after bytenr | 
|  | */ | 
|  | static struct btrfs_block_group_cache * | 
|  | btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) | 
|  | { | 
|  | struct btrfs_block_group_cache *cache; | 
|  |  | 
|  | cache = block_group_cache_tree_search(info, bytenr, 0); | 
|  |  | 
|  | return cache; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * return the block group that contains the given bytenr | 
|  | */ | 
|  | struct btrfs_block_group_cache *btrfs_lookup_block_group( | 
|  | struct btrfs_fs_info *info, | 
|  | u64 bytenr) | 
|  | { | 
|  | struct btrfs_block_group_cache *cache; | 
|  |  | 
|  | cache = block_group_cache_tree_search(info, bytenr, 1); | 
|  |  | 
|  | return cache; | 
|  | } | 
|  |  | 
|  | static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, | 
|  | u64 flags) | 
|  | { | 
|  | struct list_head *head = &info->space_info; | 
|  | struct btrfs_space_info *found; | 
|  |  | 
|  | flags &= BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_SYSTEM | | 
|  | BTRFS_BLOCK_GROUP_METADATA; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(found, head, list) { | 
|  | if (found->flags & flags) { | 
|  | rcu_read_unlock(); | 
|  | return found; | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * after adding space to the filesystem, we need to clear the full flags | 
|  | * on all the space infos. | 
|  | */ | 
|  | void btrfs_clear_space_info_full(struct btrfs_fs_info *info) | 
|  | { | 
|  | struct list_head *head = &info->space_info; | 
|  | struct btrfs_space_info *found; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(found, head, list) | 
|  | found->full = 0; | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static u64 div_factor(u64 num, int factor) | 
|  | { | 
|  | if (factor == 10) | 
|  | return num; | 
|  | num *= factor; | 
|  | do_div(num, 10); | 
|  | return num; | 
|  | } | 
|  |  | 
|  | static u64 div_factor_fine(u64 num, int factor) | 
|  | { | 
|  | if (factor == 100) | 
|  | return num; | 
|  | num *= factor; | 
|  | do_div(num, 100); | 
|  | return num; | 
|  | } | 
|  |  | 
|  | u64 btrfs_find_block_group(struct btrfs_root *root, | 
|  | u64 search_start, u64 search_hint, int owner) | 
|  | { | 
|  | struct btrfs_block_group_cache *cache; | 
|  | u64 used; | 
|  | u64 last = max(search_hint, search_start); | 
|  | u64 group_start = 0; | 
|  | int full_search = 0; | 
|  | int factor = 9; | 
|  | int wrapped = 0; | 
|  | again: | 
|  | while (1) { | 
|  | cache = btrfs_lookup_first_block_group(root->fs_info, last); | 
|  | if (!cache) | 
|  | break; | 
|  |  | 
|  | spin_lock(&cache->lock); | 
|  | last = cache->key.objectid + cache->key.offset; | 
|  | used = btrfs_block_group_used(&cache->item); | 
|  |  | 
|  | if ((full_search || !cache->ro) && | 
|  | block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) { | 
|  | if (used + cache->pinned + cache->reserved < | 
|  | div_factor(cache->key.offset, factor)) { | 
|  | group_start = cache->key.objectid; | 
|  | spin_unlock(&cache->lock); | 
|  | btrfs_put_block_group(cache); | 
|  | goto found; | 
|  | } | 
|  | } | 
|  | spin_unlock(&cache->lock); | 
|  | btrfs_put_block_group(cache); | 
|  | cond_resched(); | 
|  | } | 
|  | if (!wrapped) { | 
|  | last = search_start; | 
|  | wrapped = 1; | 
|  | goto again; | 
|  | } | 
|  | if (!full_search && factor < 10) { | 
|  | last = search_start; | 
|  | full_search = 1; | 
|  | factor = 10; | 
|  | goto again; | 
|  | } | 
|  | found: | 
|  | return group_start; | 
|  | } | 
|  |  | 
|  | /* simple helper to search for an existing extent at a given offset */ | 
|  | int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_path *path; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | BUG_ON(!path); | 
|  | key.objectid = start; | 
|  | key.offset = len; | 
|  | btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY); | 
|  | ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, | 
|  | 0, 0); | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper function to lookup reference count and flags of extent. | 
|  | * | 
|  | * the head node for delayed ref is used to store the sum of all the | 
|  | * reference count modifications queued up in the rbtree. the head | 
|  | * node may also store the extent flags to set. This way you can check | 
|  | * to see what the reference count and extent flags would be if all of | 
|  | * the delayed refs are not processed. | 
|  | */ | 
|  | int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, u64 bytenr, | 
|  | u64 num_bytes, u64 *refs, u64 *flags) | 
|  | { | 
|  | struct btrfs_delayed_ref_head *head; | 
|  | struct btrfs_delayed_ref_root *delayed_refs; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_extent_item *ei; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_key key; | 
|  | u32 item_size; | 
|  | u64 num_refs; | 
|  | u64 extent_flags; | 
|  | int ret; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | key.objectid = bytenr; | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | key.offset = num_bytes; | 
|  | if (!trans) { | 
|  | path->skip_locking = 1; | 
|  | path->search_commit_root = 1; | 
|  | } | 
|  | again: | 
|  | ret = btrfs_search_slot(trans, root->fs_info->extent_root, | 
|  | &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto out_free; | 
|  |  | 
|  | if (ret == 0) { | 
|  | leaf = path->nodes[0]; | 
|  | item_size = btrfs_item_size_nr(leaf, path->slots[0]); | 
|  | if (item_size >= sizeof(*ei)) { | 
|  | ei = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_extent_item); | 
|  | num_refs = btrfs_extent_refs(leaf, ei); | 
|  | extent_flags = btrfs_extent_flags(leaf, ei); | 
|  | } else { | 
|  | #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 | 
|  | struct btrfs_extent_item_v0 *ei0; | 
|  | BUG_ON(item_size != sizeof(*ei0)); | 
|  | ei0 = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_extent_item_v0); | 
|  | num_refs = btrfs_extent_refs_v0(leaf, ei0); | 
|  | /* FIXME: this isn't correct for data */ | 
|  | extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; | 
|  | #else | 
|  | BUG(); | 
|  | #endif | 
|  | } | 
|  | BUG_ON(num_refs == 0); | 
|  | } else { | 
|  | num_refs = 0; | 
|  | extent_flags = 0; | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | if (!trans) | 
|  | goto out; | 
|  |  | 
|  | delayed_refs = &trans->transaction->delayed_refs; | 
|  | spin_lock(&delayed_refs->lock); | 
|  | head = btrfs_find_delayed_ref_head(trans, bytenr); | 
|  | if (head) { | 
|  | if (!mutex_trylock(&head->mutex)) { | 
|  | atomic_inc(&head->node.refs); | 
|  | spin_unlock(&delayed_refs->lock); | 
|  |  | 
|  | btrfs_release_path(root->fs_info->extent_root, path); | 
|  |  | 
|  | mutex_lock(&head->mutex); | 
|  | mutex_unlock(&head->mutex); | 
|  | btrfs_put_delayed_ref(&head->node); | 
|  | goto again; | 
|  | } | 
|  | if (head->extent_op && head->extent_op->update_flags) | 
|  | extent_flags |= head->extent_op->flags_to_set; | 
|  | else | 
|  | BUG_ON(num_refs == 0); | 
|  |  | 
|  | num_refs += head->node.ref_mod; | 
|  | mutex_unlock(&head->mutex); | 
|  | } | 
|  | spin_unlock(&delayed_refs->lock); | 
|  | out: | 
|  | WARN_ON(num_refs == 0); | 
|  | if (refs) | 
|  | *refs = num_refs; | 
|  | if (flags) | 
|  | *flags = extent_flags; | 
|  | out_free: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Back reference rules.  Back refs have three main goals: | 
|  | * | 
|  | * 1) differentiate between all holders of references to an extent so that | 
|  | *    when a reference is dropped we can make sure it was a valid reference | 
|  | *    before freeing the extent. | 
|  | * | 
|  | * 2) Provide enough information to quickly find the holders of an extent | 
|  | *    if we notice a given block is corrupted or bad. | 
|  | * | 
|  | * 3) Make it easy to migrate blocks for FS shrinking or storage pool | 
|  | *    maintenance.  This is actually the same as #2, but with a slightly | 
|  | *    different use case. | 
|  | * | 
|  | * There are two kinds of back refs. The implicit back refs is optimized | 
|  | * for pointers in non-shared tree blocks. For a given pointer in a block, | 
|  | * back refs of this kind provide information about the block's owner tree | 
|  | * and the pointer's key. These information allow us to find the block by | 
|  | * b-tree searching. The full back refs is for pointers in tree blocks not | 
|  | * referenced by their owner trees. The location of tree block is recorded | 
|  | * in the back refs. Actually the full back refs is generic, and can be | 
|  | * used in all cases the implicit back refs is used. The major shortcoming | 
|  | * of the full back refs is its overhead. Every time a tree block gets | 
|  | * COWed, we have to update back refs entry for all pointers in it. | 
|  | * | 
|  | * For a newly allocated tree block, we use implicit back refs for | 
|  | * pointers in it. This means most tree related operations only involve | 
|  | * implicit back refs. For a tree block created in old transaction, the | 
|  | * only way to drop a reference to it is COW it. So we can detect the | 
|  | * event that tree block loses its owner tree's reference and do the | 
|  | * back refs conversion. | 
|  | * | 
|  | * When a tree block is COW'd through a tree, there are four cases: | 
|  | * | 
|  | * The reference count of the block is one and the tree is the block's | 
|  | * owner tree. Nothing to do in this case. | 
|  | * | 
|  | * The reference count of the block is one and the tree is not the | 
|  | * block's owner tree. In this case, full back refs is used for pointers | 
|  | * in the block. Remove these full back refs, add implicit back refs for | 
|  | * every pointers in the new block. | 
|  | * | 
|  | * The reference count of the block is greater than one and the tree is | 
|  | * the block's owner tree. In this case, implicit back refs is used for | 
|  | * pointers in the block. Add full back refs for every pointers in the | 
|  | * block, increase lower level extents' reference counts. The original | 
|  | * implicit back refs are entailed to the new block. | 
|  | * | 
|  | * The reference count of the block is greater than one and the tree is | 
|  | * not the block's owner tree. Add implicit back refs for every pointer in | 
|  | * the new block, increase lower level extents' reference count. | 
|  | * | 
|  | * Back Reference Key composing: | 
|  | * | 
|  | * The key objectid corresponds to the first byte in the extent, | 
|  | * The key type is used to differentiate between types of back refs. | 
|  | * There are different meanings of the key offset for different types | 
|  | * of back refs. | 
|  | * | 
|  | * File extents can be referenced by: | 
|  | * | 
|  | * - multiple snapshots, subvolumes, or different generations in one subvol | 
|  | * - different files inside a single subvolume | 
|  | * - different offsets inside a file (bookend extents in file.c) | 
|  | * | 
|  | * The extent ref structure for the implicit back refs has fields for: | 
|  | * | 
|  | * - Objectid of the subvolume root | 
|  | * - objectid of the file holding the reference | 
|  | * - original offset in the file | 
|  | * - how many bookend extents | 
|  | * | 
|  | * The key offset for the implicit back refs is hash of the first | 
|  | * three fields. | 
|  | * | 
|  | * The extent ref structure for the full back refs has field for: | 
|  | * | 
|  | * - number of pointers in the tree leaf | 
|  | * | 
|  | * The key offset for the implicit back refs is the first byte of | 
|  | * the tree leaf | 
|  | * | 
|  | * When a file extent is allocated, The implicit back refs is used. | 
|  | * the fields are filled in: | 
|  | * | 
|  | *     (root_key.objectid, inode objectid, offset in file, 1) | 
|  | * | 
|  | * When a file extent is removed file truncation, we find the | 
|  | * corresponding implicit back refs and check the following fields: | 
|  | * | 
|  | *     (btrfs_header_owner(leaf), inode objectid, offset in file) | 
|  | * | 
|  | * Btree extents can be referenced by: | 
|  | * | 
|  | * - Different subvolumes | 
|  | * | 
|  | * Both the implicit back refs and the full back refs for tree blocks | 
|  | * only consist of key. The key offset for the implicit back refs is | 
|  | * objectid of block's owner tree. The key offset for the full back refs | 
|  | * is the first byte of parent block. | 
|  | * | 
|  | * When implicit back refs is used, information about the lowest key and | 
|  | * level of the tree block are required. These information are stored in | 
|  | * tree block info structure. | 
|  | */ | 
|  |  | 
|  | #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 | 
|  | static int convert_extent_item_v0(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | u64 owner, u32 extra_size) | 
|  | { | 
|  | struct btrfs_extent_item *item; | 
|  | struct btrfs_extent_item_v0 *ei0; | 
|  | struct btrfs_extent_ref_v0 *ref0; | 
|  | struct btrfs_tree_block_info *bi; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key found_key; | 
|  | u32 new_size = sizeof(*item); | 
|  | u64 refs; | 
|  | int ret; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  | ei0 = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_extent_item_v0); | 
|  | refs = btrfs_extent_refs_v0(leaf, ei0); | 
|  |  | 
|  | if (owner == (u64)-1) { | 
|  | while (1) { | 
|  | if (path->slots[0] >= btrfs_header_nritems(leaf)) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | BUG_ON(ret > 0); | 
|  | leaf = path->nodes[0]; | 
|  | } | 
|  | btrfs_item_key_to_cpu(leaf, &found_key, | 
|  | path->slots[0]); | 
|  | BUG_ON(key.objectid != found_key.objectid); | 
|  | if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { | 
|  | path->slots[0]++; | 
|  | continue; | 
|  | } | 
|  | ref0 = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_extent_ref_v0); | 
|  | owner = btrfs_ref_objectid_v0(leaf, ref0); | 
|  | break; | 
|  | } | 
|  | } | 
|  | btrfs_release_path(root, path); | 
|  |  | 
|  | if (owner < BTRFS_FIRST_FREE_OBJECTID) | 
|  | new_size += sizeof(*bi); | 
|  |  | 
|  | new_size -= sizeof(*ei0); | 
|  | ret = btrfs_search_slot(trans, root, &key, path, | 
|  | new_size + extra_size, 1); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | BUG_ON(ret); | 
|  |  | 
|  | ret = btrfs_extend_item(trans, root, path, new_size); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); | 
|  | btrfs_set_extent_refs(leaf, item, refs); | 
|  | /* FIXME: get real generation */ | 
|  | btrfs_set_extent_generation(leaf, item, 0); | 
|  | if (owner < BTRFS_FIRST_FREE_OBJECTID) { | 
|  | btrfs_set_extent_flags(leaf, item, | 
|  | BTRFS_EXTENT_FLAG_TREE_BLOCK | | 
|  | BTRFS_BLOCK_FLAG_FULL_BACKREF); | 
|  | bi = (struct btrfs_tree_block_info *)(item + 1); | 
|  | /* FIXME: get first key of the block */ | 
|  | memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); | 
|  | btrfs_set_tree_block_level(leaf, bi, (int)owner); | 
|  | } else { | 
|  | btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); | 
|  | } | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) | 
|  | { | 
|  | u32 high_crc = ~(u32)0; | 
|  | u32 low_crc = ~(u32)0; | 
|  | __le64 lenum; | 
|  |  | 
|  | lenum = cpu_to_le64(root_objectid); | 
|  | high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); | 
|  | lenum = cpu_to_le64(owner); | 
|  | low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); | 
|  | lenum = cpu_to_le64(offset); | 
|  | low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); | 
|  |  | 
|  | return ((u64)high_crc << 31) ^ (u64)low_crc; | 
|  | } | 
|  |  | 
|  | static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, | 
|  | struct btrfs_extent_data_ref *ref) | 
|  | { | 
|  | return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), | 
|  | btrfs_extent_data_ref_objectid(leaf, ref), | 
|  | btrfs_extent_data_ref_offset(leaf, ref)); | 
|  | } | 
|  |  | 
|  | static int match_extent_data_ref(struct extent_buffer *leaf, | 
|  | struct btrfs_extent_data_ref *ref, | 
|  | u64 root_objectid, u64 owner, u64 offset) | 
|  | { | 
|  | if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || | 
|  | btrfs_extent_data_ref_objectid(leaf, ref) != owner || | 
|  | btrfs_extent_data_ref_offset(leaf, ref) != offset) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | u64 bytenr, u64 parent, | 
|  | u64 root_objectid, | 
|  | u64 owner, u64 offset) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | struct btrfs_extent_data_ref *ref; | 
|  | struct extent_buffer *leaf; | 
|  | u32 nritems; | 
|  | int ret; | 
|  | int recow; | 
|  | int err = -ENOENT; | 
|  |  | 
|  | key.objectid = bytenr; | 
|  | if (parent) { | 
|  | key.type = BTRFS_SHARED_DATA_REF_KEY; | 
|  | key.offset = parent; | 
|  | } else { | 
|  | key.type = BTRFS_EXTENT_DATA_REF_KEY; | 
|  | key.offset = hash_extent_data_ref(root_objectid, | 
|  | owner, offset); | 
|  | } | 
|  | again: | 
|  | recow = 0; | 
|  | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
|  | if (ret < 0) { | 
|  | err = ret; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | if (parent) { | 
|  | if (!ret) | 
|  | return 0; | 
|  | #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 | 
|  | key.type = BTRFS_EXTENT_REF_V0_KEY; | 
|  | btrfs_release_path(root, path); | 
|  | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
|  | if (ret < 0) { | 
|  | err = ret; | 
|  | goto fail; | 
|  | } | 
|  | if (!ret) | 
|  | return 0; | 
|  | #endif | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | nritems = btrfs_header_nritems(leaf); | 
|  | while (1) { | 
|  | if (path->slots[0] >= nritems) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret < 0) | 
|  | err = ret; | 
|  | if (ret) | 
|  | goto fail; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | nritems = btrfs_header_nritems(leaf); | 
|  | recow = 1; | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  | if (key.objectid != bytenr || | 
|  | key.type != BTRFS_EXTENT_DATA_REF_KEY) | 
|  | goto fail; | 
|  |  | 
|  | ref = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_extent_data_ref); | 
|  |  | 
|  | if (match_extent_data_ref(leaf, ref, root_objectid, | 
|  | owner, offset)) { | 
|  | if (recow) { | 
|  | btrfs_release_path(root, path); | 
|  | goto again; | 
|  | } | 
|  | err = 0; | 
|  | break; | 
|  | } | 
|  | path->slots[0]++; | 
|  | } | 
|  | fail: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | u64 bytenr, u64 parent, | 
|  | u64 root_objectid, u64 owner, | 
|  | u64 offset, int refs_to_add) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | struct extent_buffer *leaf; | 
|  | u32 size; | 
|  | u32 num_refs; | 
|  | int ret; | 
|  |  | 
|  | key.objectid = bytenr; | 
|  | if (parent) { | 
|  | key.type = BTRFS_SHARED_DATA_REF_KEY; | 
|  | key.offset = parent; | 
|  | size = sizeof(struct btrfs_shared_data_ref); | 
|  | } else { | 
|  | key.type = BTRFS_EXTENT_DATA_REF_KEY; | 
|  | key.offset = hash_extent_data_ref(root_objectid, | 
|  | owner, offset); | 
|  | size = sizeof(struct btrfs_extent_data_ref); | 
|  | } | 
|  |  | 
|  | ret = btrfs_insert_empty_item(trans, root, path, &key, size); | 
|  | if (ret && ret != -EEXIST) | 
|  | goto fail; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | if (parent) { | 
|  | struct btrfs_shared_data_ref *ref; | 
|  | ref = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_shared_data_ref); | 
|  | if (ret == 0) { | 
|  | btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); | 
|  | } else { | 
|  | num_refs = btrfs_shared_data_ref_count(leaf, ref); | 
|  | num_refs += refs_to_add; | 
|  | btrfs_set_shared_data_ref_count(leaf, ref, num_refs); | 
|  | } | 
|  | } else { | 
|  | struct btrfs_extent_data_ref *ref; | 
|  | while (ret == -EEXIST) { | 
|  | ref = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_extent_data_ref); | 
|  | if (match_extent_data_ref(leaf, ref, root_objectid, | 
|  | owner, offset)) | 
|  | break; | 
|  | btrfs_release_path(root, path); | 
|  | key.offset++; | 
|  | ret = btrfs_insert_empty_item(trans, root, path, &key, | 
|  | size); | 
|  | if (ret && ret != -EEXIST) | 
|  | goto fail; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | } | 
|  | ref = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_extent_data_ref); | 
|  | if (ret == 0) { | 
|  | btrfs_set_extent_data_ref_root(leaf, ref, | 
|  | root_objectid); | 
|  | btrfs_set_extent_data_ref_objectid(leaf, ref, owner); | 
|  | btrfs_set_extent_data_ref_offset(leaf, ref, offset); | 
|  | btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); | 
|  | } else { | 
|  | num_refs = btrfs_extent_data_ref_count(leaf, ref); | 
|  | num_refs += refs_to_add; | 
|  | btrfs_set_extent_data_ref_count(leaf, ref, num_refs); | 
|  | } | 
|  | } | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | ret = 0; | 
|  | fail: | 
|  | btrfs_release_path(root, path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | int refs_to_drop) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | struct btrfs_extent_data_ref *ref1 = NULL; | 
|  | struct btrfs_shared_data_ref *ref2 = NULL; | 
|  | struct extent_buffer *leaf; | 
|  | u32 num_refs = 0; | 
|  | int ret = 0; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  |  | 
|  | if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { | 
|  | ref1 = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_extent_data_ref); | 
|  | num_refs = btrfs_extent_data_ref_count(leaf, ref1); | 
|  | } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { | 
|  | ref2 = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_shared_data_ref); | 
|  | num_refs = btrfs_shared_data_ref_count(leaf, ref2); | 
|  | #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 | 
|  | } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { | 
|  | struct btrfs_extent_ref_v0 *ref0; | 
|  | ref0 = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_extent_ref_v0); | 
|  | num_refs = btrfs_ref_count_v0(leaf, ref0); | 
|  | #endif | 
|  | } else { | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | BUG_ON(num_refs < refs_to_drop); | 
|  | num_refs -= refs_to_drop; | 
|  |  | 
|  | if (num_refs == 0) { | 
|  | ret = btrfs_del_item(trans, root, path); | 
|  | } else { | 
|  | if (key.type == BTRFS_EXTENT_DATA_REF_KEY) | 
|  | btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); | 
|  | else if (key.type == BTRFS_SHARED_DATA_REF_KEY) | 
|  | btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); | 
|  | #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 | 
|  | else { | 
|  | struct btrfs_extent_ref_v0 *ref0; | 
|  | ref0 = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_extent_ref_v0); | 
|  | btrfs_set_ref_count_v0(leaf, ref0, num_refs); | 
|  | } | 
|  | #endif | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline u32 extent_data_ref_count(struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_extent_inline_ref *iref) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_extent_data_ref *ref1; | 
|  | struct btrfs_shared_data_ref *ref2; | 
|  | u32 num_refs = 0; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  | if (iref) { | 
|  | if (btrfs_extent_inline_ref_type(leaf, iref) == | 
|  | BTRFS_EXTENT_DATA_REF_KEY) { | 
|  | ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); | 
|  | num_refs = btrfs_extent_data_ref_count(leaf, ref1); | 
|  | } else { | 
|  | ref2 = (struct btrfs_shared_data_ref *)(iref + 1); | 
|  | num_refs = btrfs_shared_data_ref_count(leaf, ref2); | 
|  | } | 
|  | } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { | 
|  | ref1 = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_extent_data_ref); | 
|  | num_refs = btrfs_extent_data_ref_count(leaf, ref1); | 
|  | } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { | 
|  | ref2 = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_shared_data_ref); | 
|  | num_refs = btrfs_shared_data_ref_count(leaf, ref2); | 
|  | #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 | 
|  | } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { | 
|  | struct btrfs_extent_ref_v0 *ref0; | 
|  | ref0 = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_extent_ref_v0); | 
|  | num_refs = btrfs_ref_count_v0(leaf, ref0); | 
|  | #endif | 
|  | } else { | 
|  | WARN_ON(1); | 
|  | } | 
|  | return num_refs; | 
|  | } | 
|  |  | 
|  | static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | u64 bytenr, u64 parent, | 
|  | u64 root_objectid) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | int ret; | 
|  |  | 
|  | key.objectid = bytenr; | 
|  | if (parent) { | 
|  | key.type = BTRFS_SHARED_BLOCK_REF_KEY; | 
|  | key.offset = parent; | 
|  | } else { | 
|  | key.type = BTRFS_TREE_BLOCK_REF_KEY; | 
|  | key.offset = root_objectid; | 
|  | } | 
|  |  | 
|  | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
|  | if (ret > 0) | 
|  | ret = -ENOENT; | 
|  | #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 | 
|  | if (ret == -ENOENT && parent) { | 
|  | btrfs_release_path(root, path); | 
|  | key.type = BTRFS_EXTENT_REF_V0_KEY; | 
|  | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
|  | if (ret > 0) | 
|  | ret = -ENOENT; | 
|  | } | 
|  | #endif | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | u64 bytenr, u64 parent, | 
|  | u64 root_objectid) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | int ret; | 
|  |  | 
|  | key.objectid = bytenr; | 
|  | if (parent) { | 
|  | key.type = BTRFS_SHARED_BLOCK_REF_KEY; | 
|  | key.offset = parent; | 
|  | } else { | 
|  | key.type = BTRFS_TREE_BLOCK_REF_KEY; | 
|  | key.offset = root_objectid; | 
|  | } | 
|  |  | 
|  | ret = btrfs_insert_empty_item(trans, root, path, &key, 0); | 
|  | btrfs_release_path(root, path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline int extent_ref_type(u64 parent, u64 owner) | 
|  | { | 
|  | int type; | 
|  | if (owner < BTRFS_FIRST_FREE_OBJECTID) { | 
|  | if (parent > 0) | 
|  | type = BTRFS_SHARED_BLOCK_REF_KEY; | 
|  | else | 
|  | type = BTRFS_TREE_BLOCK_REF_KEY; | 
|  | } else { | 
|  | if (parent > 0) | 
|  | type = BTRFS_SHARED_DATA_REF_KEY; | 
|  | else | 
|  | type = BTRFS_EXTENT_DATA_REF_KEY; | 
|  | } | 
|  | return type; | 
|  | } | 
|  |  | 
|  | static int find_next_key(struct btrfs_path *path, int level, | 
|  | struct btrfs_key *key) | 
|  |  | 
|  | { | 
|  | for (; level < BTRFS_MAX_LEVEL; level++) { | 
|  | if (!path->nodes[level]) | 
|  | break; | 
|  | if (path->slots[level] + 1 >= | 
|  | btrfs_header_nritems(path->nodes[level])) | 
|  | continue; | 
|  | if (level == 0) | 
|  | btrfs_item_key_to_cpu(path->nodes[level], key, | 
|  | path->slots[level] + 1); | 
|  | else | 
|  | btrfs_node_key_to_cpu(path->nodes[level], key, | 
|  | path->slots[level] + 1); | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * look for inline back ref. if back ref is found, *ref_ret is set | 
|  | * to the address of inline back ref, and 0 is returned. | 
|  | * | 
|  | * if back ref isn't found, *ref_ret is set to the address where it | 
|  | * should be inserted, and -ENOENT is returned. | 
|  | * | 
|  | * if insert is true and there are too many inline back refs, the path | 
|  | * points to the extent item, and -EAGAIN is returned. | 
|  | * | 
|  | * NOTE: inline back refs are ordered in the same way that back ref | 
|  | *	 items in the tree are ordered. | 
|  | */ | 
|  | static noinline_for_stack | 
|  | int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_extent_inline_ref **ref_ret, | 
|  | u64 bytenr, u64 num_bytes, | 
|  | u64 parent, u64 root_objectid, | 
|  | u64 owner, u64 offset, int insert) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_extent_item *ei; | 
|  | struct btrfs_extent_inline_ref *iref; | 
|  | u64 flags; | 
|  | u64 item_size; | 
|  | unsigned long ptr; | 
|  | unsigned long end; | 
|  | int extra_size; | 
|  | int type; | 
|  | int want; | 
|  | int ret; | 
|  | int err = 0; | 
|  |  | 
|  | key.objectid = bytenr; | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | key.offset = num_bytes; | 
|  |  | 
|  | want = extent_ref_type(parent, owner); | 
|  | if (insert) { | 
|  | extra_size = btrfs_extent_inline_ref_size(want); | 
|  | path->keep_locks = 1; | 
|  | } else | 
|  | extra_size = -1; | 
|  | ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); | 
|  | if (ret < 0) { | 
|  | err = ret; | 
|  | goto out; | 
|  | } | 
|  | BUG_ON(ret); | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | item_size = btrfs_item_size_nr(leaf, path->slots[0]); | 
|  | #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 | 
|  | if (item_size < sizeof(*ei)) { | 
|  | if (!insert) { | 
|  | err = -ENOENT; | 
|  | goto out; | 
|  | } | 
|  | ret = convert_extent_item_v0(trans, root, path, owner, | 
|  | extra_size); | 
|  | if (ret < 0) { | 
|  | err = ret; | 
|  | goto out; | 
|  | } | 
|  | leaf = path->nodes[0]; | 
|  | item_size = btrfs_item_size_nr(leaf, path->slots[0]); | 
|  | } | 
|  | #endif | 
|  | BUG_ON(item_size < sizeof(*ei)); | 
|  |  | 
|  | ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); | 
|  | flags = btrfs_extent_flags(leaf, ei); | 
|  |  | 
|  | ptr = (unsigned long)(ei + 1); | 
|  | end = (unsigned long)ei + item_size; | 
|  |  | 
|  | if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { | 
|  | ptr += sizeof(struct btrfs_tree_block_info); | 
|  | BUG_ON(ptr > end); | 
|  | } else { | 
|  | BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); | 
|  | } | 
|  |  | 
|  | err = -ENOENT; | 
|  | while (1) { | 
|  | if (ptr >= end) { | 
|  | WARN_ON(ptr > end); | 
|  | break; | 
|  | } | 
|  | iref = (struct btrfs_extent_inline_ref *)ptr; | 
|  | type = btrfs_extent_inline_ref_type(leaf, iref); | 
|  | if (want < type) | 
|  | break; | 
|  | if (want > type) { | 
|  | ptr += btrfs_extent_inline_ref_size(type); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (type == BTRFS_EXTENT_DATA_REF_KEY) { | 
|  | struct btrfs_extent_data_ref *dref; | 
|  | dref = (struct btrfs_extent_data_ref *)(&iref->offset); | 
|  | if (match_extent_data_ref(leaf, dref, root_objectid, | 
|  | owner, offset)) { | 
|  | err = 0; | 
|  | break; | 
|  | } | 
|  | if (hash_extent_data_ref_item(leaf, dref) < | 
|  | hash_extent_data_ref(root_objectid, owner, offset)) | 
|  | break; | 
|  | } else { | 
|  | u64 ref_offset; | 
|  | ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); | 
|  | if (parent > 0) { | 
|  | if (parent == ref_offset) { | 
|  | err = 0; | 
|  | break; | 
|  | } | 
|  | if (ref_offset < parent) | 
|  | break; | 
|  | } else { | 
|  | if (root_objectid == ref_offset) { | 
|  | err = 0; | 
|  | break; | 
|  | } | 
|  | if (ref_offset < root_objectid) | 
|  | break; | 
|  | } | 
|  | } | 
|  | ptr += btrfs_extent_inline_ref_size(type); | 
|  | } | 
|  | if (err == -ENOENT && insert) { | 
|  | if (item_size + extra_size >= | 
|  | BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { | 
|  | err = -EAGAIN; | 
|  | goto out; | 
|  | } | 
|  | /* | 
|  | * To add new inline back ref, we have to make sure | 
|  | * there is no corresponding back ref item. | 
|  | * For simplicity, we just do not add new inline back | 
|  | * ref if there is any kind of item for this block | 
|  | */ | 
|  | if (find_next_key(path, 0, &key) == 0 && | 
|  | key.objectid == bytenr && | 
|  | key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { | 
|  | err = -EAGAIN; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | *ref_ret = (struct btrfs_extent_inline_ref *)ptr; | 
|  | out: | 
|  | if (insert) { | 
|  | path->keep_locks = 0; | 
|  | btrfs_unlock_up_safe(path, 1); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to add new inline back ref | 
|  | */ | 
|  | static noinline_for_stack | 
|  | int setup_inline_extent_backref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_extent_inline_ref *iref, | 
|  | u64 parent, u64 root_objectid, | 
|  | u64 owner, u64 offset, int refs_to_add, | 
|  | struct btrfs_delayed_extent_op *extent_op) | 
|  | { | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_extent_item *ei; | 
|  | unsigned long ptr; | 
|  | unsigned long end; | 
|  | unsigned long item_offset; | 
|  | u64 refs; | 
|  | int size; | 
|  | int type; | 
|  | int ret; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); | 
|  | item_offset = (unsigned long)iref - (unsigned long)ei; | 
|  |  | 
|  | type = extent_ref_type(parent, owner); | 
|  | size = btrfs_extent_inline_ref_size(type); | 
|  |  | 
|  | ret = btrfs_extend_item(trans, root, path, size); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); | 
|  | refs = btrfs_extent_refs(leaf, ei); | 
|  | refs += refs_to_add; | 
|  | btrfs_set_extent_refs(leaf, ei, refs); | 
|  | if (extent_op) | 
|  | __run_delayed_extent_op(extent_op, leaf, ei); | 
|  |  | 
|  | ptr = (unsigned long)ei + item_offset; | 
|  | end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); | 
|  | if (ptr < end - size) | 
|  | memmove_extent_buffer(leaf, ptr + size, ptr, | 
|  | end - size - ptr); | 
|  |  | 
|  | iref = (struct btrfs_extent_inline_ref *)ptr; | 
|  | btrfs_set_extent_inline_ref_type(leaf, iref, type); | 
|  | if (type == BTRFS_EXTENT_DATA_REF_KEY) { | 
|  | struct btrfs_extent_data_ref *dref; | 
|  | dref = (struct btrfs_extent_data_ref *)(&iref->offset); | 
|  | btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); | 
|  | btrfs_set_extent_data_ref_objectid(leaf, dref, owner); | 
|  | btrfs_set_extent_data_ref_offset(leaf, dref, offset); | 
|  | btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); | 
|  | } else if (type == BTRFS_SHARED_DATA_REF_KEY) { | 
|  | struct btrfs_shared_data_ref *sref; | 
|  | sref = (struct btrfs_shared_data_ref *)(iref + 1); | 
|  | btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); | 
|  | btrfs_set_extent_inline_ref_offset(leaf, iref, parent); | 
|  | } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { | 
|  | btrfs_set_extent_inline_ref_offset(leaf, iref, parent); | 
|  | } else { | 
|  | btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); | 
|  | } | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int lookup_extent_backref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_extent_inline_ref **ref_ret, | 
|  | u64 bytenr, u64 num_bytes, u64 parent, | 
|  | u64 root_objectid, u64 owner, u64 offset) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = lookup_inline_extent_backref(trans, root, path, ref_ret, | 
|  | bytenr, num_bytes, parent, | 
|  | root_objectid, owner, offset, 0); | 
|  | if (ret != -ENOENT) | 
|  | return ret; | 
|  |  | 
|  | btrfs_release_path(root, path); | 
|  | *ref_ret = NULL; | 
|  |  | 
|  | if (owner < BTRFS_FIRST_FREE_OBJECTID) { | 
|  | ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, | 
|  | root_objectid); | 
|  | } else { | 
|  | ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, | 
|  | root_objectid, owner, offset); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to update/remove inline back ref | 
|  | */ | 
|  | static noinline_for_stack | 
|  | int update_inline_extent_backref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_extent_inline_ref *iref, | 
|  | int refs_to_mod, | 
|  | struct btrfs_delayed_extent_op *extent_op) | 
|  | { | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_extent_item *ei; | 
|  | struct btrfs_extent_data_ref *dref = NULL; | 
|  | struct btrfs_shared_data_ref *sref = NULL; | 
|  | unsigned long ptr; | 
|  | unsigned long end; | 
|  | u32 item_size; | 
|  | int size; | 
|  | int type; | 
|  | int ret; | 
|  | u64 refs; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); | 
|  | refs = btrfs_extent_refs(leaf, ei); | 
|  | WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); | 
|  | refs += refs_to_mod; | 
|  | btrfs_set_extent_refs(leaf, ei, refs); | 
|  | if (extent_op) | 
|  | __run_delayed_extent_op(extent_op, leaf, ei); | 
|  |  | 
|  | type = btrfs_extent_inline_ref_type(leaf, iref); | 
|  |  | 
|  | if (type == BTRFS_EXTENT_DATA_REF_KEY) { | 
|  | dref = (struct btrfs_extent_data_ref *)(&iref->offset); | 
|  | refs = btrfs_extent_data_ref_count(leaf, dref); | 
|  | } else if (type == BTRFS_SHARED_DATA_REF_KEY) { | 
|  | sref = (struct btrfs_shared_data_ref *)(iref + 1); | 
|  | refs = btrfs_shared_data_ref_count(leaf, sref); | 
|  | } else { | 
|  | refs = 1; | 
|  | BUG_ON(refs_to_mod != -1); | 
|  | } | 
|  |  | 
|  | BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); | 
|  | refs += refs_to_mod; | 
|  |  | 
|  | if (refs > 0) { | 
|  | if (type == BTRFS_EXTENT_DATA_REF_KEY) | 
|  | btrfs_set_extent_data_ref_count(leaf, dref, refs); | 
|  | else | 
|  | btrfs_set_shared_data_ref_count(leaf, sref, refs); | 
|  | } else { | 
|  | size =  btrfs_extent_inline_ref_size(type); | 
|  | item_size = btrfs_item_size_nr(leaf, path->slots[0]); | 
|  | ptr = (unsigned long)iref; | 
|  | end = (unsigned long)ei + item_size; | 
|  | if (ptr + size < end) | 
|  | memmove_extent_buffer(leaf, ptr, ptr + size, | 
|  | end - ptr - size); | 
|  | item_size -= size; | 
|  | ret = btrfs_truncate_item(trans, root, path, item_size, 1); | 
|  | BUG_ON(ret); | 
|  | } | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static noinline_for_stack | 
|  | int insert_inline_extent_backref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | u64 bytenr, u64 num_bytes, u64 parent, | 
|  | u64 root_objectid, u64 owner, | 
|  | u64 offset, int refs_to_add, | 
|  | struct btrfs_delayed_extent_op *extent_op) | 
|  | { | 
|  | struct btrfs_extent_inline_ref *iref; | 
|  | int ret; | 
|  |  | 
|  | ret = lookup_inline_extent_backref(trans, root, path, &iref, | 
|  | bytenr, num_bytes, parent, | 
|  | root_objectid, owner, offset, 1); | 
|  | if (ret == 0) { | 
|  | BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); | 
|  | ret = update_inline_extent_backref(trans, root, path, iref, | 
|  | refs_to_add, extent_op); | 
|  | } else if (ret == -ENOENT) { | 
|  | ret = setup_inline_extent_backref(trans, root, path, iref, | 
|  | parent, root_objectid, | 
|  | owner, offset, refs_to_add, | 
|  | extent_op); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int insert_extent_backref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | u64 bytenr, u64 parent, u64 root_objectid, | 
|  | u64 owner, u64 offset, int refs_to_add) | 
|  | { | 
|  | int ret; | 
|  | if (owner < BTRFS_FIRST_FREE_OBJECTID) { | 
|  | BUG_ON(refs_to_add != 1); | 
|  | ret = insert_tree_block_ref(trans, root, path, bytenr, | 
|  | parent, root_objectid); | 
|  | } else { | 
|  | ret = insert_extent_data_ref(trans, root, path, bytenr, | 
|  | parent, root_objectid, | 
|  | owner, offset, refs_to_add); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int remove_extent_backref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_extent_inline_ref *iref, | 
|  | int refs_to_drop, int is_data) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | BUG_ON(!is_data && refs_to_drop != 1); | 
|  | if (iref) { | 
|  | ret = update_inline_extent_backref(trans, root, path, iref, | 
|  | -refs_to_drop, NULL); | 
|  | } else if (is_data) { | 
|  | ret = remove_extent_data_ref(trans, root, path, refs_to_drop); | 
|  | } else { | 
|  | ret = btrfs_del_item(trans, root, path); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void btrfs_issue_discard(struct block_device *bdev, | 
|  | u64 start, u64 len) | 
|  | { | 
|  | blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_KERNEL, 0); | 
|  | } | 
|  |  | 
|  | static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, | 
|  | u64 num_bytes) | 
|  | { | 
|  | int ret; | 
|  | u64 map_length = num_bytes; | 
|  | struct btrfs_multi_bio *multi = NULL; | 
|  |  | 
|  | if (!btrfs_test_opt(root, DISCARD)) | 
|  | return 0; | 
|  |  | 
|  | /* Tell the block device(s) that the sectors can be discarded */ | 
|  | ret = btrfs_map_block(&root->fs_info->mapping_tree, READ, | 
|  | bytenr, &map_length, &multi, 0); | 
|  | if (!ret) { | 
|  | struct btrfs_bio_stripe *stripe = multi->stripes; | 
|  | int i; | 
|  |  | 
|  | if (map_length > num_bytes) | 
|  | map_length = num_bytes; | 
|  |  | 
|  | for (i = 0; i < multi->num_stripes; i++, stripe++) { | 
|  | btrfs_issue_discard(stripe->dev->bdev, | 
|  | stripe->physical, | 
|  | map_length); | 
|  | } | 
|  | kfree(multi); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | u64 bytenr, u64 num_bytes, u64 parent, | 
|  | u64 root_objectid, u64 owner, u64 offset) | 
|  | { | 
|  | int ret; | 
|  | BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && | 
|  | root_objectid == BTRFS_TREE_LOG_OBJECTID); | 
|  |  | 
|  | if (owner < BTRFS_FIRST_FREE_OBJECTID) { | 
|  | ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes, | 
|  | parent, root_objectid, (int)owner, | 
|  | BTRFS_ADD_DELAYED_REF, NULL); | 
|  | } else { | 
|  | ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes, | 
|  | parent, root_objectid, owner, offset, | 
|  | BTRFS_ADD_DELAYED_REF, NULL); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | u64 bytenr, u64 num_bytes, | 
|  | u64 parent, u64 root_objectid, | 
|  | u64 owner, u64 offset, int refs_to_add, | 
|  | struct btrfs_delayed_extent_op *extent_op) | 
|  | { | 
|  | struct btrfs_path *path; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_extent_item *item; | 
|  | u64 refs; | 
|  | int ret; | 
|  | int err = 0; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | path->reada = 1; | 
|  | path->leave_spinning = 1; | 
|  | /* this will setup the path even if it fails to insert the back ref */ | 
|  | ret = insert_inline_extent_backref(trans, root->fs_info->extent_root, | 
|  | path, bytenr, num_bytes, parent, | 
|  | root_objectid, owner, offset, | 
|  | refs_to_add, extent_op); | 
|  | if (ret == 0) | 
|  | goto out; | 
|  |  | 
|  | if (ret != -EAGAIN) { | 
|  | err = ret; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); | 
|  | refs = btrfs_extent_refs(leaf, item); | 
|  | btrfs_set_extent_refs(leaf, item, refs + refs_to_add); | 
|  | if (extent_op) | 
|  | __run_delayed_extent_op(extent_op, leaf, item); | 
|  |  | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | btrfs_release_path(root->fs_info->extent_root, path); | 
|  |  | 
|  | path->reada = 1; | 
|  | path->leave_spinning = 1; | 
|  |  | 
|  | /* now insert the actual backref */ | 
|  | ret = insert_extent_backref(trans, root->fs_info->extent_root, | 
|  | path, bytenr, parent, root_objectid, | 
|  | owner, offset, refs_to_add); | 
|  | BUG_ON(ret); | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int run_delayed_data_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_delayed_ref_node *node, | 
|  | struct btrfs_delayed_extent_op *extent_op, | 
|  | int insert_reserved) | 
|  | { | 
|  | int ret = 0; | 
|  | struct btrfs_delayed_data_ref *ref; | 
|  | struct btrfs_key ins; | 
|  | u64 parent = 0; | 
|  | u64 ref_root = 0; | 
|  | u64 flags = 0; | 
|  |  | 
|  | ins.objectid = node->bytenr; | 
|  | ins.offset = node->num_bytes; | 
|  | ins.type = BTRFS_EXTENT_ITEM_KEY; | 
|  |  | 
|  | ref = btrfs_delayed_node_to_data_ref(node); | 
|  | if (node->type == BTRFS_SHARED_DATA_REF_KEY) | 
|  | parent = ref->parent; | 
|  | else | 
|  | ref_root = ref->root; | 
|  |  | 
|  | if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { | 
|  | if (extent_op) { | 
|  | BUG_ON(extent_op->update_key); | 
|  | flags |= extent_op->flags_to_set; | 
|  | } | 
|  | ret = alloc_reserved_file_extent(trans, root, | 
|  | parent, ref_root, flags, | 
|  | ref->objectid, ref->offset, | 
|  | &ins, node->ref_mod); | 
|  | } else if (node->action == BTRFS_ADD_DELAYED_REF) { | 
|  | ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, | 
|  | node->num_bytes, parent, | 
|  | ref_root, ref->objectid, | 
|  | ref->offset, node->ref_mod, | 
|  | extent_op); | 
|  | } else if (node->action == BTRFS_DROP_DELAYED_REF) { | 
|  | ret = __btrfs_free_extent(trans, root, node->bytenr, | 
|  | node->num_bytes, parent, | 
|  | ref_root, ref->objectid, | 
|  | ref->offset, node->ref_mod, | 
|  | extent_op); | 
|  | } else { | 
|  | BUG(); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, | 
|  | struct extent_buffer *leaf, | 
|  | struct btrfs_extent_item *ei) | 
|  | { | 
|  | u64 flags = btrfs_extent_flags(leaf, ei); | 
|  | if (extent_op->update_flags) { | 
|  | flags |= extent_op->flags_to_set; | 
|  | btrfs_set_extent_flags(leaf, ei, flags); | 
|  | } | 
|  |  | 
|  | if (extent_op->update_key) { | 
|  | struct btrfs_tree_block_info *bi; | 
|  | BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); | 
|  | bi = (struct btrfs_tree_block_info *)(ei + 1); | 
|  | btrfs_set_tree_block_key(leaf, bi, &extent_op->key); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int run_delayed_extent_op(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_delayed_ref_node *node, | 
|  | struct btrfs_delayed_extent_op *extent_op) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_extent_item *ei; | 
|  | struct extent_buffer *leaf; | 
|  | u32 item_size; | 
|  | int ret; | 
|  | int err = 0; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | key.objectid = node->bytenr; | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | key.offset = node->num_bytes; | 
|  |  | 
|  | path->reada = 1; | 
|  | path->leave_spinning = 1; | 
|  | ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, | 
|  | path, 0, 1); | 
|  | if (ret < 0) { | 
|  | err = ret; | 
|  | goto out; | 
|  | } | 
|  | if (ret > 0) { | 
|  | err = -EIO; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | item_size = btrfs_item_size_nr(leaf, path->slots[0]); | 
|  | #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 | 
|  | if (item_size < sizeof(*ei)) { | 
|  | ret = convert_extent_item_v0(trans, root->fs_info->extent_root, | 
|  | path, (u64)-1, 0); | 
|  | if (ret < 0) { | 
|  | err = ret; | 
|  | goto out; | 
|  | } | 
|  | leaf = path->nodes[0]; | 
|  | item_size = btrfs_item_size_nr(leaf, path->slots[0]); | 
|  | } | 
|  | #endif | 
|  | BUG_ON(item_size < sizeof(*ei)); | 
|  | ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); | 
|  | __run_delayed_extent_op(extent_op, leaf, ei); | 
|  |  | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_delayed_ref_node *node, | 
|  | struct btrfs_delayed_extent_op *extent_op, | 
|  | int insert_reserved) | 
|  | { | 
|  | int ret = 0; | 
|  | struct btrfs_delayed_tree_ref *ref; | 
|  | struct btrfs_key ins; | 
|  | u64 parent = 0; | 
|  | u64 ref_root = 0; | 
|  |  | 
|  | ins.objectid = node->bytenr; | 
|  | ins.offset = node->num_bytes; | 
|  | ins.type = BTRFS_EXTENT_ITEM_KEY; | 
|  |  | 
|  | ref = btrfs_delayed_node_to_tree_ref(node); | 
|  | if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) | 
|  | parent = ref->parent; | 
|  | else | 
|  | ref_root = ref->root; | 
|  |  | 
|  | BUG_ON(node->ref_mod != 1); | 
|  | if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { | 
|  | BUG_ON(!extent_op || !extent_op->update_flags || | 
|  | !extent_op->update_key); | 
|  | ret = alloc_reserved_tree_block(trans, root, | 
|  | parent, ref_root, | 
|  | extent_op->flags_to_set, | 
|  | &extent_op->key, | 
|  | ref->level, &ins); | 
|  | } else if (node->action == BTRFS_ADD_DELAYED_REF) { | 
|  | ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, | 
|  | node->num_bytes, parent, ref_root, | 
|  | ref->level, 0, 1, extent_op); | 
|  | } else if (node->action == BTRFS_DROP_DELAYED_REF) { | 
|  | ret = __btrfs_free_extent(trans, root, node->bytenr, | 
|  | node->num_bytes, parent, ref_root, | 
|  | ref->level, 0, 1, extent_op); | 
|  | } else { | 
|  | BUG(); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* helper function to actually process a single delayed ref entry */ | 
|  | static int run_one_delayed_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_delayed_ref_node *node, | 
|  | struct btrfs_delayed_extent_op *extent_op, | 
|  | int insert_reserved) | 
|  | { | 
|  | int ret; | 
|  | if (btrfs_delayed_ref_is_head(node)) { | 
|  | struct btrfs_delayed_ref_head *head; | 
|  | /* | 
|  | * we've hit the end of the chain and we were supposed | 
|  | * to insert this extent into the tree.  But, it got | 
|  | * deleted before we ever needed to insert it, so all | 
|  | * we have to do is clean up the accounting | 
|  | */ | 
|  | BUG_ON(extent_op); | 
|  | head = btrfs_delayed_node_to_head(node); | 
|  | if (insert_reserved) { | 
|  | btrfs_pin_extent(root, node->bytenr, | 
|  | node->num_bytes, 1); | 
|  | if (head->is_data) { | 
|  | ret = btrfs_del_csums(trans, root, | 
|  | node->bytenr, | 
|  | node->num_bytes); | 
|  | BUG_ON(ret); | 
|  | } | 
|  | } | 
|  | mutex_unlock(&head->mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (node->type == BTRFS_TREE_BLOCK_REF_KEY || | 
|  | node->type == BTRFS_SHARED_BLOCK_REF_KEY) | 
|  | ret = run_delayed_tree_ref(trans, root, node, extent_op, | 
|  | insert_reserved); | 
|  | else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || | 
|  | node->type == BTRFS_SHARED_DATA_REF_KEY) | 
|  | ret = run_delayed_data_ref(trans, root, node, extent_op, | 
|  | insert_reserved); | 
|  | else | 
|  | BUG(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline struct btrfs_delayed_ref_node * | 
|  | select_delayed_ref(struct btrfs_delayed_ref_head *head) | 
|  | { | 
|  | struct rb_node *node; | 
|  | struct btrfs_delayed_ref_node *ref; | 
|  | int action = BTRFS_ADD_DELAYED_REF; | 
|  | again: | 
|  | /* | 
|  | * select delayed ref of type BTRFS_ADD_DELAYED_REF first. | 
|  | * this prevents ref count from going down to zero when | 
|  | * there still are pending delayed ref. | 
|  | */ | 
|  | node = rb_prev(&head->node.rb_node); | 
|  | while (1) { | 
|  | if (!node) | 
|  | break; | 
|  | ref = rb_entry(node, struct btrfs_delayed_ref_node, | 
|  | rb_node); | 
|  | if (ref->bytenr != head->node.bytenr) | 
|  | break; | 
|  | if (ref->action == action) | 
|  | return ref; | 
|  | node = rb_prev(node); | 
|  | } | 
|  | if (action == BTRFS_ADD_DELAYED_REF) { | 
|  | action = BTRFS_DROP_DELAYED_REF; | 
|  | goto again; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static noinline int run_clustered_refs(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct list_head *cluster) | 
|  | { | 
|  | struct btrfs_delayed_ref_root *delayed_refs; | 
|  | struct btrfs_delayed_ref_node *ref; | 
|  | struct btrfs_delayed_ref_head *locked_ref = NULL; | 
|  | struct btrfs_delayed_extent_op *extent_op; | 
|  | int ret; | 
|  | int count = 0; | 
|  | int must_insert_reserved = 0; | 
|  |  | 
|  | delayed_refs = &trans->transaction->delayed_refs; | 
|  | while (1) { | 
|  | if (!locked_ref) { | 
|  | /* pick a new head ref from the cluster list */ | 
|  | if (list_empty(cluster)) | 
|  | break; | 
|  |  | 
|  | locked_ref = list_entry(cluster->next, | 
|  | struct btrfs_delayed_ref_head, cluster); | 
|  |  | 
|  | /* grab the lock that says we are going to process | 
|  | * all the refs for this head */ | 
|  | ret = btrfs_delayed_ref_lock(trans, locked_ref); | 
|  |  | 
|  | /* | 
|  | * we may have dropped the spin lock to get the head | 
|  | * mutex lock, and that might have given someone else | 
|  | * time to free the head.  If that's true, it has been | 
|  | * removed from our list and we can move on. | 
|  | */ | 
|  | if (ret == -EAGAIN) { | 
|  | locked_ref = NULL; | 
|  | count++; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * record the must insert reserved flag before we | 
|  | * drop the spin lock. | 
|  | */ | 
|  | must_insert_reserved = locked_ref->must_insert_reserved; | 
|  | locked_ref->must_insert_reserved = 0; | 
|  |  | 
|  | extent_op = locked_ref->extent_op; | 
|  | locked_ref->extent_op = NULL; | 
|  |  | 
|  | /* | 
|  | * locked_ref is the head node, so we have to go one | 
|  | * node back for any delayed ref updates | 
|  | */ | 
|  | ref = select_delayed_ref(locked_ref); | 
|  | if (!ref) { | 
|  | /* All delayed refs have been processed, Go ahead | 
|  | * and send the head node to run_one_delayed_ref, | 
|  | * so that any accounting fixes can happen | 
|  | */ | 
|  | ref = &locked_ref->node; | 
|  |  | 
|  | if (extent_op && must_insert_reserved) { | 
|  | kfree(extent_op); | 
|  | extent_op = NULL; | 
|  | } | 
|  |  | 
|  | if (extent_op) { | 
|  | spin_unlock(&delayed_refs->lock); | 
|  |  | 
|  | ret = run_delayed_extent_op(trans, root, | 
|  | ref, extent_op); | 
|  | BUG_ON(ret); | 
|  | kfree(extent_op); | 
|  |  | 
|  | cond_resched(); | 
|  | spin_lock(&delayed_refs->lock); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | list_del_init(&locked_ref->cluster); | 
|  | locked_ref = NULL; | 
|  | } | 
|  |  | 
|  | ref->in_tree = 0; | 
|  | rb_erase(&ref->rb_node, &delayed_refs->root); | 
|  | delayed_refs->num_entries--; | 
|  |  | 
|  | spin_unlock(&delayed_refs->lock); | 
|  |  | 
|  | ret = run_one_delayed_ref(trans, root, ref, extent_op, | 
|  | must_insert_reserved); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | btrfs_put_delayed_ref(ref); | 
|  | kfree(extent_op); | 
|  | count++; | 
|  |  | 
|  | cond_resched(); | 
|  | spin_lock(&delayed_refs->lock); | 
|  | } | 
|  | return count; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this starts processing the delayed reference count updates and | 
|  | * extent insertions we have queued up so far.  count can be | 
|  | * 0, which means to process everything in the tree at the start | 
|  | * of the run (but not newly added entries), or it can be some target | 
|  | * number you'd like to process. | 
|  | */ | 
|  | int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, unsigned long count) | 
|  | { | 
|  | struct rb_node *node; | 
|  | struct btrfs_delayed_ref_root *delayed_refs; | 
|  | struct btrfs_delayed_ref_node *ref; | 
|  | struct list_head cluster; | 
|  | int ret; | 
|  | int run_all = count == (unsigned long)-1; | 
|  | int run_most = 0; | 
|  |  | 
|  | if (root == root->fs_info->extent_root) | 
|  | root = root->fs_info->tree_root; | 
|  |  | 
|  | delayed_refs = &trans->transaction->delayed_refs; | 
|  | INIT_LIST_HEAD(&cluster); | 
|  | again: | 
|  | spin_lock(&delayed_refs->lock); | 
|  | if (count == 0) { | 
|  | count = delayed_refs->num_entries * 2; | 
|  | run_most = 1; | 
|  | } | 
|  | while (1) { | 
|  | if (!(run_all || run_most) && | 
|  | delayed_refs->num_heads_ready < 64) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * go find something we can process in the rbtree.  We start at | 
|  | * the beginning of the tree, and then build a cluster | 
|  | * of refs to process starting at the first one we are able to | 
|  | * lock | 
|  | */ | 
|  | ret = btrfs_find_ref_cluster(trans, &cluster, | 
|  | delayed_refs->run_delayed_start); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | ret = run_clustered_refs(trans, root, &cluster); | 
|  | BUG_ON(ret < 0); | 
|  |  | 
|  | count -= min_t(unsigned long, ret, count); | 
|  |  | 
|  | if (count == 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (run_all) { | 
|  | node = rb_first(&delayed_refs->root); | 
|  | if (!node) | 
|  | goto out; | 
|  | count = (unsigned long)-1; | 
|  |  | 
|  | while (node) { | 
|  | ref = rb_entry(node, struct btrfs_delayed_ref_node, | 
|  | rb_node); | 
|  | if (btrfs_delayed_ref_is_head(ref)) { | 
|  | struct btrfs_delayed_ref_head *head; | 
|  |  | 
|  | head = btrfs_delayed_node_to_head(ref); | 
|  | atomic_inc(&ref->refs); | 
|  |  | 
|  | spin_unlock(&delayed_refs->lock); | 
|  | mutex_lock(&head->mutex); | 
|  | mutex_unlock(&head->mutex); | 
|  |  | 
|  | btrfs_put_delayed_ref(ref); | 
|  | cond_resched(); | 
|  | goto again; | 
|  | } | 
|  | node = rb_next(node); | 
|  | } | 
|  | spin_unlock(&delayed_refs->lock); | 
|  | schedule_timeout(1); | 
|  | goto again; | 
|  | } | 
|  | out: | 
|  | spin_unlock(&delayed_refs->lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | u64 bytenr, u64 num_bytes, u64 flags, | 
|  | int is_data) | 
|  | { | 
|  | struct btrfs_delayed_extent_op *extent_op; | 
|  | int ret; | 
|  |  | 
|  | extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS); | 
|  | if (!extent_op) | 
|  | return -ENOMEM; | 
|  |  | 
|  | extent_op->flags_to_set = flags; | 
|  | extent_op->update_flags = 1; | 
|  | extent_op->update_key = 0; | 
|  | extent_op->is_data = is_data ? 1 : 0; | 
|  |  | 
|  | ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op); | 
|  | if (ret) | 
|  | kfree(extent_op); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | u64 objectid, u64 offset, u64 bytenr) | 
|  | { | 
|  | struct btrfs_delayed_ref_head *head; | 
|  | struct btrfs_delayed_ref_node *ref; | 
|  | struct btrfs_delayed_data_ref *data_ref; | 
|  | struct btrfs_delayed_ref_root *delayed_refs; | 
|  | struct rb_node *node; | 
|  | int ret = 0; | 
|  |  | 
|  | ret = -ENOENT; | 
|  | delayed_refs = &trans->transaction->delayed_refs; | 
|  | spin_lock(&delayed_refs->lock); | 
|  | head = btrfs_find_delayed_ref_head(trans, bytenr); | 
|  | if (!head) | 
|  | goto out; | 
|  |  | 
|  | if (!mutex_trylock(&head->mutex)) { | 
|  | atomic_inc(&head->node.refs); | 
|  | spin_unlock(&delayed_refs->lock); | 
|  |  | 
|  | btrfs_release_path(root->fs_info->extent_root, path); | 
|  |  | 
|  | mutex_lock(&head->mutex); | 
|  | mutex_unlock(&head->mutex); | 
|  | btrfs_put_delayed_ref(&head->node); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | node = rb_prev(&head->node.rb_node); | 
|  | if (!node) | 
|  | goto out_unlock; | 
|  |  | 
|  | ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); | 
|  |  | 
|  | if (ref->bytenr != bytenr) | 
|  | goto out_unlock; | 
|  |  | 
|  | ret = 1; | 
|  | if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) | 
|  | goto out_unlock; | 
|  |  | 
|  | data_ref = btrfs_delayed_node_to_data_ref(ref); | 
|  |  | 
|  | node = rb_prev(node); | 
|  | if (node) { | 
|  | ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); | 
|  | if (ref->bytenr == bytenr) | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | if (data_ref->root != root->root_key.objectid || | 
|  | data_ref->objectid != objectid || data_ref->offset != offset) | 
|  | goto out_unlock; | 
|  |  | 
|  | ret = 0; | 
|  | out_unlock: | 
|  | mutex_unlock(&head->mutex); | 
|  | out: | 
|  | spin_unlock(&delayed_refs->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline int check_committed_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | u64 objectid, u64 offset, u64 bytenr) | 
|  | { | 
|  | struct btrfs_root *extent_root = root->fs_info->extent_root; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_extent_data_ref *ref; | 
|  | struct btrfs_extent_inline_ref *iref; | 
|  | struct btrfs_extent_item *ei; | 
|  | struct btrfs_key key; | 
|  | u32 item_size; | 
|  | int ret; | 
|  |  | 
|  | key.objectid = bytenr; | 
|  | key.offset = (u64)-1; | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | BUG_ON(ret == 0); | 
|  |  | 
|  | ret = -ENOENT; | 
|  | if (path->slots[0] == 0) | 
|  | goto out; | 
|  |  | 
|  | path->slots[0]--; | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  |  | 
|  | if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) | 
|  | goto out; | 
|  |  | 
|  | ret = 1; | 
|  | item_size = btrfs_item_size_nr(leaf, path->slots[0]); | 
|  | #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 | 
|  | if (item_size < sizeof(*ei)) { | 
|  | WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); | 
|  | goto out; | 
|  | } | 
|  | #endif | 
|  | ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); | 
|  |  | 
|  | if (item_size != sizeof(*ei) + | 
|  | btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) | 
|  | goto out; | 
|  |  | 
|  | if (btrfs_extent_generation(leaf, ei) <= | 
|  | btrfs_root_last_snapshot(&root->root_item)) | 
|  | goto out; | 
|  |  | 
|  | iref = (struct btrfs_extent_inline_ref *)(ei + 1); | 
|  | if (btrfs_extent_inline_ref_type(leaf, iref) != | 
|  | BTRFS_EXTENT_DATA_REF_KEY) | 
|  | goto out; | 
|  |  | 
|  | ref = (struct btrfs_extent_data_ref *)(&iref->offset); | 
|  | if (btrfs_extent_refs(leaf, ei) != | 
|  | btrfs_extent_data_ref_count(leaf, ref) || | 
|  | btrfs_extent_data_ref_root(leaf, ref) != | 
|  | root->root_key.objectid || | 
|  | btrfs_extent_data_ref_objectid(leaf, ref) != objectid || | 
|  | btrfs_extent_data_ref_offset(leaf, ref) != offset) | 
|  | goto out; | 
|  |  | 
|  | ret = 0; | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | u64 objectid, u64 offset, u64 bytenr) | 
|  | { | 
|  | struct btrfs_path *path; | 
|  | int ret; | 
|  | int ret2; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOENT; | 
|  |  | 
|  | do { | 
|  | ret = check_committed_ref(trans, root, path, objectid, | 
|  | offset, bytenr); | 
|  | if (ret && ret != -ENOENT) | 
|  | goto out; | 
|  |  | 
|  | ret2 = check_delayed_ref(trans, root, path, objectid, | 
|  | offset, bytenr); | 
|  | } while (ret2 == -EAGAIN); | 
|  |  | 
|  | if (ret2 && ret2 != -ENOENT) { | 
|  | ret = ret2; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (ret != -ENOENT || ret2 != -ENOENT) | 
|  | ret = 0; | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) | 
|  | WARN_ON(ret > 0); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | int btrfs_cache_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, | 
|  | struct extent_buffer *buf, u32 nr_extents) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | struct btrfs_file_extent_item *fi; | 
|  | u64 root_gen; | 
|  | u32 nritems; | 
|  | int i; | 
|  | int level; | 
|  | int ret = 0; | 
|  | int shared = 0; | 
|  |  | 
|  | if (!root->ref_cows) | 
|  | return 0; | 
|  |  | 
|  | if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { | 
|  | shared = 0; | 
|  | root_gen = root->root_key.offset; | 
|  | } else { | 
|  | shared = 1; | 
|  | root_gen = trans->transid - 1; | 
|  | } | 
|  |  | 
|  | level = btrfs_header_level(buf); | 
|  | nritems = btrfs_header_nritems(buf); | 
|  |  | 
|  | if (level == 0) { | 
|  | struct btrfs_leaf_ref *ref; | 
|  | struct btrfs_extent_info *info; | 
|  |  | 
|  | ref = btrfs_alloc_leaf_ref(root, nr_extents); | 
|  | if (!ref) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ref->root_gen = root_gen; | 
|  | ref->bytenr = buf->start; | 
|  | ref->owner = btrfs_header_owner(buf); | 
|  | ref->generation = btrfs_header_generation(buf); | 
|  | ref->nritems = nr_extents; | 
|  | info = ref->extents; | 
|  |  | 
|  | for (i = 0; nr_extents > 0 && i < nritems; i++) { | 
|  | u64 disk_bytenr; | 
|  | btrfs_item_key_to_cpu(buf, &key, i); | 
|  | if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) | 
|  | continue; | 
|  | fi = btrfs_item_ptr(buf, i, | 
|  | struct btrfs_file_extent_item); | 
|  | if (btrfs_file_extent_type(buf, fi) == | 
|  | BTRFS_FILE_EXTENT_INLINE) | 
|  | continue; | 
|  | disk_bytenr = btrfs_file_extent_disk_bytenr(buf, fi); | 
|  | if (disk_bytenr == 0) | 
|  | continue; | 
|  |  | 
|  | info->bytenr = disk_bytenr; | 
|  | info->num_bytes = | 
|  | btrfs_file_extent_disk_num_bytes(buf, fi); | 
|  | info->objectid = key.objectid; | 
|  | info->offset = key.offset; | 
|  | info++; | 
|  | } | 
|  |  | 
|  | ret = btrfs_add_leaf_ref(root, ref, shared); | 
|  | if (ret == -EEXIST && shared) { | 
|  | struct btrfs_leaf_ref *old; | 
|  | old = btrfs_lookup_leaf_ref(root, ref->bytenr); | 
|  | BUG_ON(!old); | 
|  | btrfs_remove_leaf_ref(root, old); | 
|  | btrfs_free_leaf_ref(root, old); | 
|  | ret = btrfs_add_leaf_ref(root, ref, shared); | 
|  | } | 
|  | WARN_ON(ret); | 
|  | btrfs_free_leaf_ref(root, ref); | 
|  | } | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* when a block goes through cow, we update the reference counts of | 
|  | * everything that block points to.  The internal pointers of the block | 
|  | * can be in just about any order, and it is likely to have clusters of | 
|  | * things that are close together and clusters of things that are not. | 
|  | * | 
|  | * To help reduce the seeks that come with updating all of these reference | 
|  | * counts, sort them by byte number before actual updates are done. | 
|  | * | 
|  | * struct refsort is used to match byte number to slot in the btree block. | 
|  | * we sort based on the byte number and then use the slot to actually | 
|  | * find the item. | 
|  | * | 
|  | * struct refsort is smaller than strcut btrfs_item and smaller than | 
|  | * struct btrfs_key_ptr.  Since we're currently limited to the page size | 
|  | * for a btree block, there's no way for a kmalloc of refsorts for a | 
|  | * single node to be bigger than a page. | 
|  | */ | 
|  | struct refsort { | 
|  | u64 bytenr; | 
|  | u32 slot; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * for passing into sort() | 
|  | */ | 
|  | static int refsort_cmp(const void *a_void, const void *b_void) | 
|  | { | 
|  | const struct refsort *a = a_void; | 
|  | const struct refsort *b = b_void; | 
|  |  | 
|  | if (a->bytenr < b->bytenr) | 
|  | return -1; | 
|  | if (a->bytenr > b->bytenr) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct extent_buffer *buf, | 
|  | int full_backref, int inc) | 
|  | { | 
|  | u64 bytenr; | 
|  | u64 num_bytes; | 
|  | u64 parent; | 
|  | u64 ref_root; | 
|  | u32 nritems; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_file_extent_item *fi; | 
|  | int i; | 
|  | int level; | 
|  | int ret = 0; | 
|  | int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, | 
|  | u64, u64, u64, u64, u64, u64); | 
|  |  | 
|  | ref_root = btrfs_header_owner(buf); | 
|  | nritems = btrfs_header_nritems(buf); | 
|  | level = btrfs_header_level(buf); | 
|  |  | 
|  | if (!root->ref_cows && level == 0) | 
|  | return 0; | 
|  |  | 
|  | if (inc) | 
|  | process_func = btrfs_inc_extent_ref; | 
|  | else | 
|  | process_func = btrfs_free_extent; | 
|  |  | 
|  | if (full_backref) | 
|  | parent = buf->start; | 
|  | else | 
|  | parent = 0; | 
|  |  | 
|  | for (i = 0; i < nritems; i++) { | 
|  | if (level == 0) { | 
|  | btrfs_item_key_to_cpu(buf, &key, i); | 
|  | if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) | 
|  | continue; | 
|  | fi = btrfs_item_ptr(buf, i, | 
|  | struct btrfs_file_extent_item); | 
|  | if (btrfs_file_extent_type(buf, fi) == | 
|  | BTRFS_FILE_EXTENT_INLINE) | 
|  | continue; | 
|  | bytenr = btrfs_file_extent_disk_bytenr(buf, fi); | 
|  | if (bytenr == 0) | 
|  | continue; | 
|  |  | 
|  | num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); | 
|  | key.offset -= btrfs_file_extent_offset(buf, fi); | 
|  | ret = process_func(trans, root, bytenr, num_bytes, | 
|  | parent, ref_root, key.objectid, | 
|  | key.offset); | 
|  | if (ret) | 
|  | goto fail; | 
|  | } else { | 
|  | bytenr = btrfs_node_blockptr(buf, i); | 
|  | num_bytes = btrfs_level_size(root, level - 1); | 
|  | ret = process_func(trans, root, bytenr, num_bytes, | 
|  | parent, ref_root, level - 1, 0); | 
|  | if (ret) | 
|  | goto fail; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | fail: | 
|  | BUG(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, | 
|  | struct extent_buffer *buf, int full_backref) | 
|  | { | 
|  | return __btrfs_mod_ref(trans, root, buf, full_backref, 1); | 
|  | } | 
|  |  | 
|  | int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, | 
|  | struct extent_buffer *buf, int full_backref) | 
|  | { | 
|  | return __btrfs_mod_ref(trans, root, buf, full_backref, 0); | 
|  | } | 
|  |  | 
|  | static int write_one_cache_group(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_block_group_cache *cache) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_root *extent_root = root->fs_info->extent_root; | 
|  | unsigned long bi; | 
|  | struct extent_buffer *leaf; | 
|  |  | 
|  | ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); | 
|  | if (ret < 0) | 
|  | goto fail; | 
|  | BUG_ON(ret); | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | bi = btrfs_item_ptr_offset(leaf, path->slots[0]); | 
|  | write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | btrfs_release_path(extent_root, path); | 
|  | fail: | 
|  | if (ret) | 
|  | return ret; | 
|  | return 0; | 
|  |  | 
|  | } | 
|  |  | 
|  | static struct btrfs_block_group_cache * | 
|  | next_block_group(struct btrfs_root *root, | 
|  | struct btrfs_block_group_cache *cache) | 
|  | { | 
|  | struct rb_node *node; | 
|  | spin_lock(&root->fs_info->block_group_cache_lock); | 
|  | node = rb_next(&cache->cache_node); | 
|  | btrfs_put_block_group(cache); | 
|  | if (node) { | 
|  | cache = rb_entry(node, struct btrfs_block_group_cache, | 
|  | cache_node); | 
|  | btrfs_get_block_group(cache); | 
|  | } else | 
|  | cache = NULL; | 
|  | spin_unlock(&root->fs_info->block_group_cache_lock); | 
|  | return cache; | 
|  | } | 
|  |  | 
|  | static int cache_save_setup(struct btrfs_block_group_cache *block_group, | 
|  | struct btrfs_trans_handle *trans, | 
|  | struct btrfs_path *path) | 
|  | { | 
|  | struct btrfs_root *root = block_group->fs_info->tree_root; | 
|  | struct inode *inode = NULL; | 
|  | u64 alloc_hint = 0; | 
|  | int dcs = BTRFS_DC_ERROR; | 
|  | int num_pages = 0; | 
|  | int retries = 0; | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * If this block group is smaller than 100 megs don't bother caching the | 
|  | * block group. | 
|  | */ | 
|  | if (block_group->key.offset < (100 * 1024 * 1024)) { | 
|  | spin_lock(&block_group->lock); | 
|  | block_group->disk_cache_state = BTRFS_DC_WRITTEN; | 
|  | spin_unlock(&block_group->lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | again: | 
|  | inode = lookup_free_space_inode(root, block_group, path); | 
|  | if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { | 
|  | ret = PTR_ERR(inode); | 
|  | btrfs_release_path(root, path); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (IS_ERR(inode)) { | 
|  | BUG_ON(retries); | 
|  | retries++; | 
|  |  | 
|  | if (block_group->ro) | 
|  | goto out_free; | 
|  |  | 
|  | ret = create_free_space_inode(root, trans, block_group, path); | 
|  | if (ret) | 
|  | goto out_free; | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We want to set the generation to 0, that way if anything goes wrong | 
|  | * from here on out we know not to trust this cache when we load up next | 
|  | * time. | 
|  | */ | 
|  | BTRFS_I(inode)->generation = 0; | 
|  | ret = btrfs_update_inode(trans, root, inode); | 
|  | WARN_ON(ret); | 
|  |  | 
|  | if (i_size_read(inode) > 0) { | 
|  | ret = btrfs_truncate_free_space_cache(root, trans, path, | 
|  | inode); | 
|  | if (ret) | 
|  | goto out_put; | 
|  | } | 
|  |  | 
|  | spin_lock(&block_group->lock); | 
|  | if (block_group->cached != BTRFS_CACHE_FINISHED) { | 
|  | /* We're not cached, don't bother trying to write stuff out */ | 
|  | dcs = BTRFS_DC_WRITTEN; | 
|  | spin_unlock(&block_group->lock); | 
|  | goto out_put; | 
|  | } | 
|  | spin_unlock(&block_group->lock); | 
|  |  | 
|  | num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024); | 
|  | if (!num_pages) | 
|  | num_pages = 1; | 
|  |  | 
|  | /* | 
|  | * Just to make absolutely sure we have enough space, we're going to | 
|  | * preallocate 12 pages worth of space for each block group.  In | 
|  | * practice we ought to use at most 8, but we need extra space so we can | 
|  | * add our header and have a terminator between the extents and the | 
|  | * bitmaps. | 
|  | */ | 
|  | num_pages *= 16; | 
|  | num_pages *= PAGE_CACHE_SIZE; | 
|  |  | 
|  | ret = btrfs_check_data_free_space(inode, num_pages); | 
|  | if (ret) | 
|  | goto out_put; | 
|  |  | 
|  | ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, | 
|  | num_pages, num_pages, | 
|  | &alloc_hint); | 
|  | if (!ret) | 
|  | dcs = BTRFS_DC_SETUP; | 
|  | btrfs_free_reserved_data_space(inode, num_pages); | 
|  | out_put: | 
|  | iput(inode); | 
|  | out_free: | 
|  | btrfs_release_path(root, path); | 
|  | out: | 
|  | spin_lock(&block_group->lock); | 
|  | block_group->disk_cache_state = dcs; | 
|  | spin_unlock(&block_group->lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_block_group_cache *cache; | 
|  | int err = 0; | 
|  | struct btrfs_path *path; | 
|  | u64 last = 0; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | again: | 
|  | while (1) { | 
|  | cache = btrfs_lookup_first_block_group(root->fs_info, last); | 
|  | while (cache) { | 
|  | if (cache->disk_cache_state == BTRFS_DC_CLEAR) | 
|  | break; | 
|  | cache = next_block_group(root, cache); | 
|  | } | 
|  | if (!cache) { | 
|  | if (last == 0) | 
|  | break; | 
|  | last = 0; | 
|  | continue; | 
|  | } | 
|  | err = cache_save_setup(cache, trans, path); | 
|  | last = cache->key.objectid + cache->key.offset; | 
|  | btrfs_put_block_group(cache); | 
|  | } | 
|  |  | 
|  | while (1) { | 
|  | if (last == 0) { | 
|  | err = btrfs_run_delayed_refs(trans, root, | 
|  | (unsigned long)-1); | 
|  | BUG_ON(err); | 
|  | } | 
|  |  | 
|  | cache = btrfs_lookup_first_block_group(root->fs_info, last); | 
|  | while (cache) { | 
|  | if (cache->disk_cache_state == BTRFS_DC_CLEAR) { | 
|  | btrfs_put_block_group(cache); | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | if (cache->dirty) | 
|  | break; | 
|  | cache = next_block_group(root, cache); | 
|  | } | 
|  | if (!cache) { | 
|  | if (last == 0) | 
|  | break; | 
|  | last = 0; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (cache->disk_cache_state == BTRFS_DC_SETUP) | 
|  | cache->disk_cache_state = BTRFS_DC_NEED_WRITE; | 
|  | cache->dirty = 0; | 
|  | last = cache->key.objectid + cache->key.offset; | 
|  |  | 
|  | err = write_one_cache_group(trans, root, path, cache); | 
|  | BUG_ON(err); | 
|  | btrfs_put_block_group(cache); | 
|  | } | 
|  |  | 
|  | while (1) { | 
|  | /* | 
|  | * I don't think this is needed since we're just marking our | 
|  | * preallocated extent as written, but just in case it can't | 
|  | * hurt. | 
|  | */ | 
|  | if (last == 0) { | 
|  | err = btrfs_run_delayed_refs(trans, root, | 
|  | (unsigned long)-1); | 
|  | BUG_ON(err); | 
|  | } | 
|  |  | 
|  | cache = btrfs_lookup_first_block_group(root->fs_info, last); | 
|  | while (cache) { | 
|  | /* | 
|  | * Really this shouldn't happen, but it could if we | 
|  | * couldn't write the entire preallocated extent and | 
|  | * splitting the extent resulted in a new block. | 
|  | */ | 
|  | if (cache->dirty) { | 
|  | btrfs_put_block_group(cache); | 
|  | goto again; | 
|  | } | 
|  | if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE) | 
|  | break; | 
|  | cache = next_block_group(root, cache); | 
|  | } | 
|  | if (!cache) { | 
|  | if (last == 0) | 
|  | break; | 
|  | last = 0; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | btrfs_write_out_cache(root, trans, cache, path); | 
|  |  | 
|  | /* | 
|  | * If we didn't have an error then the cache state is still | 
|  | * NEED_WRITE, so we can set it to WRITTEN. | 
|  | */ | 
|  | if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE) | 
|  | cache->disk_cache_state = BTRFS_DC_WRITTEN; | 
|  | last = cache->key.objectid + cache->key.offset; | 
|  | btrfs_put_block_group(cache); | 
|  | } | 
|  |  | 
|  | btrfs_free_path(path); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) | 
|  | { | 
|  | struct btrfs_block_group_cache *block_group; | 
|  | int readonly = 0; | 
|  |  | 
|  | block_group = btrfs_lookup_block_group(root->fs_info, bytenr); | 
|  | if (!block_group || block_group->ro) | 
|  | readonly = 1; | 
|  | if (block_group) | 
|  | btrfs_put_block_group(block_group); | 
|  | return readonly; | 
|  | } | 
|  |  | 
|  | static int update_space_info(struct btrfs_fs_info *info, u64 flags, | 
|  | u64 total_bytes, u64 bytes_used, | 
|  | struct btrfs_space_info **space_info) | 
|  | { | 
|  | struct btrfs_space_info *found; | 
|  | int i; | 
|  | int factor; | 
|  |  | 
|  | if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | | 
|  | BTRFS_BLOCK_GROUP_RAID10)) | 
|  | factor = 2; | 
|  | else | 
|  | factor = 1; | 
|  |  | 
|  | found = __find_space_info(info, flags); | 
|  | if (found) { | 
|  | spin_lock(&found->lock); | 
|  | found->total_bytes += total_bytes; | 
|  | found->disk_total += total_bytes * factor; | 
|  | found->bytes_used += bytes_used; | 
|  | found->disk_used += bytes_used * factor; | 
|  | found->full = 0; | 
|  | spin_unlock(&found->lock); | 
|  | *space_info = found; | 
|  | return 0; | 
|  | } | 
|  | found = kzalloc(sizeof(*found), GFP_NOFS); | 
|  | if (!found) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) | 
|  | INIT_LIST_HEAD(&found->block_groups[i]); | 
|  | init_rwsem(&found->groups_sem); | 
|  | spin_lock_init(&found->lock); | 
|  | found->flags = flags & (BTRFS_BLOCK_GROUP_DATA | | 
|  | BTRFS_BLOCK_GROUP_SYSTEM | | 
|  | BTRFS_BLOCK_GROUP_METADATA); | 
|  | found->total_bytes = total_bytes; | 
|  | found->disk_total = total_bytes * factor; | 
|  | found->bytes_used = bytes_used; | 
|  | found->disk_used = bytes_used * factor; | 
|  | found->bytes_pinned = 0; | 
|  | found->bytes_reserved = 0; | 
|  | found->bytes_readonly = 0; | 
|  | found->bytes_may_use = 0; | 
|  | found->full = 0; | 
|  | found->force_alloc = 0; | 
|  | *space_info = found; | 
|  | list_add_rcu(&found->list, &info->space_info); | 
|  | atomic_set(&found->caching_threads, 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) | 
|  | { | 
|  | u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 | | 
|  | BTRFS_BLOCK_GROUP_RAID1 | | 
|  | BTRFS_BLOCK_GROUP_RAID10 | | 
|  | BTRFS_BLOCK_GROUP_DUP); | 
|  | if (extra_flags) { | 
|  | if (flags & BTRFS_BLOCK_GROUP_DATA) | 
|  | fs_info->avail_data_alloc_bits |= extra_flags; | 
|  | if (flags & BTRFS_BLOCK_GROUP_METADATA) | 
|  | fs_info->avail_metadata_alloc_bits |= extra_flags; | 
|  | if (flags & BTRFS_BLOCK_GROUP_SYSTEM) | 
|  | fs_info->avail_system_alloc_bits |= extra_flags; | 
|  | } | 
|  | } | 
|  |  | 
|  | u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) | 
|  | { | 
|  | /* | 
|  | * we add in the count of missing devices because we want | 
|  | * to make sure that any RAID levels on a degraded FS | 
|  | * continue to be honored. | 
|  | */ | 
|  | u64 num_devices = root->fs_info->fs_devices->rw_devices + | 
|  | root->fs_info->fs_devices->missing_devices; | 
|  |  | 
|  | if (num_devices == 1) | 
|  | flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0); | 
|  | if (num_devices < 4) | 
|  | flags &= ~BTRFS_BLOCK_GROUP_RAID10; | 
|  |  | 
|  | if ((flags & BTRFS_BLOCK_GROUP_DUP) && | 
|  | (flags & (BTRFS_BLOCK_GROUP_RAID1 | | 
|  | BTRFS_BLOCK_GROUP_RAID10))) { | 
|  | flags &= ~BTRFS_BLOCK_GROUP_DUP; | 
|  | } | 
|  |  | 
|  | if ((flags & BTRFS_BLOCK_GROUP_RAID1) && | 
|  | (flags & BTRFS_BLOCK_GROUP_RAID10)) { | 
|  | flags &= ~BTRFS_BLOCK_GROUP_RAID1; | 
|  | } | 
|  |  | 
|  | if ((flags & BTRFS_BLOCK_GROUP_RAID0) && | 
|  | ((flags & BTRFS_BLOCK_GROUP_RAID1) | | 
|  | (flags & BTRFS_BLOCK_GROUP_RAID10) | | 
|  | (flags & BTRFS_BLOCK_GROUP_DUP))) | 
|  | flags &= ~BTRFS_BLOCK_GROUP_RAID0; | 
|  | return flags; | 
|  | } | 
|  |  | 
|  | static u64 get_alloc_profile(struct btrfs_root *root, u64 flags) | 
|  | { | 
|  | if (flags & BTRFS_BLOCK_GROUP_DATA) | 
|  | flags |= root->fs_info->avail_data_alloc_bits & | 
|  | root->fs_info->data_alloc_profile; | 
|  | else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) | 
|  | flags |= root->fs_info->avail_system_alloc_bits & | 
|  | root->fs_info->system_alloc_profile; | 
|  | else if (flags & BTRFS_BLOCK_GROUP_METADATA) | 
|  | flags |= root->fs_info->avail_metadata_alloc_bits & | 
|  | root->fs_info->metadata_alloc_profile; | 
|  | return btrfs_reduce_alloc_profile(root, flags); | 
|  | } | 
|  |  | 
|  | u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) | 
|  | { | 
|  | u64 flags; | 
|  |  | 
|  | if (data) | 
|  | flags = BTRFS_BLOCK_GROUP_DATA; | 
|  | else if (root == root->fs_info->chunk_root) | 
|  | flags = BTRFS_BLOCK_GROUP_SYSTEM; | 
|  | else | 
|  | flags = BTRFS_BLOCK_GROUP_METADATA; | 
|  |  | 
|  | return get_alloc_profile(root, flags); | 
|  | } | 
|  |  | 
|  | void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode) | 
|  | { | 
|  | BTRFS_I(inode)->space_info = __find_space_info(root->fs_info, | 
|  | BTRFS_BLOCK_GROUP_DATA); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This will check the space that the inode allocates from to make sure we have | 
|  | * enough space for bytes. | 
|  | */ | 
|  | int btrfs_check_data_free_space(struct inode *inode, u64 bytes) | 
|  | { | 
|  | struct btrfs_space_info *data_sinfo; | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | u64 used; | 
|  | int ret = 0, committed = 0, alloc_chunk = 1; | 
|  |  | 
|  | /* make sure bytes are sectorsize aligned */ | 
|  | bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1); | 
|  |  | 
|  | if (root == root->fs_info->tree_root) { | 
|  | alloc_chunk = 0; | 
|  | committed = 1; | 
|  | } | 
|  |  | 
|  | data_sinfo = BTRFS_I(inode)->space_info; | 
|  | if (!data_sinfo) | 
|  | goto alloc; | 
|  |  | 
|  | again: | 
|  | /* make sure we have enough space to handle the data first */ | 
|  | spin_lock(&data_sinfo->lock); | 
|  | used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + | 
|  | data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + | 
|  | data_sinfo->bytes_may_use; | 
|  |  | 
|  | if (used + bytes > data_sinfo->total_bytes) { | 
|  | struct btrfs_trans_handle *trans; | 
|  |  | 
|  | /* | 
|  | * if we don't have enough free bytes in this space then we need | 
|  | * to alloc a new chunk. | 
|  | */ | 
|  | if (!data_sinfo->full && alloc_chunk) { | 
|  | u64 alloc_target; | 
|  |  | 
|  | data_sinfo->force_alloc = 1; | 
|  | spin_unlock(&data_sinfo->lock); | 
|  | alloc: | 
|  | alloc_target = btrfs_get_alloc_profile(root, 1); | 
|  | trans = btrfs_join_transaction(root, 1); | 
|  | if (IS_ERR(trans)) | 
|  | return PTR_ERR(trans); | 
|  |  | 
|  | ret = do_chunk_alloc(trans, root->fs_info->extent_root, | 
|  | bytes + 2 * 1024 * 1024, | 
|  | alloc_target, 0); | 
|  | btrfs_end_transaction(trans, root); | 
|  | if (ret < 0) { | 
|  | if (ret != -ENOSPC) | 
|  | return ret; | 
|  | else | 
|  | goto commit_trans; | 
|  | } | 
|  |  | 
|  | if (!data_sinfo) { | 
|  | btrfs_set_inode_space_info(root, inode); | 
|  | data_sinfo = BTRFS_I(inode)->space_info; | 
|  | } | 
|  | goto again; | 
|  | } | 
|  | spin_unlock(&data_sinfo->lock); | 
|  |  | 
|  | /* commit the current transaction and try again */ | 
|  | commit_trans: | 
|  | if (!committed && !root->fs_info->open_ioctl_trans) { | 
|  | committed = 1; | 
|  | trans = btrfs_join_transaction(root, 1); | 
|  | if (IS_ERR(trans)) | 
|  | return PTR_ERR(trans); | 
|  | ret = btrfs_commit_transaction(trans, root); | 
|  | if (ret) | 
|  | return ret; | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | #if 0 /* I hope we never need this code again, just in case */ | 
|  | printk(KERN_ERR "no space left, need %llu, %llu bytes_used, " | 
|  | "%llu bytes_reserved, " "%llu bytes_pinned, " | 
|  | "%llu bytes_readonly, %llu may use %llu total\n", | 
|  | (unsigned long long)bytes, | 
|  | (unsigned long long)data_sinfo->bytes_used, | 
|  | (unsigned long long)data_sinfo->bytes_reserved, | 
|  | (unsigned long long)data_sinfo->bytes_pinned, | 
|  | (unsigned long long)data_sinfo->bytes_readonly, | 
|  | (unsigned long long)data_sinfo->bytes_may_use, | 
|  | (unsigned long long)data_sinfo->total_bytes); | 
|  | #endif | 
|  | return -ENOSPC; | 
|  | } | 
|  | data_sinfo->bytes_may_use += bytes; | 
|  | BTRFS_I(inode)->reserved_bytes += bytes; | 
|  | spin_unlock(&data_sinfo->lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * called when we are clearing an delalloc extent from the | 
|  | * inode's io_tree or there was an error for whatever reason | 
|  | * after calling btrfs_check_data_free_space | 
|  | */ | 
|  | void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes) | 
|  | { | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | struct btrfs_space_info *data_sinfo; | 
|  |  | 
|  | /* make sure bytes are sectorsize aligned */ | 
|  | bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1); | 
|  |  | 
|  | data_sinfo = BTRFS_I(inode)->space_info; | 
|  | spin_lock(&data_sinfo->lock); | 
|  | data_sinfo->bytes_may_use -= bytes; | 
|  | BTRFS_I(inode)->reserved_bytes -= bytes; | 
|  | spin_unlock(&data_sinfo->lock); | 
|  | } | 
|  |  | 
|  | static void force_metadata_allocation(struct btrfs_fs_info *info) | 
|  | { | 
|  | struct list_head *head = &info->space_info; | 
|  | struct btrfs_space_info *found; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(found, head, list) { | 
|  | if (found->flags & BTRFS_BLOCK_GROUP_METADATA) | 
|  | found->force_alloc = 1; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static int should_alloc_chunk(struct btrfs_root *root, | 
|  | struct btrfs_space_info *sinfo, u64 alloc_bytes) | 
|  | { | 
|  | u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; | 
|  | u64 thresh; | 
|  |  | 
|  | if (sinfo->bytes_used + sinfo->bytes_reserved + | 
|  | alloc_bytes + 256 * 1024 * 1024 < num_bytes) | 
|  | return 0; | 
|  |  | 
|  | if (sinfo->bytes_used + sinfo->bytes_reserved + | 
|  | alloc_bytes < div_factor(num_bytes, 8)) | 
|  | return 0; | 
|  |  | 
|  | thresh = btrfs_super_total_bytes(&root->fs_info->super_copy); | 
|  | thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 5)); | 
|  |  | 
|  | if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 3)) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int do_chunk_alloc(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *extent_root, u64 alloc_bytes, | 
|  | u64 flags, int force) | 
|  | { | 
|  | struct btrfs_space_info *space_info; | 
|  | struct btrfs_fs_info *fs_info = extent_root->fs_info; | 
|  | int ret = 0; | 
|  |  | 
|  | mutex_lock(&fs_info->chunk_mutex); | 
|  |  | 
|  | flags = btrfs_reduce_alloc_profile(extent_root, flags); | 
|  |  | 
|  | space_info = __find_space_info(extent_root->fs_info, flags); | 
|  | if (!space_info) { | 
|  | ret = update_space_info(extent_root->fs_info, flags, | 
|  | 0, 0, &space_info); | 
|  | BUG_ON(ret); | 
|  | } | 
|  | BUG_ON(!space_info); | 
|  |  | 
|  | spin_lock(&space_info->lock); | 
|  | if (space_info->force_alloc) | 
|  | force = 1; | 
|  | if (space_info->full) { | 
|  | spin_unlock(&space_info->lock); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!force && !should_alloc_chunk(extent_root, space_info, | 
|  | alloc_bytes)) { | 
|  | spin_unlock(&space_info->lock); | 
|  | goto out; | 
|  | } | 
|  | spin_unlock(&space_info->lock); | 
|  |  | 
|  | /* | 
|  | * If we have mixed data/metadata chunks we want to make sure we keep | 
|  | * allocating mixed chunks instead of individual chunks. | 
|  | */ | 
|  | if (btrfs_mixed_space_info(space_info)) | 
|  | flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); | 
|  |  | 
|  | /* | 
|  | * if we're doing a data chunk, go ahead and make sure that | 
|  | * we keep a reasonable number of metadata chunks allocated in the | 
|  | * FS as well. | 
|  | */ | 
|  | if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { | 
|  | fs_info->data_chunk_allocations++; | 
|  | if (!(fs_info->data_chunk_allocations % | 
|  | fs_info->metadata_ratio)) | 
|  | force_metadata_allocation(fs_info); | 
|  | } | 
|  |  | 
|  | ret = btrfs_alloc_chunk(trans, extent_root, flags); | 
|  | spin_lock(&space_info->lock); | 
|  | if (ret) | 
|  | space_info->full = 1; | 
|  | else | 
|  | ret = 1; | 
|  | space_info->force_alloc = 0; | 
|  | spin_unlock(&space_info->lock); | 
|  | out: | 
|  | mutex_unlock(&extent_root->fs_info->chunk_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * shrink metadata reservation for delalloc | 
|  | */ | 
|  | static int shrink_delalloc(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, u64 to_reclaim, int sync) | 
|  | { | 
|  | struct btrfs_block_rsv *block_rsv; | 
|  | struct btrfs_space_info *space_info; | 
|  | u64 reserved; | 
|  | u64 max_reclaim; | 
|  | u64 reclaimed = 0; | 
|  | long time_left; | 
|  | int nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT; | 
|  | int loops = 0; | 
|  | unsigned long progress; | 
|  |  | 
|  | block_rsv = &root->fs_info->delalloc_block_rsv; | 
|  | space_info = block_rsv->space_info; | 
|  |  | 
|  | smp_mb(); | 
|  | reserved = space_info->bytes_reserved; | 
|  | progress = space_info->reservation_progress; | 
|  |  | 
|  | if (reserved == 0) | 
|  | return 0; | 
|  |  | 
|  | max_reclaim = min(reserved, to_reclaim); | 
|  |  | 
|  | while (loops < 1024) { | 
|  | /* have the flusher threads jump in and do some IO */ | 
|  | smp_mb(); | 
|  | nr_pages = min_t(unsigned long, nr_pages, | 
|  | root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT); | 
|  | writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages); | 
|  |  | 
|  | spin_lock(&space_info->lock); | 
|  | if (reserved > space_info->bytes_reserved) | 
|  | reclaimed += reserved - space_info->bytes_reserved; | 
|  | reserved = space_info->bytes_reserved; | 
|  | spin_unlock(&space_info->lock); | 
|  |  | 
|  | loops++; | 
|  |  | 
|  | if (reserved == 0 || reclaimed >= max_reclaim) | 
|  | break; | 
|  |  | 
|  | if (trans && trans->transaction->blocked) | 
|  | return -EAGAIN; | 
|  |  | 
|  | time_left = schedule_timeout_interruptible(1); | 
|  |  | 
|  | /* We were interrupted, exit */ | 
|  | if (time_left) | 
|  | break; | 
|  |  | 
|  | /* we've kicked the IO a few times, if anything has been freed, | 
|  | * exit.  There is no sense in looping here for a long time | 
|  | * when we really need to commit the transaction, or there are | 
|  | * just too many writers without enough free space | 
|  | */ | 
|  |  | 
|  | if (loops > 3) { | 
|  | smp_mb(); | 
|  | if (progress != space_info->reservation_progress) | 
|  | break; | 
|  | } | 
|  |  | 
|  | } | 
|  | return reclaimed >= to_reclaim; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Retries tells us how many times we've called reserve_metadata_bytes.  The | 
|  | * idea is if this is the first call (retries == 0) then we will add to our | 
|  | * reserved count if we can't make the allocation in order to hold our place | 
|  | * while we go and try and free up space.  That way for retries > 1 we don't try | 
|  | * and add space, we just check to see if the amount of unused space is >= the | 
|  | * total space, meaning that our reservation is valid. | 
|  | * | 
|  | * However if we don't intend to retry this reservation, pass -1 as retries so | 
|  | * that it short circuits this logic. | 
|  | */ | 
|  | static int reserve_metadata_bytes(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_block_rsv *block_rsv, | 
|  | u64 orig_bytes, int flush) | 
|  | { | 
|  | struct btrfs_space_info *space_info = block_rsv->space_info; | 
|  | u64 unused; | 
|  | u64 num_bytes = orig_bytes; | 
|  | int retries = 0; | 
|  | int ret = 0; | 
|  | bool reserved = false; | 
|  | bool committed = false; | 
|  |  | 
|  | again: | 
|  | ret = -ENOSPC; | 
|  | if (reserved) | 
|  | num_bytes = 0; | 
|  |  | 
|  | spin_lock(&space_info->lock); | 
|  | unused = space_info->bytes_used + space_info->bytes_reserved + | 
|  | space_info->bytes_pinned + space_info->bytes_readonly + | 
|  | space_info->bytes_may_use; | 
|  |  | 
|  | /* | 
|  | * The idea here is that we've not already over-reserved the block group | 
|  | * then we can go ahead and save our reservation first and then start | 
|  | * flushing if we need to.  Otherwise if we've already overcommitted | 
|  | * lets start flushing stuff first and then come back and try to make | 
|  | * our reservation. | 
|  | */ | 
|  | if (unused <= space_info->total_bytes) { | 
|  | unused = space_info->total_bytes - unused; | 
|  | if (unused >= num_bytes) { | 
|  | if (!reserved) | 
|  | space_info->bytes_reserved += orig_bytes; | 
|  | ret = 0; | 
|  | } else { | 
|  | /* | 
|  | * Ok set num_bytes to orig_bytes since we aren't | 
|  | * overocmmitted, this way we only try and reclaim what | 
|  | * we need. | 
|  | */ | 
|  | num_bytes = orig_bytes; | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * Ok we're over committed, set num_bytes to the overcommitted | 
|  | * amount plus the amount of bytes that we need for this | 
|  | * reservation. | 
|  | */ | 
|  | num_bytes = unused - space_info->total_bytes + | 
|  | (orig_bytes * (retries + 1)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Couldn't make our reservation, save our place so while we're trying | 
|  | * to reclaim space we can actually use it instead of somebody else | 
|  | * stealing it from us. | 
|  | */ | 
|  | if (ret && !reserved) { | 
|  | space_info->bytes_reserved += orig_bytes; | 
|  | reserved = true; | 
|  | } | 
|  |  | 
|  | spin_unlock(&space_info->lock); | 
|  |  | 
|  | if (!ret) | 
|  | return 0; | 
|  |  | 
|  | if (!flush) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * We do synchronous shrinking since we don't actually unreserve | 
|  | * metadata until after the IO is completed. | 
|  | */ | 
|  | ret = shrink_delalloc(trans, root, num_bytes, 1); | 
|  | if (ret > 0) | 
|  | return 0; | 
|  | else if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * So if we were overcommitted it's possible that somebody else flushed | 
|  | * out enough space and we simply didn't have enough space to reclaim, | 
|  | * so go back around and try again. | 
|  | */ | 
|  | if (retries < 2) { | 
|  | retries++; | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | spin_lock(&space_info->lock); | 
|  | /* | 
|  | * Not enough space to be reclaimed, don't bother committing the | 
|  | * transaction. | 
|  | */ | 
|  | if (space_info->bytes_pinned < orig_bytes) | 
|  | ret = -ENOSPC; | 
|  | spin_unlock(&space_info->lock); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | ret = -EAGAIN; | 
|  | if (trans || committed) | 
|  | goto out; | 
|  |  | 
|  | ret = -ENOSPC; | 
|  | trans = btrfs_join_transaction(root, 1); | 
|  | if (IS_ERR(trans)) | 
|  | goto out; | 
|  | ret = btrfs_commit_transaction(trans, root); | 
|  | if (!ret) { | 
|  | trans = NULL; | 
|  | committed = true; | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | out: | 
|  | if (reserved) { | 
|  | spin_lock(&space_info->lock); | 
|  | space_info->bytes_reserved -= orig_bytes; | 
|  | spin_unlock(&space_info->lock); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_block_rsv *block_rsv; | 
|  | if (root->ref_cows) | 
|  | block_rsv = trans->block_rsv; | 
|  | else | 
|  | block_rsv = root->block_rsv; | 
|  |  | 
|  | if (!block_rsv) | 
|  | block_rsv = &root->fs_info->empty_block_rsv; | 
|  |  | 
|  | return block_rsv; | 
|  | } | 
|  |  | 
|  | static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, | 
|  | u64 num_bytes) | 
|  | { | 
|  | int ret = -ENOSPC; | 
|  | spin_lock(&block_rsv->lock); | 
|  | if (block_rsv->reserved >= num_bytes) { | 
|  | block_rsv->reserved -= num_bytes; | 
|  | if (block_rsv->reserved < block_rsv->size) | 
|  | block_rsv->full = 0; | 
|  | ret = 0; | 
|  | } | 
|  | spin_unlock(&block_rsv->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, | 
|  | u64 num_bytes, int update_size) | 
|  | { | 
|  | spin_lock(&block_rsv->lock); | 
|  | block_rsv->reserved += num_bytes; | 
|  | if (update_size) | 
|  | block_rsv->size += num_bytes; | 
|  | else if (block_rsv->reserved >= block_rsv->size) | 
|  | block_rsv->full = 1; | 
|  | spin_unlock(&block_rsv->lock); | 
|  | } | 
|  |  | 
|  | void block_rsv_release_bytes(struct btrfs_block_rsv *block_rsv, | 
|  | struct btrfs_block_rsv *dest, u64 num_bytes) | 
|  | { | 
|  | struct btrfs_space_info *space_info = block_rsv->space_info; | 
|  |  | 
|  | spin_lock(&block_rsv->lock); | 
|  | if (num_bytes == (u64)-1) | 
|  | num_bytes = block_rsv->size; | 
|  | block_rsv->size -= num_bytes; | 
|  | if (block_rsv->reserved >= block_rsv->size) { | 
|  | num_bytes = block_rsv->reserved - block_rsv->size; | 
|  | block_rsv->reserved = block_rsv->size; | 
|  | block_rsv->full = 1; | 
|  | } else { | 
|  | num_bytes = 0; | 
|  | } | 
|  | spin_unlock(&block_rsv->lock); | 
|  |  | 
|  | if (num_bytes > 0) { | 
|  | if (dest) { | 
|  | spin_lock(&dest->lock); | 
|  | if (!dest->full) { | 
|  | u64 bytes_to_add; | 
|  |  | 
|  | bytes_to_add = dest->size - dest->reserved; | 
|  | bytes_to_add = min(num_bytes, bytes_to_add); | 
|  | dest->reserved += bytes_to_add; | 
|  | if (dest->reserved >= dest->size) | 
|  | dest->full = 1; | 
|  | num_bytes -= bytes_to_add; | 
|  | } | 
|  | spin_unlock(&dest->lock); | 
|  | } | 
|  | if (num_bytes) { | 
|  | spin_lock(&space_info->lock); | 
|  | space_info->bytes_reserved -= num_bytes; | 
|  | space_info->reservation_progress++; | 
|  | spin_unlock(&space_info->lock); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src, | 
|  | struct btrfs_block_rsv *dst, u64 num_bytes) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = block_rsv_use_bytes(src, num_bytes); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | block_rsv_add_bytes(dst, num_bytes, 1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv) | 
|  | { | 
|  | memset(rsv, 0, sizeof(*rsv)); | 
|  | spin_lock_init(&rsv->lock); | 
|  | atomic_set(&rsv->usage, 1); | 
|  | rsv->priority = 6; | 
|  | INIT_LIST_HEAD(&rsv->list); | 
|  | } | 
|  |  | 
|  | struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_block_rsv *block_rsv; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  |  | 
|  | block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); | 
|  | if (!block_rsv) | 
|  | return NULL; | 
|  |  | 
|  | btrfs_init_block_rsv(block_rsv); | 
|  | block_rsv->space_info = __find_space_info(fs_info, | 
|  | BTRFS_BLOCK_GROUP_METADATA); | 
|  | return block_rsv; | 
|  | } | 
|  |  | 
|  | void btrfs_free_block_rsv(struct btrfs_root *root, | 
|  | struct btrfs_block_rsv *rsv) | 
|  | { | 
|  | if (rsv && atomic_dec_and_test(&rsv->usage)) { | 
|  | btrfs_block_rsv_release(root, rsv, (u64)-1); | 
|  | if (!rsv->durable) | 
|  | kfree(rsv); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * make the block_rsv struct be able to capture freed space. | 
|  | * the captured space will re-add to the the block_rsv struct | 
|  | * after transaction commit | 
|  | */ | 
|  | void btrfs_add_durable_block_rsv(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_block_rsv *block_rsv) | 
|  | { | 
|  | block_rsv->durable = 1; | 
|  | mutex_lock(&fs_info->durable_block_rsv_mutex); | 
|  | list_add_tail(&block_rsv->list, &fs_info->durable_block_rsv_list); | 
|  | mutex_unlock(&fs_info->durable_block_rsv_mutex); | 
|  | } | 
|  |  | 
|  | int btrfs_block_rsv_add(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_block_rsv *block_rsv, | 
|  | u64 num_bytes) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (num_bytes == 0) | 
|  | return 0; | 
|  |  | 
|  | ret = reserve_metadata_bytes(trans, root, block_rsv, num_bytes, 1); | 
|  | if (!ret) { | 
|  | block_rsv_add_bytes(block_rsv, num_bytes, 1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_block_rsv_check(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_block_rsv *block_rsv, | 
|  | u64 min_reserved, int min_factor) | 
|  | { | 
|  | u64 num_bytes = 0; | 
|  | int commit_trans = 0; | 
|  | int ret = -ENOSPC; | 
|  |  | 
|  | if (!block_rsv) | 
|  | return 0; | 
|  |  | 
|  | spin_lock(&block_rsv->lock); | 
|  | if (min_factor > 0) | 
|  | num_bytes = div_factor(block_rsv->size, min_factor); | 
|  | if (min_reserved > num_bytes) | 
|  | num_bytes = min_reserved; | 
|  |  | 
|  | if (block_rsv->reserved >= num_bytes) { | 
|  | ret = 0; | 
|  | } else { | 
|  | num_bytes -= block_rsv->reserved; | 
|  | if (block_rsv->durable && | 
|  | block_rsv->freed[0] + block_rsv->freed[1] >= num_bytes) | 
|  | commit_trans = 1; | 
|  | } | 
|  | spin_unlock(&block_rsv->lock); | 
|  | if (!ret) | 
|  | return 0; | 
|  |  | 
|  | if (block_rsv->refill_used) { | 
|  | ret = reserve_metadata_bytes(trans, root, block_rsv, | 
|  | num_bytes, 0); | 
|  | if (!ret) { | 
|  | block_rsv_add_bytes(block_rsv, num_bytes, 0); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (commit_trans) { | 
|  | if (trans) | 
|  | return -EAGAIN; | 
|  |  | 
|  | trans = btrfs_join_transaction(root, 1); | 
|  | BUG_ON(IS_ERR(trans)); | 
|  | ret = btrfs_commit_transaction(trans, root); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv, | 
|  | struct btrfs_block_rsv *dst_rsv, | 
|  | u64 num_bytes) | 
|  | { | 
|  | return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); | 
|  | } | 
|  |  | 
|  | void btrfs_block_rsv_release(struct btrfs_root *root, | 
|  | struct btrfs_block_rsv *block_rsv, | 
|  | u64 num_bytes) | 
|  | { | 
|  | struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; | 
|  | if (global_rsv->full || global_rsv == block_rsv || | 
|  | block_rsv->space_info != global_rsv->space_info) | 
|  | global_rsv = NULL; | 
|  | block_rsv_release_bytes(block_rsv, global_rsv, num_bytes); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to calculate size of global block reservation. | 
|  | * the desired value is sum of space used by extent tree, | 
|  | * checksum tree and root tree | 
|  | */ | 
|  | static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_space_info *sinfo; | 
|  | u64 num_bytes; | 
|  | u64 meta_used; | 
|  | u64 data_used; | 
|  | int csum_size = btrfs_super_csum_size(&fs_info->super_copy); | 
|  | #if 0 | 
|  | /* | 
|  | * per tree used space accounting can be inaccuracy, so we | 
|  | * can't rely on it. | 
|  | */ | 
|  | spin_lock(&fs_info->extent_root->accounting_lock); | 
|  | num_bytes = btrfs_root_used(&fs_info->extent_root->root_item); | 
|  | spin_unlock(&fs_info->extent_root->accounting_lock); | 
|  |  | 
|  | spin_lock(&fs_info->csum_root->accounting_lock); | 
|  | num_bytes += btrfs_root_used(&fs_info->csum_root->root_item); | 
|  | spin_unlock(&fs_info->csum_root->accounting_lock); | 
|  |  | 
|  | spin_lock(&fs_info->tree_root->accounting_lock); | 
|  | num_bytes += btrfs_root_used(&fs_info->tree_root->root_item); | 
|  | spin_unlock(&fs_info->tree_root->accounting_lock); | 
|  | #endif | 
|  | sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); | 
|  | spin_lock(&sinfo->lock); | 
|  | data_used = sinfo->bytes_used; | 
|  | spin_unlock(&sinfo->lock); | 
|  |  | 
|  | sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); | 
|  | spin_lock(&sinfo->lock); | 
|  | if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) | 
|  | data_used = 0; | 
|  | meta_used = sinfo->bytes_used; | 
|  | spin_unlock(&sinfo->lock); | 
|  |  | 
|  | num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) * | 
|  | csum_size * 2; | 
|  | num_bytes += div64_u64(data_used + meta_used, 50); | 
|  |  | 
|  | if (num_bytes * 3 > meta_used) | 
|  | num_bytes = div64_u64(meta_used, 3); | 
|  |  | 
|  | return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10); | 
|  | } | 
|  |  | 
|  | static void update_global_block_rsv(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; | 
|  | struct btrfs_space_info *sinfo = block_rsv->space_info; | 
|  | u64 num_bytes; | 
|  |  | 
|  | num_bytes = calc_global_metadata_size(fs_info); | 
|  |  | 
|  | spin_lock(&block_rsv->lock); | 
|  | spin_lock(&sinfo->lock); | 
|  |  | 
|  | block_rsv->size = num_bytes; | 
|  |  | 
|  | num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + | 
|  | sinfo->bytes_reserved + sinfo->bytes_readonly + | 
|  | sinfo->bytes_may_use; | 
|  |  | 
|  | if (sinfo->total_bytes > num_bytes) { | 
|  | num_bytes = sinfo->total_bytes - num_bytes; | 
|  | block_rsv->reserved += num_bytes; | 
|  | sinfo->bytes_reserved += num_bytes; | 
|  | } | 
|  |  | 
|  | if (block_rsv->reserved >= block_rsv->size) { | 
|  | num_bytes = block_rsv->reserved - block_rsv->size; | 
|  | sinfo->bytes_reserved -= num_bytes; | 
|  | sinfo->reservation_progress++; | 
|  | block_rsv->reserved = block_rsv->size; | 
|  | block_rsv->full = 1; | 
|  | } | 
|  | #if 0 | 
|  | printk(KERN_INFO"global block rsv size %llu reserved %llu\n", | 
|  | block_rsv->size, block_rsv->reserved); | 
|  | #endif | 
|  | spin_unlock(&sinfo->lock); | 
|  | spin_unlock(&block_rsv->lock); | 
|  | } | 
|  |  | 
|  | static void init_global_block_rsv(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_space_info *space_info; | 
|  |  | 
|  | space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); | 
|  | fs_info->chunk_block_rsv.space_info = space_info; | 
|  | fs_info->chunk_block_rsv.priority = 10; | 
|  |  | 
|  | space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); | 
|  | fs_info->global_block_rsv.space_info = space_info; | 
|  | fs_info->global_block_rsv.priority = 10; | 
|  | fs_info->global_block_rsv.refill_used = 1; | 
|  | fs_info->delalloc_block_rsv.space_info = space_info; | 
|  | fs_info->trans_block_rsv.space_info = space_info; | 
|  | fs_info->empty_block_rsv.space_info = space_info; | 
|  | fs_info->empty_block_rsv.priority = 10; | 
|  |  | 
|  | fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; | 
|  | fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; | 
|  | fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; | 
|  | fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; | 
|  | fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; | 
|  |  | 
|  | btrfs_add_durable_block_rsv(fs_info, &fs_info->global_block_rsv); | 
|  |  | 
|  | btrfs_add_durable_block_rsv(fs_info, &fs_info->delalloc_block_rsv); | 
|  |  | 
|  | update_global_block_rsv(fs_info); | 
|  | } | 
|  |  | 
|  | static void release_global_block_rsv(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | block_rsv_release_bytes(&fs_info->global_block_rsv, NULL, (u64)-1); | 
|  | WARN_ON(fs_info->delalloc_block_rsv.size > 0); | 
|  | WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); | 
|  | WARN_ON(fs_info->trans_block_rsv.size > 0); | 
|  | WARN_ON(fs_info->trans_block_rsv.reserved > 0); | 
|  | WARN_ON(fs_info->chunk_block_rsv.size > 0); | 
|  | WARN_ON(fs_info->chunk_block_rsv.reserved > 0); | 
|  | } | 
|  |  | 
|  | static u64 calc_trans_metadata_size(struct btrfs_root *root, int num_items) | 
|  | { | 
|  | return (root->leafsize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) * | 
|  | 3 * num_items; | 
|  | } | 
|  |  | 
|  | int btrfs_trans_reserve_metadata(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | int num_items) | 
|  | { | 
|  | u64 num_bytes; | 
|  | int ret; | 
|  |  | 
|  | if (num_items == 0 || root->fs_info->chunk_root == root) | 
|  | return 0; | 
|  |  | 
|  | num_bytes = calc_trans_metadata_size(root, num_items); | 
|  | ret = btrfs_block_rsv_add(trans, root, &root->fs_info->trans_block_rsv, | 
|  | num_bytes); | 
|  | if (!ret) { | 
|  | trans->bytes_reserved += num_bytes; | 
|  | trans->block_rsv = &root->fs_info->trans_block_rsv; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root) | 
|  | { | 
|  | if (!trans->bytes_reserved) | 
|  | return; | 
|  |  | 
|  | BUG_ON(trans->block_rsv != &root->fs_info->trans_block_rsv); | 
|  | btrfs_block_rsv_release(root, trans->block_rsv, | 
|  | trans->bytes_reserved); | 
|  | trans->bytes_reserved = 0; | 
|  | } | 
|  |  | 
|  | int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, | 
|  | struct inode *inode) | 
|  | { | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); | 
|  | struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; | 
|  |  | 
|  | /* | 
|  | * one for deleting orphan item, one for updating inode and | 
|  | * two for calling btrfs_truncate_inode_items. | 
|  | * | 
|  | * btrfs_truncate_inode_items is a delete operation, it frees | 
|  | * more space than it uses in most cases. So two units of | 
|  | * metadata space should be enough for calling it many times. | 
|  | * If all of the metadata space is used, we can commit | 
|  | * transaction and use space it freed. | 
|  | */ | 
|  | u64 num_bytes = calc_trans_metadata_size(root, 4); | 
|  | return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); | 
|  | } | 
|  |  | 
|  | void btrfs_orphan_release_metadata(struct inode *inode) | 
|  | { | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | u64 num_bytes = calc_trans_metadata_size(root, 4); | 
|  | btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); | 
|  | } | 
|  |  | 
|  | int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_pending_snapshot *pending) | 
|  | { | 
|  | struct btrfs_root *root = pending->root; | 
|  | struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); | 
|  | struct btrfs_block_rsv *dst_rsv = &pending->block_rsv; | 
|  | /* | 
|  | * two for root back/forward refs, two for directory entries | 
|  | * and one for root of the snapshot. | 
|  | */ | 
|  | u64 num_bytes = calc_trans_metadata_size(root, 5); | 
|  | dst_rsv->space_info = src_rsv->space_info; | 
|  | return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); | 
|  | } | 
|  |  | 
|  | static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes) | 
|  | { | 
|  | return num_bytes >>= 3; | 
|  | } | 
|  |  | 
|  | int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) | 
|  | { | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv; | 
|  | u64 to_reserve; | 
|  | int nr_extents; | 
|  | int ret; | 
|  |  | 
|  | if (btrfs_transaction_in_commit(root->fs_info)) | 
|  | schedule_timeout(1); | 
|  |  | 
|  | num_bytes = ALIGN(num_bytes, root->sectorsize); | 
|  |  | 
|  | spin_lock(&BTRFS_I(inode)->accounting_lock); | 
|  | nr_extents = atomic_read(&BTRFS_I(inode)->outstanding_extents) + 1; | 
|  | if (nr_extents > BTRFS_I(inode)->reserved_extents) { | 
|  | nr_extents -= BTRFS_I(inode)->reserved_extents; | 
|  | to_reserve = calc_trans_metadata_size(root, nr_extents); | 
|  | } else { | 
|  | nr_extents = 0; | 
|  | to_reserve = 0; | 
|  | } | 
|  | spin_unlock(&BTRFS_I(inode)->accounting_lock); | 
|  | to_reserve += calc_csum_metadata_size(inode, num_bytes); | 
|  | ret = reserve_metadata_bytes(NULL, root, block_rsv, to_reserve, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | spin_lock(&BTRFS_I(inode)->accounting_lock); | 
|  | BTRFS_I(inode)->reserved_extents += nr_extents; | 
|  | atomic_inc(&BTRFS_I(inode)->outstanding_extents); | 
|  | spin_unlock(&BTRFS_I(inode)->accounting_lock); | 
|  |  | 
|  | block_rsv_add_bytes(block_rsv, to_reserve, 1); | 
|  |  | 
|  | if (block_rsv->size > 512 * 1024 * 1024) | 
|  | shrink_delalloc(NULL, root, to_reserve, 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) | 
|  | { | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | u64 to_free; | 
|  | int nr_extents; | 
|  |  | 
|  | num_bytes = ALIGN(num_bytes, root->sectorsize); | 
|  | atomic_dec(&BTRFS_I(inode)->outstanding_extents); | 
|  | WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents) < 0); | 
|  |  | 
|  | spin_lock(&BTRFS_I(inode)->accounting_lock); | 
|  | nr_extents = atomic_read(&BTRFS_I(inode)->outstanding_extents); | 
|  | if (nr_extents < BTRFS_I(inode)->reserved_extents) { | 
|  | nr_extents = BTRFS_I(inode)->reserved_extents - nr_extents; | 
|  | BTRFS_I(inode)->reserved_extents -= nr_extents; | 
|  | } else { | 
|  | nr_extents = 0; | 
|  | } | 
|  | spin_unlock(&BTRFS_I(inode)->accounting_lock); | 
|  |  | 
|  | to_free = calc_csum_metadata_size(inode, num_bytes); | 
|  | if (nr_extents > 0) | 
|  | to_free += calc_trans_metadata_size(root, nr_extents); | 
|  |  | 
|  | btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, | 
|  | to_free); | 
|  | } | 
|  |  | 
|  | int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = btrfs_check_data_free_space(inode, num_bytes); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = btrfs_delalloc_reserve_metadata(inode, num_bytes); | 
|  | if (ret) { | 
|  | btrfs_free_reserved_data_space(inode, num_bytes); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes) | 
|  | { | 
|  | btrfs_delalloc_release_metadata(inode, num_bytes); | 
|  | btrfs_free_reserved_data_space(inode, num_bytes); | 
|  | } | 
|  |  | 
|  | static int update_block_group(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | u64 bytenr, u64 num_bytes, int alloc) | 
|  | { | 
|  | struct btrfs_block_group_cache *cache = NULL; | 
|  | struct btrfs_fs_info *info = root->fs_info; | 
|  | u64 total = num_bytes; | 
|  | u64 old_val; | 
|  | u64 byte_in_group; | 
|  | int factor; | 
|  |  | 
|  | /* block accounting for super block */ | 
|  | spin_lock(&info->delalloc_lock); | 
|  | old_val = btrfs_super_bytes_used(&info->super_copy); | 
|  | if (alloc) | 
|  | old_val += num_bytes; | 
|  | else | 
|  | old_val -= num_bytes; | 
|  | btrfs_set_super_bytes_used(&info->super_copy, old_val); | 
|  | spin_unlock(&info->delalloc_lock); | 
|  |  | 
|  | while (total) { | 
|  | cache = btrfs_lookup_block_group(info, bytenr); | 
|  | if (!cache) | 
|  | return -1; | 
|  | if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | | 
|  | BTRFS_BLOCK_GROUP_RAID1 | | 
|  | BTRFS_BLOCK_GROUP_RAID10)) | 
|  | factor = 2; | 
|  | else | 
|  | factor = 1; | 
|  | /* | 
|  | * If this block group has free space cache written out, we | 
|  | * need to make sure to load it if we are removing space.  This | 
|  | * is because we need the unpinning stage to actually add the | 
|  | * space back to the block group, otherwise we will leak space. | 
|  | */ | 
|  | if (!alloc && cache->cached == BTRFS_CACHE_NO) | 
|  | cache_block_group(cache, trans, NULL, 1); | 
|  |  | 
|  | byte_in_group = bytenr - cache->key.objectid; | 
|  | WARN_ON(byte_in_group > cache->key.offset); | 
|  |  | 
|  | spin_lock(&cache->space_info->lock); | 
|  | spin_lock(&cache->lock); | 
|  |  | 
|  | if (btrfs_super_cache_generation(&info->super_copy) != 0 && | 
|  | cache->disk_cache_state < BTRFS_DC_CLEAR) | 
|  | cache->disk_cache_state = BTRFS_DC_CLEAR; | 
|  |  | 
|  | cache->dirty = 1; | 
|  | old_val = btrfs_block_group_used(&cache->item); | 
|  | num_bytes = min(total, cache->key.offset - byte_in_group); | 
|  | if (alloc) { | 
|  | old_val += num_bytes; | 
|  | btrfs_set_block_group_used(&cache->item, old_val); | 
|  | cache->reserved -= num_bytes; | 
|  | cache->space_info->bytes_reserved -= num_bytes; | 
|  | cache->space_info->reservation_progress++; | 
|  | cache->space_info->bytes_used += num_bytes; | 
|  | cache->space_info->disk_used += num_bytes * factor; | 
|  | spin_unlock(&cache->lock); | 
|  | spin_unlock(&cache->space_info->lock); | 
|  | } else { | 
|  | old_val -= num_bytes; | 
|  | btrfs_set_block_group_used(&cache->item, old_val); | 
|  | cache->pinned += num_bytes; | 
|  | cache->space_info->bytes_pinned += num_bytes; | 
|  | cache->space_info->bytes_used -= num_bytes; | 
|  | cache->space_info->disk_used -= num_bytes * factor; | 
|  | spin_unlock(&cache->lock); | 
|  | spin_unlock(&cache->space_info->lock); | 
|  |  | 
|  | set_extent_dirty(info->pinned_extents, | 
|  | bytenr, bytenr + num_bytes - 1, | 
|  | GFP_NOFS | __GFP_NOFAIL); | 
|  | } | 
|  | btrfs_put_block_group(cache); | 
|  | total -= num_bytes; | 
|  | bytenr += num_bytes; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) | 
|  | { | 
|  | struct btrfs_block_group_cache *cache; | 
|  | u64 bytenr; | 
|  |  | 
|  | cache = btrfs_lookup_first_block_group(root->fs_info, search_start); | 
|  | if (!cache) | 
|  | return 0; | 
|  |  | 
|  | bytenr = cache->key.objectid; | 
|  | btrfs_put_block_group(cache); | 
|  |  | 
|  | return bytenr; | 
|  | } | 
|  |  | 
|  | static int pin_down_extent(struct btrfs_root *root, | 
|  | struct btrfs_block_group_cache *cache, | 
|  | u64 bytenr, u64 num_bytes, int reserved) | 
|  | { | 
|  | spin_lock(&cache->space_info->lock); | 
|  | spin_lock(&cache->lock); | 
|  | cache->pinned += num_bytes; | 
|  | cache->space_info->bytes_pinned += num_bytes; | 
|  | if (reserved) { | 
|  | cache->reserved -= num_bytes; | 
|  | cache->space_info->bytes_reserved -= num_bytes; | 
|  | cache->space_info->reservation_progress++; | 
|  | } | 
|  | spin_unlock(&cache->lock); | 
|  | spin_unlock(&cache->space_info->lock); | 
|  |  | 
|  | set_extent_dirty(root->fs_info->pinned_extents, bytenr, | 
|  | bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this function must be called within transaction | 
|  | */ | 
|  | int btrfs_pin_extent(struct btrfs_root *root, | 
|  | u64 bytenr, u64 num_bytes, int reserved) | 
|  | { | 
|  | struct btrfs_block_group_cache *cache; | 
|  |  | 
|  | cache = btrfs_lookup_block_group(root->fs_info, bytenr); | 
|  | BUG_ON(!cache); | 
|  |  | 
|  | pin_down_extent(root, cache, bytenr, num_bytes, reserved); | 
|  |  | 
|  | btrfs_put_block_group(cache); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * update size of reserved extents. this function may return -EAGAIN | 
|  | * if 'reserve' is true or 'sinfo' is false. | 
|  | */ | 
|  | static int update_reserved_bytes(struct btrfs_block_group_cache *cache, | 
|  | u64 num_bytes, int reserve, int sinfo) | 
|  | { | 
|  | int ret = 0; | 
|  | if (sinfo) { | 
|  | struct btrfs_space_info *space_info = cache->space_info; | 
|  | spin_lock(&space_info->lock); | 
|  | spin_lock(&cache->lock); | 
|  | if (reserve) { | 
|  | if (cache->ro) { | 
|  | ret = -EAGAIN; | 
|  | } else { | 
|  | cache->reserved += num_bytes; | 
|  | space_info->bytes_reserved += num_bytes; | 
|  | } | 
|  | } else { | 
|  | if (cache->ro) | 
|  | space_info->bytes_readonly += num_bytes; | 
|  | cache->reserved -= num_bytes; | 
|  | space_info->bytes_reserved -= num_bytes; | 
|  | space_info->reservation_progress++; | 
|  | } | 
|  | spin_unlock(&cache->lock); | 
|  | spin_unlock(&space_info->lock); | 
|  | } else { | 
|  | spin_lock(&cache->lock); | 
|  | if (cache->ro) { | 
|  | ret = -EAGAIN; | 
|  | } else { | 
|  | if (reserve) | 
|  | cache->reserved += num_bytes; | 
|  | else | 
|  | cache->reserved -= num_bytes; | 
|  | } | 
|  | spin_unlock(&cache->lock); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_caching_control *next; | 
|  | struct btrfs_caching_control *caching_ctl; | 
|  | struct btrfs_block_group_cache *cache; | 
|  |  | 
|  | down_write(&fs_info->extent_commit_sem); | 
|  |  | 
|  | list_for_each_entry_safe(caching_ctl, next, | 
|  | &fs_info->caching_block_groups, list) { | 
|  | cache = caching_ctl->block_group; | 
|  | if (block_group_cache_done(cache)) { | 
|  | cache->last_byte_to_unpin = (u64)-1; | 
|  | list_del_init(&caching_ctl->list); | 
|  | put_caching_control(caching_ctl); | 
|  | } else { | 
|  | cache->last_byte_to_unpin = caching_ctl->progress; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (fs_info->pinned_extents == &fs_info->freed_extents[0]) | 
|  | fs_info->pinned_extents = &fs_info->freed_extents[1]; | 
|  | else | 
|  | fs_info->pinned_extents = &fs_info->freed_extents[0]; | 
|  |  | 
|  | up_write(&fs_info->extent_commit_sem); | 
|  |  | 
|  | update_global_block_rsv(fs_info); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_block_group_cache *cache = NULL; | 
|  | u64 len; | 
|  |  | 
|  | while (start <= end) { | 
|  | if (!cache || | 
|  | start >= cache->key.objectid + cache->key.offset) { | 
|  | if (cache) | 
|  | btrfs_put_block_group(cache); | 
|  | cache = btrfs_lookup_block_group(fs_info, start); | 
|  | BUG_ON(!cache); | 
|  | } | 
|  |  | 
|  | len = cache->key.objectid + cache->key.offset - start; | 
|  | len = min(len, end + 1 - start); | 
|  |  | 
|  | if (start < cache->last_byte_to_unpin) { | 
|  | len = min(len, cache->last_byte_to_unpin - start); | 
|  | btrfs_add_free_space(cache, start, len); | 
|  | } | 
|  |  | 
|  | start += len; | 
|  |  | 
|  | spin_lock(&cache->space_info->lock); | 
|  | spin_lock(&cache->lock); | 
|  | cache->pinned -= len; | 
|  | cache->space_info->bytes_pinned -= len; | 
|  | if (cache->ro) { | 
|  | cache->space_info->bytes_readonly += len; | 
|  | } else if (cache->reserved_pinned > 0) { | 
|  | len = min(len, cache->reserved_pinned); | 
|  | cache->reserved_pinned -= len; | 
|  | cache->space_info->bytes_reserved += len; | 
|  | } | 
|  | spin_unlock(&cache->lock); | 
|  | spin_unlock(&cache->space_info->lock); | 
|  | } | 
|  |  | 
|  | if (cache) | 
|  | btrfs_put_block_group(cache); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct extent_io_tree *unpin; | 
|  | struct btrfs_block_rsv *block_rsv; | 
|  | struct btrfs_block_rsv *next_rsv; | 
|  | u64 start; | 
|  | u64 end; | 
|  | int idx; | 
|  | int ret; | 
|  |  | 
|  | if (fs_info->pinned_extents == &fs_info->freed_extents[0]) | 
|  | unpin = &fs_info->freed_extents[1]; | 
|  | else | 
|  | unpin = &fs_info->freed_extents[0]; | 
|  |  | 
|  | while (1) { | 
|  | ret = find_first_extent_bit(unpin, 0, &start, &end, | 
|  | EXTENT_DIRTY); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | ret = btrfs_discard_extent(root, start, end + 1 - start); | 
|  |  | 
|  | clear_extent_dirty(unpin, start, end, GFP_NOFS); | 
|  | unpin_extent_range(root, start, end); | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | mutex_lock(&fs_info->durable_block_rsv_mutex); | 
|  | list_for_each_entry_safe(block_rsv, next_rsv, | 
|  | &fs_info->durable_block_rsv_list, list) { | 
|  |  | 
|  | idx = trans->transid & 0x1; | 
|  | if (block_rsv->freed[idx] > 0) { | 
|  | block_rsv_add_bytes(block_rsv, | 
|  | block_rsv->freed[idx], 0); | 
|  | block_rsv->freed[idx] = 0; | 
|  | } | 
|  | if (atomic_read(&block_rsv->usage) == 0) { | 
|  | btrfs_block_rsv_release(root, block_rsv, (u64)-1); | 
|  |  | 
|  | if (block_rsv->freed[0] == 0 && | 
|  | block_rsv->freed[1] == 0) { | 
|  | list_del_init(&block_rsv->list); | 
|  | kfree(block_rsv); | 
|  | } | 
|  | } else { | 
|  | btrfs_block_rsv_release(root, block_rsv, 0); | 
|  | } | 
|  | } | 
|  | mutex_unlock(&fs_info->durable_block_rsv_mutex); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __btrfs_free_extent(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | u64 bytenr, u64 num_bytes, u64 parent, | 
|  | u64 root_objectid, u64 owner_objectid, | 
|  | u64 owner_offset, int refs_to_drop, | 
|  | struct btrfs_delayed_extent_op *extent_op) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_fs_info *info = root->fs_info; | 
|  | struct btrfs_root *extent_root = info->extent_root; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_extent_item *ei; | 
|  | struct btrfs_extent_inline_ref *iref; | 
|  | int ret; | 
|  | int is_data; | 
|  | int extent_slot = 0; | 
|  | int found_extent = 0; | 
|  | int num_to_del = 1; | 
|  | u32 item_size; | 
|  | u64 refs; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | path->reada = 1; | 
|  | path->leave_spinning = 1; | 
|  |  | 
|  | is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; | 
|  | BUG_ON(!is_data && refs_to_drop != 1); | 
|  |  | 
|  | ret = lookup_extent_backref(trans, extent_root, path, &iref, | 
|  | bytenr, num_bytes, parent, | 
|  | root_objectid, owner_objectid, | 
|  | owner_offset); | 
|  | if (ret == 0) { | 
|  | extent_slot = path->slots[0]; | 
|  | while (extent_slot >= 0) { | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, | 
|  | extent_slot); | 
|  | if (key.objectid != bytenr) | 
|  | break; | 
|  | if (key.type == BTRFS_EXTENT_ITEM_KEY && | 
|  | key.offset == num_bytes) { | 
|  | found_extent = 1; | 
|  | break; | 
|  | } | 
|  | if (path->slots[0] - extent_slot > 5) | 
|  | break; | 
|  | extent_slot--; | 
|  | } | 
|  | #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 | 
|  | item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); | 
|  | if (found_extent && item_size < sizeof(*ei)) | 
|  | found_extent = 0; | 
|  | #endif | 
|  | if (!found_extent) { | 
|  | BUG_ON(iref); | 
|  | ret = remove_extent_backref(trans, extent_root, path, | 
|  | NULL, refs_to_drop, | 
|  | is_data); | 
|  | BUG_ON(ret); | 
|  | btrfs_release_path(extent_root, path); | 
|  | path->leave_spinning = 1; | 
|  |  | 
|  | key.objectid = bytenr; | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | key.offset = num_bytes; | 
|  |  | 
|  | ret = btrfs_search_slot(trans, extent_root, | 
|  | &key, path, -1, 1); | 
|  | if (ret) { | 
|  | printk(KERN_ERR "umm, got %d back from search" | 
|  | ", was looking for %llu\n", ret, | 
|  | (unsigned long long)bytenr); | 
|  | btrfs_print_leaf(extent_root, path->nodes[0]); | 
|  | } | 
|  | BUG_ON(ret); | 
|  | extent_slot = path->slots[0]; | 
|  | } | 
|  | } else { | 
|  | btrfs_print_leaf(extent_root, path->nodes[0]); | 
|  | WARN_ON(1); | 
|  | printk(KERN_ERR "btrfs unable to find ref byte nr %llu " | 
|  | "parent %llu root %llu  owner %llu offset %llu\n", | 
|  | (unsigned long long)bytenr, | 
|  | (unsigned long long)parent, | 
|  | (unsigned long long)root_objectid, | 
|  | (unsigned long long)owner_objectid, | 
|  | (unsigned long long)owner_offset); | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | item_size = btrfs_item_size_nr(leaf, extent_slot); | 
|  | #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 | 
|  | if (item_size < sizeof(*ei)) { | 
|  | BUG_ON(found_extent || extent_slot != path->slots[0]); | 
|  | ret = convert_extent_item_v0(trans, extent_root, path, | 
|  | owner_objectid, 0); | 
|  | BUG_ON(ret < 0); | 
|  |  | 
|  | btrfs_release_path(extent_root, path); | 
|  | path->leave_spinning = 1; | 
|  |  | 
|  | key.objectid = bytenr; | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | key.offset = num_bytes; | 
|  |  | 
|  | ret = btrfs_search_slot(trans, extent_root, &key, path, | 
|  | -1, 1); | 
|  | if (ret) { | 
|  | printk(KERN_ERR "umm, got %d back from search" | 
|  | ", was looking for %llu\n", ret, | 
|  | (unsigned long long)bytenr); | 
|  | btrfs_print_leaf(extent_root, path->nodes[0]); | 
|  | } | 
|  | BUG_ON(ret); | 
|  | extent_slot = path->slots[0]; | 
|  | leaf = path->nodes[0]; | 
|  | item_size = btrfs_item_size_nr(leaf, extent_slot); | 
|  | } | 
|  | #endif | 
|  | BUG_ON(item_size < sizeof(*ei)); | 
|  | ei = btrfs_item_ptr(leaf, extent_slot, | 
|  | struct btrfs_extent_item); | 
|  | if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) { | 
|  | struct btrfs_tree_block_info *bi; | 
|  | BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); | 
|  | bi = (struct btrfs_tree_block_info *)(ei + 1); | 
|  | WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); | 
|  | } | 
|  |  | 
|  | refs = btrfs_extent_refs(leaf, ei); | 
|  | BUG_ON(refs < refs_to_drop); | 
|  | refs -= refs_to_drop; | 
|  |  | 
|  | if (refs > 0) { | 
|  | if (extent_op) | 
|  | __run_delayed_extent_op(extent_op, leaf, ei); | 
|  | /* | 
|  | * In the case of inline back ref, reference count will | 
|  | * be updated by remove_extent_backref | 
|  | */ | 
|  | if (iref) { | 
|  | BUG_ON(!found_extent); | 
|  | } else { | 
|  | btrfs_set_extent_refs(leaf, ei, refs); | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | } | 
|  | if (found_extent) { | 
|  | ret = remove_extent_backref(trans, extent_root, path, | 
|  | iref, refs_to_drop, | 
|  | is_data); | 
|  | BUG_ON(ret); | 
|  | } | 
|  | } else { | 
|  | if (found_extent) { | 
|  | BUG_ON(is_data && refs_to_drop != | 
|  | extent_data_ref_count(root, path, iref)); | 
|  | if (iref) { | 
|  | BUG_ON(path->slots[0] != extent_slot); | 
|  | } else { | 
|  | BUG_ON(path->slots[0] != extent_slot + 1); | 
|  | path->slots[0] = extent_slot; | 
|  | num_to_del = 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = btrfs_del_items(trans, extent_root, path, path->slots[0], | 
|  | num_to_del); | 
|  | BUG_ON(ret); | 
|  | btrfs_release_path(extent_root, path); | 
|  |  | 
|  | if (is_data) { | 
|  | ret = btrfs_del_csums(trans, root, bytenr, num_bytes); | 
|  | BUG_ON(ret); | 
|  | } else { | 
|  | invalidate_mapping_pages(info->btree_inode->i_mapping, | 
|  | bytenr >> PAGE_CACHE_SHIFT, | 
|  | (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT); | 
|  | } | 
|  |  | 
|  | ret = update_block_group(trans, root, bytenr, num_bytes, 0); | 
|  | BUG_ON(ret); | 
|  | } | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * when we free an block, it is possible (and likely) that we free the last | 
|  | * delayed ref for that extent as well.  This searches the delayed ref tree for | 
|  | * a given extent, and if there are no other delayed refs to be processed, it | 
|  | * removes it from the tree. | 
|  | */ | 
|  | static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, u64 bytenr) | 
|  | { | 
|  | struct btrfs_delayed_ref_head *head; | 
|  | struct btrfs_delayed_ref_root *delayed_refs; | 
|  | struct btrfs_delayed_ref_node *ref; | 
|  | struct rb_node *node; | 
|  | int ret = 0; | 
|  |  | 
|  | delayed_refs = &trans->transaction->delayed_refs; | 
|  | spin_lock(&delayed_refs->lock); | 
|  | head = btrfs_find_delayed_ref_head(trans, bytenr); | 
|  | if (!head) | 
|  | goto out; | 
|  |  | 
|  | node = rb_prev(&head->node.rb_node); | 
|  | if (!node) | 
|  | goto out; | 
|  |  | 
|  | ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); | 
|  |  | 
|  | /* there are still entries for this ref, we can't drop it */ | 
|  | if (ref->bytenr == bytenr) | 
|  | goto out; | 
|  |  | 
|  | if (head->extent_op) { | 
|  | if (!head->must_insert_reserved) | 
|  | goto out; | 
|  | kfree(head->extent_op); | 
|  | head->extent_op = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * waiting for the lock here would deadlock.  If someone else has it | 
|  | * locked they are already in the process of dropping it anyway | 
|  | */ | 
|  | if (!mutex_trylock(&head->mutex)) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * at this point we have a head with no other entries.  Go | 
|  | * ahead and process it. | 
|  | */ | 
|  | head->node.in_tree = 0; | 
|  | rb_erase(&head->node.rb_node, &delayed_refs->root); | 
|  |  | 
|  | delayed_refs->num_entries--; | 
|  |  | 
|  | /* | 
|  | * we don't take a ref on the node because we're removing it from the | 
|  | * tree, so we just steal the ref the tree was holding. | 
|  | */ | 
|  | delayed_refs->num_heads--; | 
|  | if (list_empty(&head->cluster)) | 
|  | delayed_refs->num_heads_ready--; | 
|  |  | 
|  | list_del_init(&head->cluster); | 
|  | spin_unlock(&delayed_refs->lock); | 
|  |  | 
|  | BUG_ON(head->extent_op); | 
|  | if (head->must_insert_reserved) | 
|  | ret = 1; | 
|  |  | 
|  | mutex_unlock(&head->mutex); | 
|  | btrfs_put_delayed_ref(&head->node); | 
|  | return ret; | 
|  | out: | 
|  | spin_unlock(&delayed_refs->lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void btrfs_free_tree_block(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct extent_buffer *buf, | 
|  | u64 parent, int last_ref) | 
|  | { | 
|  | struct btrfs_block_rsv *block_rsv; | 
|  | struct btrfs_block_group_cache *cache = NULL; | 
|  | int ret; | 
|  |  | 
|  | if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { | 
|  | ret = btrfs_add_delayed_tree_ref(trans, buf->start, buf->len, | 
|  | parent, root->root_key.objectid, | 
|  | btrfs_header_level(buf), | 
|  | BTRFS_DROP_DELAYED_REF, NULL); | 
|  | BUG_ON(ret); | 
|  | } | 
|  |  | 
|  | if (!last_ref) | 
|  | return; | 
|  |  | 
|  | block_rsv = get_block_rsv(trans, root); | 
|  | cache = btrfs_lookup_block_group(root->fs_info, buf->start); | 
|  | if (block_rsv->space_info != cache->space_info) | 
|  | goto out; | 
|  |  | 
|  | if (btrfs_header_generation(buf) == trans->transid) { | 
|  | if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { | 
|  | ret = check_ref_cleanup(trans, root, buf->start); | 
|  | if (!ret) | 
|  | goto pin; | 
|  | } | 
|  |  | 
|  | if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { | 
|  | pin_down_extent(root, cache, buf->start, buf->len, 1); | 
|  | goto pin; | 
|  | } | 
|  |  | 
|  | WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); | 
|  |  | 
|  | btrfs_add_free_space(cache, buf->start, buf->len); | 
|  | ret = update_reserved_bytes(cache, buf->len, 0, 0); | 
|  | if (ret == -EAGAIN) { | 
|  | /* block group became read-only */ | 
|  | update_reserved_bytes(cache, buf->len, 0, 1); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = 1; | 
|  | spin_lock(&block_rsv->lock); | 
|  | if (block_rsv->reserved < block_rsv->size) { | 
|  | block_rsv->reserved += buf->len; | 
|  | ret = 0; | 
|  | } | 
|  | spin_unlock(&block_rsv->lock); | 
|  |  | 
|  | if (ret) { | 
|  | spin_lock(&cache->space_info->lock); | 
|  | cache->space_info->bytes_reserved -= buf->len; | 
|  | cache->space_info->reservation_progress++; | 
|  | spin_unlock(&cache->space_info->lock); | 
|  | } | 
|  | goto out; | 
|  | } | 
|  | pin: | 
|  | if (block_rsv->durable && !cache->ro) { | 
|  | ret = 0; | 
|  | spin_lock(&cache->lock); | 
|  | if (!cache->ro) { | 
|  | cache->reserved_pinned += buf->len; | 
|  | ret = 1; | 
|  | } | 
|  | spin_unlock(&cache->lock); | 
|  |  | 
|  | if (ret) { | 
|  | spin_lock(&block_rsv->lock); | 
|  | block_rsv->freed[trans->transid & 0x1] += buf->len; | 
|  | spin_unlock(&block_rsv->lock); | 
|  | } | 
|  | } | 
|  | out: | 
|  | btrfs_put_block_group(cache); | 
|  | } | 
|  |  | 
|  | int btrfs_free_extent(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | u64 bytenr, u64 num_bytes, u64 parent, | 
|  | u64 root_objectid, u64 owner, u64 offset) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * tree log blocks never actually go into the extent allocation | 
|  | * tree, just update pinning info and exit early. | 
|  | */ | 
|  | if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { | 
|  | WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); | 
|  | /* unlocks the pinned mutex */ | 
|  | btrfs_pin_extent(root, bytenr, num_bytes, 1); | 
|  | ret = 0; | 
|  | } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { | 
|  | ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes, | 
|  | parent, root_objectid, (int)owner, | 
|  | BTRFS_DROP_DELAYED_REF, NULL); | 
|  | BUG_ON(ret); | 
|  | } else { | 
|  | ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes, | 
|  | parent, root_objectid, owner, | 
|  | offset, BTRFS_DROP_DELAYED_REF, NULL); | 
|  | BUG_ON(ret); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static u64 stripe_align(struct btrfs_root *root, u64 val) | 
|  | { | 
|  | u64 mask = ((u64)root->stripesize - 1); | 
|  | u64 ret = (val + mask) & ~mask; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * when we wait for progress in the block group caching, its because | 
|  | * our allocation attempt failed at least once.  So, we must sleep | 
|  | * and let some progress happen before we try again. | 
|  | * | 
|  | * This function will sleep at least once waiting for new free space to | 
|  | * show up, and then it will check the block group free space numbers | 
|  | * for our min num_bytes.  Another option is to have it go ahead | 
|  | * and look in the rbtree for a free extent of a given size, but this | 
|  | * is a good start. | 
|  | */ | 
|  | static noinline int | 
|  | wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, | 
|  | u64 num_bytes) | 
|  | { | 
|  | struct btrfs_caching_control *caching_ctl; | 
|  | DEFINE_WAIT(wait); | 
|  |  | 
|  | caching_ctl = get_caching_control(cache); | 
|  | if (!caching_ctl) | 
|  | return 0; | 
|  |  | 
|  | wait_event(caching_ctl->wait, block_group_cache_done(cache) || | 
|  | (cache->free_space >= num_bytes)); | 
|  |  | 
|  | put_caching_control(caching_ctl); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static noinline int | 
|  | wait_block_group_cache_done(struct btrfs_block_group_cache *cache) | 
|  | { | 
|  | struct btrfs_caching_control *caching_ctl; | 
|  | DEFINE_WAIT(wait); | 
|  |  | 
|  | caching_ctl = get_caching_control(cache); | 
|  | if (!caching_ctl) | 
|  | return 0; | 
|  |  | 
|  | wait_event(caching_ctl->wait, block_group_cache_done(cache)); | 
|  |  | 
|  | put_caching_control(caching_ctl); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int get_block_group_index(struct btrfs_block_group_cache *cache) | 
|  | { | 
|  | int index; | 
|  | if (cache->flags & BTRFS_BLOCK_GROUP_RAID10) | 
|  | index = 0; | 
|  | else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1) | 
|  | index = 1; | 
|  | else if (cache->flags & BTRFS_BLOCK_GROUP_DUP) | 
|  | index = 2; | 
|  | else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0) | 
|  | index = 3; | 
|  | else | 
|  | index = 4; | 
|  | return index; | 
|  | } | 
|  |  | 
|  | enum btrfs_loop_type { | 
|  | LOOP_FIND_IDEAL = 0, | 
|  | LOOP_CACHING_NOWAIT = 1, | 
|  | LOOP_CACHING_WAIT = 2, | 
|  | LOOP_ALLOC_CHUNK = 3, | 
|  | LOOP_NO_EMPTY_SIZE = 4, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * walks the btree of allocated extents and find a hole of a given size. | 
|  | * The key ins is changed to record the hole: | 
|  | * ins->objectid == block start | 
|  | * ins->flags = BTRFS_EXTENT_ITEM_KEY | 
|  | * ins->offset == number of blocks | 
|  | * Any available blocks before search_start are skipped. | 
|  | */ | 
|  | static noinline int find_free_extent(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *orig_root, | 
|  | u64 num_bytes, u64 empty_size, | 
|  | u64 search_start, u64 search_end, | 
|  | u64 hint_byte, struct btrfs_key *ins, | 
|  | int data) | 
|  | { | 
|  | int ret = 0; | 
|  | struct btrfs_root *root = orig_root->fs_info->extent_root; | 
|  | struct btrfs_free_cluster *last_ptr = NULL; | 
|  | struct btrfs_block_group_cache *block_group = NULL; | 
|  | int empty_cluster = 2 * 1024 * 1024; | 
|  | int allowed_chunk_alloc = 0; | 
|  | int done_chunk_alloc = 0; | 
|  | struct btrfs_space_info *space_info; | 
|  | int last_ptr_loop = 0; | 
|  | int loop = 0; | 
|  | int index = 0; | 
|  | bool found_uncached_bg = false; | 
|  | bool failed_cluster_refill = false; | 
|  | bool failed_alloc = false; | 
|  | bool use_cluster = true; | 
|  | u64 ideal_cache_percent = 0; | 
|  | u64 ideal_cache_offset = 0; | 
|  |  | 
|  | WARN_ON(num_bytes < root->sectorsize); | 
|  | btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY); | 
|  | ins->objectid = 0; | 
|  | ins->offset = 0; | 
|  |  | 
|  | space_info = __find_space_info(root->fs_info, data); | 
|  | if (!space_info) { | 
|  | printk(KERN_ERR "No space info for %d\n", data); | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the space info is for both data and metadata it means we have a | 
|  | * small filesystem and we can't use the clustering stuff. | 
|  | */ | 
|  | if (btrfs_mixed_space_info(space_info)) | 
|  | use_cluster = false; | 
|  |  | 
|  | if (orig_root->ref_cows || empty_size) | 
|  | allowed_chunk_alloc = 1; | 
|  |  | 
|  | if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) { | 
|  | last_ptr = &root->fs_info->meta_alloc_cluster; | 
|  | if (!btrfs_test_opt(root, SSD)) | 
|  | empty_cluster = 64 * 1024; | 
|  | } | 
|  |  | 
|  | if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster && | 
|  | btrfs_test_opt(root, SSD)) { | 
|  | last_ptr = &root->fs_info->data_alloc_cluster; | 
|  | } | 
|  |  | 
|  | if (last_ptr) { | 
|  | spin_lock(&last_ptr->lock); | 
|  | if (last_ptr->block_group) | 
|  | hint_byte = last_ptr->window_start; | 
|  | spin_unlock(&last_ptr->lock); | 
|  | } | 
|  |  | 
|  | search_start = max(search_start, first_logical_byte(root, 0)); | 
|  | search_start = max(search_start, hint_byte); | 
|  |  | 
|  | if (!last_ptr) | 
|  | empty_cluster = 0; | 
|  |  | 
|  | if (search_start == hint_byte) { | 
|  | ideal_cache: | 
|  | block_group = btrfs_lookup_block_group(root->fs_info, | 
|  | search_start); | 
|  | /* | 
|  | * we don't want to use the block group if it doesn't match our | 
|  | * allocation bits, or if its not cached. | 
|  | * | 
|  | * However if we are re-searching with an ideal block group | 
|  | * picked out then we don't care that the block group is cached. | 
|  | */ | 
|  | if (block_group && block_group_bits(block_group, data) && | 
|  | (block_group->cached != BTRFS_CACHE_NO || | 
|  | search_start == ideal_cache_offset)) { | 
|  | down_read(&space_info->groups_sem); | 
|  | if (list_empty(&block_group->list) || | 
|  | block_group->ro) { | 
|  | /* | 
|  | * someone is removing this block group, | 
|  | * we can't jump into the have_block_group | 
|  | * target because our list pointers are not | 
|  | * valid | 
|  | */ | 
|  | btrfs_put_block_group(block_group); | 
|  | up_read(&space_info->groups_sem); | 
|  | } else { | 
|  | index = get_block_group_index(block_group); | 
|  | goto have_block_group; | 
|  | } | 
|  | } else if (block_group) { | 
|  | btrfs_put_block_group(block_group); | 
|  | } | 
|  | } | 
|  | search: | 
|  | down_read(&space_info->groups_sem); | 
|  | list_for_each_entry(block_group, &space_info->block_groups[index], | 
|  | list) { | 
|  | u64 offset; | 
|  | int cached; | 
|  |  | 
|  | btrfs_get_block_group(block_group); | 
|  | search_start = block_group->key.objectid; | 
|  |  | 
|  | /* | 
|  | * this can happen if we end up cycling through all the | 
|  | * raid types, but we want to make sure we only allocate | 
|  | * for the proper type. | 
|  | */ | 
|  | if (!block_group_bits(block_group, data)) { | 
|  | u64 extra = BTRFS_BLOCK_GROUP_DUP | | 
|  | BTRFS_BLOCK_GROUP_RAID1 | | 
|  | BTRFS_BLOCK_GROUP_RAID10; | 
|  |  | 
|  | /* | 
|  | * if they asked for extra copies and this block group | 
|  | * doesn't provide them, bail.  This does allow us to | 
|  | * fill raid0 from raid1. | 
|  | */ | 
|  | if ((data & extra) && !(block_group->flags & extra)) | 
|  | goto loop; | 
|  | } | 
|  |  | 
|  | have_block_group: | 
|  | if (unlikely(block_group->cached == BTRFS_CACHE_NO)) { | 
|  | u64 free_percent; | 
|  |  | 
|  | ret = cache_block_group(block_group, trans, | 
|  | orig_root, 1); | 
|  | if (block_group->cached == BTRFS_CACHE_FINISHED) | 
|  | goto have_block_group; | 
|  |  | 
|  | free_percent = btrfs_block_group_used(&block_group->item); | 
|  | free_percent *= 100; | 
|  | free_percent = div64_u64(free_percent, | 
|  | block_group->key.offset); | 
|  | free_percent = 100 - free_percent; | 
|  | if (free_percent > ideal_cache_percent && | 
|  | likely(!block_group->ro)) { | 
|  | ideal_cache_offset = block_group->key.objectid; | 
|  | ideal_cache_percent = free_percent; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We only want to start kthread caching if we are at | 
|  | * the point where we will wait for caching to make | 
|  | * progress, or if our ideal search is over and we've | 
|  | * found somebody to start caching. | 
|  | */ | 
|  | if (loop > LOOP_CACHING_NOWAIT || | 
|  | (loop > LOOP_FIND_IDEAL && | 
|  | atomic_read(&space_info->caching_threads) < 2)) { | 
|  | ret = cache_block_group(block_group, trans, | 
|  | orig_root, 0); | 
|  | BUG_ON(ret); | 
|  | } | 
|  | found_uncached_bg = true; | 
|  |  | 
|  | /* | 
|  | * If loop is set for cached only, try the next block | 
|  | * group. | 
|  | */ | 
|  | if (loop == LOOP_FIND_IDEAL) | 
|  | goto loop; | 
|  | } | 
|  |  | 
|  | cached = block_group_cache_done(block_group); | 
|  | if (unlikely(!cached)) | 
|  | found_uncached_bg = true; | 
|  |  | 
|  | if (unlikely(block_group->ro)) | 
|  | goto loop; | 
|  |  | 
|  | /* | 
|  | * Ok we want to try and use the cluster allocator, so lets look | 
|  | * there, unless we are on LOOP_NO_EMPTY_SIZE, since we will | 
|  | * have tried the cluster allocator plenty of times at this | 
|  | * point and not have found anything, so we are likely way too | 
|  | * fragmented for the clustering stuff to find anything, so lets | 
|  | * just skip it and let the allocator find whatever block it can | 
|  | * find | 
|  | */ | 
|  | if (last_ptr && loop < LOOP_NO_EMPTY_SIZE) { | 
|  | /* | 
|  | * the refill lock keeps out other | 
|  | * people trying to start a new cluster | 
|  | */ | 
|  | spin_lock(&last_ptr->refill_lock); | 
|  | if (last_ptr->block_group && | 
|  | (last_ptr->block_group->ro || | 
|  | !block_group_bits(last_ptr->block_group, data))) { | 
|  | offset = 0; | 
|  | goto refill_cluster; | 
|  | } | 
|  |  | 
|  | offset = btrfs_alloc_from_cluster(block_group, last_ptr, | 
|  | num_bytes, search_start); | 
|  | if (offset) { | 
|  | /* we have a block, we're done */ | 
|  | spin_unlock(&last_ptr->refill_lock); | 
|  | goto checks; | 
|  | } | 
|  |  | 
|  | spin_lock(&last_ptr->lock); | 
|  | /* | 
|  | * whoops, this cluster doesn't actually point to | 
|  | * this block group.  Get a ref on the block | 
|  | * group is does point to and try again | 
|  | */ | 
|  | if (!last_ptr_loop && last_ptr->block_group && | 
|  | last_ptr->block_group != block_group) { | 
|  |  | 
|  | btrfs_put_block_group(block_group); | 
|  | block_group = last_ptr->block_group; | 
|  | btrfs_get_block_group(block_group); | 
|  | spin_unlock(&last_ptr->lock); | 
|  | spin_unlock(&last_ptr->refill_lock); | 
|  |  | 
|  | last_ptr_loop = 1; | 
|  | search_start = block_group->key.objectid; | 
|  | /* | 
|  | * we know this block group is properly | 
|  | * in the list because | 
|  | * btrfs_remove_block_group, drops the | 
|  | * cluster before it removes the block | 
|  | * group from the list | 
|  | */ | 
|  | goto have_block_group; | 
|  | } | 
|  | spin_unlock(&last_ptr->lock); | 
|  | refill_cluster: | 
|  | /* | 
|  | * this cluster didn't work out, free it and | 
|  | * start over | 
|  | */ | 
|  | btrfs_return_cluster_to_free_space(NULL, last_ptr); | 
|  |  | 
|  | last_ptr_loop = 0; | 
|  |  | 
|  | /* allocate a cluster in this block group */ | 
|  | ret = btrfs_find_space_cluster(trans, root, | 
|  | block_group, last_ptr, | 
|  | offset, num_bytes, | 
|  | empty_cluster + empty_size); | 
|  | if (ret == 0) { | 
|  | /* | 
|  | * now pull our allocation out of this | 
|  | * cluster | 
|  | */ | 
|  | offset = btrfs_alloc_from_cluster(block_group, | 
|  | last_ptr, num_bytes, | 
|  | search_start); | 
|  | if (offset) { | 
|  | /* we found one, proceed */ | 
|  | spin_unlock(&last_ptr->refill_lock); | 
|  | goto checks; | 
|  | } | 
|  | } else if (!cached && loop > LOOP_CACHING_NOWAIT | 
|  | && !failed_cluster_refill) { | 
|  | spin_unlock(&last_ptr->refill_lock); | 
|  |  | 
|  | failed_cluster_refill = true; | 
|  | wait_block_group_cache_progress(block_group, | 
|  | num_bytes + empty_cluster + empty_size); | 
|  | goto have_block_group; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * at this point we either didn't find a cluster | 
|  | * or we weren't able to allocate a block from our | 
|  | * cluster.  Free the cluster we've been trying | 
|  | * to use, and go to the next block group | 
|  | */ | 
|  | btrfs_return_cluster_to_free_space(NULL, last_ptr); | 
|  | spin_unlock(&last_ptr->refill_lock); | 
|  | goto loop; | 
|  | } | 
|  |  | 
|  | offset = btrfs_find_space_for_alloc(block_group, search_start, | 
|  | num_bytes, empty_size); | 
|  | /* | 
|  | * If we didn't find a chunk, and we haven't failed on this | 
|  | * block group before, and this block group is in the middle of | 
|  | * caching and we are ok with waiting, then go ahead and wait | 
|  | * for progress to be made, and set failed_alloc to true. | 
|  | * | 
|  | * If failed_alloc is true then we've already waited on this | 
|  | * block group once and should move on to the next block group. | 
|  | */ | 
|  | if (!offset && !failed_alloc && !cached && | 
|  | loop > LOOP_CACHING_NOWAIT) { | 
|  | wait_block_group_cache_progress(block_group, | 
|  | num_bytes + empty_size); | 
|  | failed_alloc = true; | 
|  | goto have_block_group; | 
|  | } else if (!offset) { | 
|  | goto loop; | 
|  | } | 
|  | checks: | 
|  | search_start = stripe_align(root, offset); | 
|  | /* move on to the next group */ | 
|  | if (search_start + num_bytes >= search_end) { | 
|  | btrfs_add_free_space(block_group, offset, num_bytes); | 
|  | goto loop; | 
|  | } | 
|  |  | 
|  | /* move on to the next group */ | 
|  | if (search_start + num_bytes > | 
|  | block_group->key.objectid + block_group->key.offset) { | 
|  | btrfs_add_free_space(block_group, offset, num_bytes); | 
|  | goto loop; | 
|  | } | 
|  |  | 
|  | ins->objectid = search_start; | 
|  | ins->offset = num_bytes; | 
|  |  | 
|  | if (offset < search_start) | 
|  | btrfs_add_free_space(block_group, offset, | 
|  | search_start - offset); | 
|  | BUG_ON(offset > search_start); | 
|  |  | 
|  | ret = update_reserved_bytes(block_group, num_bytes, 1, | 
|  | (data & BTRFS_BLOCK_GROUP_DATA)); | 
|  | if (ret == -EAGAIN) { | 
|  | btrfs_add_free_space(block_group, offset, num_bytes); | 
|  | goto loop; | 
|  | } | 
|  |  | 
|  | /* we are all good, lets return */ | 
|  | ins->objectid = search_start; | 
|  | ins->offset = num_bytes; | 
|  |  | 
|  | if (offset < search_start) | 
|  | btrfs_add_free_space(block_group, offset, | 
|  | search_start - offset); | 
|  | BUG_ON(offset > search_start); | 
|  | break; | 
|  | loop: | 
|  | failed_cluster_refill = false; | 
|  | failed_alloc = false; | 
|  | BUG_ON(index != get_block_group_index(block_group)); | 
|  | btrfs_put_block_group(block_group); | 
|  | } | 
|  | up_read(&space_info->groups_sem); | 
|  |  | 
|  | if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) | 
|  | goto search; | 
|  |  | 
|  | /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for | 
|  | *			for them to make caching progress.  Also | 
|  | *			determine the best possible bg to cache | 
|  | * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking | 
|  | *			caching kthreads as we move along | 
|  | * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching | 
|  | * LOOP_ALLOC_CHUNK, force a chunk allocation and try again | 
|  | * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try | 
|  | *			again | 
|  | */ | 
|  | if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE && | 
|  | (found_uncached_bg || empty_size || empty_cluster || | 
|  | allowed_chunk_alloc)) { | 
|  | index = 0; | 
|  | if (loop == LOOP_FIND_IDEAL && found_uncached_bg) { | 
|  | found_uncached_bg = false; | 
|  | loop++; | 
|  | if (!ideal_cache_percent && | 
|  | atomic_read(&space_info->caching_threads)) | 
|  | goto search; | 
|  |  | 
|  | /* | 
|  | * 1 of the following 2 things have happened so far | 
|  | * | 
|  | * 1) We found an ideal block group for caching that | 
|  | * is mostly full and will cache quickly, so we might | 
|  | * as well wait for it. | 
|  | * | 
|  | * 2) We searched for cached only and we didn't find | 
|  | * anything, and we didn't start any caching kthreads | 
|  | * either, so chances are we will loop through and | 
|  | * start a couple caching kthreads, and then come back | 
|  | * around and just wait for them.  This will be slower | 
|  | * because we will have 2 caching kthreads reading at | 
|  | * the same time when we could have just started one | 
|  | * and waited for it to get far enough to give us an | 
|  | * allocation, so go ahead and go to the wait caching | 
|  | * loop. | 
|  | */ | 
|  | loop = LOOP_CACHING_WAIT; | 
|  | search_start = ideal_cache_offset; | 
|  | ideal_cache_percent = 0; | 
|  | goto ideal_cache; | 
|  | } else if (loop == LOOP_FIND_IDEAL) { | 
|  | /* | 
|  | * Didn't find a uncached bg, wait on anything we find | 
|  | * next. | 
|  | */ | 
|  | loop = LOOP_CACHING_WAIT; | 
|  | goto search; | 
|  | } | 
|  |  | 
|  | if (loop < LOOP_CACHING_WAIT) { | 
|  | loop++; | 
|  | goto search; | 
|  | } | 
|  |  | 
|  | if (loop == LOOP_ALLOC_CHUNK) { | 
|  | empty_size = 0; | 
|  | empty_cluster = 0; | 
|  | } | 
|  |  | 
|  | if (allowed_chunk_alloc) { | 
|  | ret = do_chunk_alloc(trans, root, num_bytes + | 
|  | 2 * 1024 * 1024, data, 1); | 
|  | allowed_chunk_alloc = 0; | 
|  | done_chunk_alloc = 1; | 
|  | } else if (!done_chunk_alloc) { | 
|  | space_info->force_alloc = 1; | 
|  | } | 
|  |  | 
|  | if (loop < LOOP_NO_EMPTY_SIZE) { | 
|  | loop++; | 
|  | goto search; | 
|  | } | 
|  | ret = -ENOSPC; | 
|  | } else if (!ins->objectid) { | 
|  | ret = -ENOSPC; | 
|  | } | 
|  |  | 
|  | /* we found what we needed */ | 
|  | if (ins->objectid) { | 
|  | if (!(data & BTRFS_BLOCK_GROUP_DATA)) | 
|  | trans->block_group = block_group->key.objectid; | 
|  |  | 
|  | btrfs_put_block_group(block_group); | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void dump_space_info(struct btrfs_space_info *info, u64 bytes, | 
|  | int dump_block_groups) | 
|  | { | 
|  | struct btrfs_block_group_cache *cache; | 
|  | int index = 0; | 
|  |  | 
|  | spin_lock(&info->lock); | 
|  | printk(KERN_INFO "space_info has %llu free, is %sfull\n", | 
|  | (unsigned long long)(info->total_bytes - info->bytes_used - | 
|  | info->bytes_pinned - info->bytes_reserved - | 
|  | info->bytes_readonly), | 
|  | (info->full) ? "" : "not "); | 
|  | printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, " | 
|  | "reserved=%llu, may_use=%llu, readonly=%llu\n", | 
|  | (unsigned long long)info->total_bytes, | 
|  | (unsigned long long)info->bytes_used, | 
|  | (unsigned long long)info->bytes_pinned, | 
|  | (unsigned long long)info->bytes_reserved, | 
|  | (unsigned long long)info->bytes_may_use, | 
|  | (unsigned long long)info->bytes_readonly); | 
|  | spin_unlock(&info->lock); | 
|  |  | 
|  | if (!dump_block_groups) | 
|  | return; | 
|  |  | 
|  | down_read(&info->groups_sem); | 
|  | again: | 
|  | list_for_each_entry(cache, &info->block_groups[index], list) { | 
|  | spin_lock(&cache->lock); | 
|  | printk(KERN_INFO "block group %llu has %llu bytes, %llu used " | 
|  | "%llu pinned %llu reserved\n", | 
|  | (unsigned long long)cache->key.objectid, | 
|  | (unsigned long long)cache->key.offset, | 
|  | (unsigned long long)btrfs_block_group_used(&cache->item), | 
|  | (unsigned long long)cache->pinned, | 
|  | (unsigned long long)cache->reserved); | 
|  | btrfs_dump_free_space(cache, bytes); | 
|  | spin_unlock(&cache->lock); | 
|  | } | 
|  | if (++index < BTRFS_NR_RAID_TYPES) | 
|  | goto again; | 
|  | up_read(&info->groups_sem); | 
|  | } | 
|  |  | 
|  | int btrfs_reserve_extent(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | u64 num_bytes, u64 min_alloc_size, | 
|  | u64 empty_size, u64 hint_byte, | 
|  | u64 search_end, struct btrfs_key *ins, | 
|  | u64 data) | 
|  | { | 
|  | int ret; | 
|  | u64 search_start = 0; | 
|  |  | 
|  | data = btrfs_get_alloc_profile(root, data); | 
|  | again: | 
|  | /* | 
|  | * the only place that sets empty_size is btrfs_realloc_node, which | 
|  | * is not called recursively on allocations | 
|  | */ | 
|  | if (empty_size || root->ref_cows) | 
|  | ret = do_chunk_alloc(trans, root->fs_info->extent_root, | 
|  | num_bytes + 2 * 1024 * 1024, data, 0); | 
|  |  | 
|  | WARN_ON(num_bytes < root->sectorsize); | 
|  | ret = find_free_extent(trans, root, num_bytes, empty_size, | 
|  | search_start, search_end, hint_byte, | 
|  | ins, data); | 
|  |  | 
|  | if (ret == -ENOSPC && num_bytes > min_alloc_size) { | 
|  | num_bytes = num_bytes >> 1; | 
|  | num_bytes = num_bytes & ~(root->sectorsize - 1); | 
|  | num_bytes = max(num_bytes, min_alloc_size); | 
|  | do_chunk_alloc(trans, root->fs_info->extent_root, | 
|  | num_bytes, data, 1); | 
|  | goto again; | 
|  | } | 
|  | if (ret == -ENOSPC && btrfs_test_opt(root, ENOSPC_DEBUG)) { | 
|  | struct btrfs_space_info *sinfo; | 
|  |  | 
|  | sinfo = __find_space_info(root->fs_info, data); | 
|  | printk(KERN_ERR "btrfs allocation failed flags %llu, " | 
|  | "wanted %llu\n", (unsigned long long)data, | 
|  | (unsigned long long)num_bytes); | 
|  | dump_space_info(sinfo, num_bytes, 1); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len) | 
|  | { | 
|  | struct btrfs_block_group_cache *cache; | 
|  | int ret = 0; | 
|  |  | 
|  | cache = btrfs_lookup_block_group(root->fs_info, start); | 
|  | if (!cache) { | 
|  | printk(KERN_ERR "Unable to find block group for %llu\n", | 
|  | (unsigned long long)start); | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | ret = btrfs_discard_extent(root, start, len); | 
|  |  | 
|  | btrfs_add_free_space(cache, start, len); | 
|  | update_reserved_bytes(cache, len, 0, 1); | 
|  | btrfs_put_block_group(cache); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | u64 parent, u64 root_objectid, | 
|  | u64 flags, u64 owner, u64 offset, | 
|  | struct btrfs_key *ins, int ref_mod) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_extent_item *extent_item; | 
|  | struct btrfs_extent_inline_ref *iref; | 
|  | struct btrfs_path *path; | 
|  | struct extent_buffer *leaf; | 
|  | int type; | 
|  | u32 size; | 
|  |  | 
|  | if (parent > 0) | 
|  | type = BTRFS_SHARED_DATA_REF_KEY; | 
|  | else | 
|  | type = BTRFS_EXTENT_DATA_REF_KEY; | 
|  |  | 
|  | size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | BUG_ON(!path); | 
|  |  | 
|  | path->leave_spinning = 1; | 
|  | ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, | 
|  | ins, size); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | extent_item = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_extent_item); | 
|  | btrfs_set_extent_refs(leaf, extent_item, ref_mod); | 
|  | btrfs_set_extent_generation(leaf, extent_item, trans->transid); | 
|  | btrfs_set_extent_flags(leaf, extent_item, | 
|  | flags | BTRFS_EXTENT_FLAG_DATA); | 
|  |  | 
|  | iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); | 
|  | btrfs_set_extent_inline_ref_type(leaf, iref, type); | 
|  | if (parent > 0) { | 
|  | struct btrfs_shared_data_ref *ref; | 
|  | ref = (struct btrfs_shared_data_ref *)(iref + 1); | 
|  | btrfs_set_extent_inline_ref_offset(leaf, iref, parent); | 
|  | btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); | 
|  | } else { | 
|  | struct btrfs_extent_data_ref *ref; | 
|  | ref = (struct btrfs_extent_data_ref *)(&iref->offset); | 
|  | btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); | 
|  | btrfs_set_extent_data_ref_objectid(leaf, ref, owner); | 
|  | btrfs_set_extent_data_ref_offset(leaf, ref, offset); | 
|  | btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); | 
|  | } | 
|  |  | 
|  | btrfs_mark_buffer_dirty(path->nodes[0]); | 
|  | btrfs_free_path(path); | 
|  |  | 
|  | ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); | 
|  | if (ret) { | 
|  | printk(KERN_ERR "btrfs update block group failed for %llu " | 
|  | "%llu\n", (unsigned long long)ins->objectid, | 
|  | (unsigned long long)ins->offset); | 
|  | BUG(); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | u64 parent, u64 root_objectid, | 
|  | u64 flags, struct btrfs_disk_key *key, | 
|  | int level, struct btrfs_key *ins) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_extent_item *extent_item; | 
|  | struct btrfs_tree_block_info *block_info; | 
|  | struct btrfs_extent_inline_ref *iref; | 
|  | struct btrfs_path *path; | 
|  | struct extent_buffer *leaf; | 
|  | u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref); | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | BUG_ON(!path); | 
|  |  | 
|  | path->leave_spinning = 1; | 
|  | ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, | 
|  | ins, size); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | extent_item = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_extent_item); | 
|  | btrfs_set_extent_refs(leaf, extent_item, 1); | 
|  | btrfs_set_extent_generation(leaf, extent_item, trans->transid); | 
|  | btrfs_set_extent_flags(leaf, extent_item, | 
|  | flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); | 
|  | block_info = (struct btrfs_tree_block_info *)(extent_item + 1); | 
|  |  | 
|  | btrfs_set_tree_block_key(leaf, block_info, key); | 
|  | btrfs_set_tree_block_level(leaf, block_info, level); | 
|  |  | 
|  | iref = (struct btrfs_extent_inline_ref *)(block_info + 1); | 
|  | if (parent > 0) { | 
|  | BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); | 
|  | btrfs_set_extent_inline_ref_type(leaf, iref, | 
|  | BTRFS_SHARED_BLOCK_REF_KEY); | 
|  | btrfs_set_extent_inline_ref_offset(leaf, iref, parent); | 
|  | } else { | 
|  | btrfs_set_extent_inline_ref_type(leaf, iref, | 
|  | BTRFS_TREE_BLOCK_REF_KEY); | 
|  | btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); | 
|  | } | 
|  |  | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | btrfs_free_path(path); | 
|  |  | 
|  | ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); | 
|  | if (ret) { | 
|  | printk(KERN_ERR "btrfs update block group failed for %llu " | 
|  | "%llu\n", (unsigned long long)ins->objectid, | 
|  | (unsigned long long)ins->offset); | 
|  | BUG(); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | u64 root_objectid, u64 owner, | 
|  | u64 offset, struct btrfs_key *ins) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); | 
|  |  | 
|  | ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset, | 
|  | 0, root_objectid, owner, offset, | 
|  | BTRFS_ADD_DELAYED_EXTENT, NULL); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this is used by the tree logging recovery code.  It records that | 
|  | * an extent has been allocated and makes sure to clear the free | 
|  | * space cache bits as well | 
|  | */ | 
|  | int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | u64 root_objectid, u64 owner, u64 offset, | 
|  | struct btrfs_key *ins) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_block_group_cache *block_group; | 
|  | struct btrfs_caching_control *caching_ctl; | 
|  | u64 start = ins->objectid; | 
|  | u64 num_bytes = ins->offset; | 
|  |  | 
|  | block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); | 
|  | cache_block_group(block_group, trans, NULL, 0); | 
|  | caching_ctl = get_caching_control(block_group); | 
|  |  | 
|  | if (!caching_ctl) { | 
|  | BUG_ON(!block_group_cache_done(block_group)); | 
|  | ret = btrfs_remove_free_space(block_group, start, num_bytes); | 
|  | BUG_ON(ret); | 
|  | } else { | 
|  | mutex_lock(&caching_ctl->mutex); | 
|  |  | 
|  | if (start >= caching_ctl->progress) { | 
|  | ret = add_excluded_extent(root, start, num_bytes); | 
|  | BUG_ON(ret); | 
|  | } else if (start + num_bytes <= caching_ctl->progress) { | 
|  | ret = btrfs_remove_free_space(block_group, | 
|  | start, num_bytes); | 
|  | BUG_ON(ret); | 
|  | } else { | 
|  | num_bytes = caching_ctl->progress - start; | 
|  | ret = btrfs_remove_free_space(block_group, | 
|  | start, num_bytes); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | start = caching_ctl->progress; | 
|  | num_bytes = ins->objectid + ins->offset - | 
|  | caching_ctl->progress; | 
|  | ret = add_excluded_extent(root, start, num_bytes); | 
|  | BUG_ON(ret); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&caching_ctl->mutex); | 
|  | put_caching_control(caching_ctl); | 
|  | } | 
|  |  | 
|  | ret = update_reserved_bytes(block_group, ins->offset, 1, 1); | 
|  | BUG_ON(ret); | 
|  | btrfs_put_block_group(block_group); | 
|  | ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, | 
|  | 0, owner, offset, ins, 1); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | u64 bytenr, u32 blocksize, | 
|  | int level) | 
|  | { | 
|  | struct extent_buffer *buf; | 
|  |  | 
|  | buf = btrfs_find_create_tree_block(root, bytenr, blocksize); | 
|  | if (!buf) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | btrfs_set_header_generation(buf, trans->transid); | 
|  | btrfs_set_buffer_lockdep_class(buf, level); | 
|  | btrfs_tree_lock(buf); | 
|  | clean_tree_block(trans, root, buf); | 
|  |  | 
|  | btrfs_set_lock_blocking(buf); | 
|  | btrfs_set_buffer_uptodate(buf); | 
|  |  | 
|  | if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { | 
|  | /* | 
|  | * we allow two log transactions at a time, use different | 
|  | * EXENT bit to differentiate dirty pages. | 
|  | */ | 
|  | if (root->log_transid % 2 == 0) | 
|  | set_extent_dirty(&root->dirty_log_pages, buf->start, | 
|  | buf->start + buf->len - 1, GFP_NOFS); | 
|  | else | 
|  | set_extent_new(&root->dirty_log_pages, buf->start, | 
|  | buf->start + buf->len - 1, GFP_NOFS); | 
|  | } else { | 
|  | set_extent_dirty(&trans->transaction->dirty_pages, buf->start, | 
|  | buf->start + buf->len - 1, GFP_NOFS); | 
|  | } | 
|  | trans->blocks_used++; | 
|  | /* this returns a buffer locked for blocking */ | 
|  | return buf; | 
|  | } | 
|  |  | 
|  | static struct btrfs_block_rsv * | 
|  | use_block_rsv(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, u32 blocksize) | 
|  | { | 
|  | struct btrfs_block_rsv *block_rsv; | 
|  | struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; | 
|  | int ret; | 
|  |  | 
|  | block_rsv = get_block_rsv(trans, root); | 
|  |  | 
|  | if (block_rsv->size == 0) { | 
|  | ret = reserve_metadata_bytes(trans, root, block_rsv, | 
|  | blocksize, 0); | 
|  | /* | 
|  | * If we couldn't reserve metadata bytes try and use some from | 
|  | * the global reserve. | 
|  | */ | 
|  | if (ret && block_rsv != global_rsv) { | 
|  | ret = block_rsv_use_bytes(global_rsv, blocksize); | 
|  | if (!ret) | 
|  | return global_rsv; | 
|  | return ERR_PTR(ret); | 
|  | } else if (ret) { | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  | return block_rsv; | 
|  | } | 
|  |  | 
|  | ret = block_rsv_use_bytes(block_rsv, blocksize); | 
|  | if (!ret) | 
|  | return block_rsv; | 
|  | if (ret) { | 
|  | WARN_ON(1); | 
|  | ret = reserve_metadata_bytes(trans, root, block_rsv, blocksize, | 
|  | 0); | 
|  | if (!ret) { | 
|  | spin_lock(&block_rsv->lock); | 
|  | block_rsv->size += blocksize; | 
|  | spin_unlock(&block_rsv->lock); | 
|  | return block_rsv; | 
|  | } else if (ret && block_rsv != global_rsv) { | 
|  | ret = block_rsv_use_bytes(global_rsv, blocksize); | 
|  | if (!ret) | 
|  | return global_rsv; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ERR_PTR(-ENOSPC); | 
|  | } | 
|  |  | 
|  | static void unuse_block_rsv(struct btrfs_block_rsv *block_rsv, u32 blocksize) | 
|  | { | 
|  | block_rsv_add_bytes(block_rsv, blocksize, 0); | 
|  | block_rsv_release_bytes(block_rsv, NULL, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * finds a free extent and does all the dirty work required for allocation | 
|  | * returns the key for the extent through ins, and a tree buffer for | 
|  | * the first block of the extent through buf. | 
|  | * | 
|  | * returns the tree buffer or NULL. | 
|  | */ | 
|  | struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, u32 blocksize, | 
|  | u64 parent, u64 root_objectid, | 
|  | struct btrfs_disk_key *key, int level, | 
|  | u64 hint, u64 empty_size) | 
|  | { | 
|  | struct btrfs_key ins; | 
|  | struct btrfs_block_rsv *block_rsv; | 
|  | struct extent_buffer *buf; | 
|  | u64 flags = 0; | 
|  | int ret; | 
|  |  | 
|  |  | 
|  | block_rsv = use_block_rsv(trans, root, blocksize); | 
|  | if (IS_ERR(block_rsv)) | 
|  | return ERR_CAST(block_rsv); | 
|  |  | 
|  | ret = btrfs_reserve_extent(trans, root, blocksize, blocksize, | 
|  | empty_size, hint, (u64)-1, &ins, 0); | 
|  | if (ret) { | 
|  | unuse_block_rsv(block_rsv, blocksize); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | buf = btrfs_init_new_buffer(trans, root, ins.objectid, | 
|  | blocksize, level); | 
|  | BUG_ON(IS_ERR(buf)); | 
|  |  | 
|  | if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { | 
|  | if (parent == 0) | 
|  | parent = ins.objectid; | 
|  | flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; | 
|  | } else | 
|  | BUG_ON(parent > 0); | 
|  |  | 
|  | if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { | 
|  | struct btrfs_delayed_extent_op *extent_op; | 
|  | extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS); | 
|  | BUG_ON(!extent_op); | 
|  | if (key) | 
|  | memcpy(&extent_op->key, key, sizeof(extent_op->key)); | 
|  | else | 
|  | memset(&extent_op->key, 0, sizeof(extent_op->key)); | 
|  | extent_op->flags_to_set = flags; | 
|  | extent_op->update_key = 1; | 
|  | extent_op->update_flags = 1; | 
|  | extent_op->is_data = 0; | 
|  |  | 
|  | ret = btrfs_add_delayed_tree_ref(trans, ins.objectid, | 
|  | ins.offset, parent, root_objectid, | 
|  | level, BTRFS_ADD_DELAYED_EXTENT, | 
|  | extent_op); | 
|  | BUG_ON(ret); | 
|  | } | 
|  | return buf; | 
|  | } | 
|  |  | 
|  | struct walk_control { | 
|  | u64 refs[BTRFS_MAX_LEVEL]; | 
|  | u64 flags[BTRFS_MAX_LEVEL]; | 
|  | struct btrfs_key update_progress; | 
|  | int stage; | 
|  | int level; | 
|  | int shared_level; | 
|  | int update_ref; | 
|  | int keep_locks; | 
|  | int reada_slot; | 
|  | int reada_count; | 
|  | }; | 
|  |  | 
|  | #define DROP_REFERENCE	1 | 
|  | #define UPDATE_BACKREF	2 | 
|  |  | 
|  | static noinline void reada_walk_down(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct walk_control *wc, | 
|  | struct btrfs_path *path) | 
|  | { | 
|  | u64 bytenr; | 
|  | u64 generation; | 
|  | u64 refs; | 
|  | u64 flags; | 
|  | u32 nritems; | 
|  | u32 blocksize; | 
|  | struct btrfs_key key; | 
|  | struct extent_buffer *eb; | 
|  | int ret; | 
|  | int slot; | 
|  | int nread = 0; | 
|  |  | 
|  | if (path->slots[wc->level] < wc->reada_slot) { | 
|  | wc->reada_count = wc->reada_count * 2 / 3; | 
|  | wc->reada_count = max(wc->reada_count, 2); | 
|  | } else { | 
|  | wc->reada_count = wc->reada_count * 3 / 2; | 
|  | wc->reada_count = min_t(int, wc->reada_count, | 
|  | BTRFS_NODEPTRS_PER_BLOCK(root)); | 
|  | } | 
|  |  | 
|  | eb = path->nodes[wc->level]; | 
|  | nritems = btrfs_header_nritems(eb); | 
|  | blocksize = btrfs_level_size(root, wc->level - 1); | 
|  |  | 
|  | for (slot = path->slots[wc->level]; slot < nritems; slot++) { | 
|  | if (nread >= wc->reada_count) | 
|  | break; | 
|  |  | 
|  | cond_resched(); | 
|  | bytenr = btrfs_node_blockptr(eb, slot); | 
|  | generation = btrfs_node_ptr_generation(eb, slot); | 
|  |  | 
|  | if (slot == path->slots[wc->level]) | 
|  | goto reada; | 
|  |  | 
|  | if (wc->stage == UPDATE_BACKREF && | 
|  | generation <= root->root_key.offset) | 
|  | continue; | 
|  |  | 
|  | /* We don't lock the tree block, it's OK to be racy here */ | 
|  | ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize, | 
|  | &refs, &flags); | 
|  | BUG_ON(ret); | 
|  | BUG_ON(refs == 0); | 
|  |  | 
|  | if (wc->stage == DROP_REFERENCE) { | 
|  | if (refs == 1) | 
|  | goto reada; | 
|  |  | 
|  | if (wc->level == 1 && | 
|  | (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) | 
|  | continue; | 
|  | if (!wc->update_ref || | 
|  | generation <= root->root_key.offset) | 
|  | continue; | 
|  | btrfs_node_key_to_cpu(eb, &key, slot); | 
|  | ret = btrfs_comp_cpu_keys(&key, | 
|  | &wc->update_progress); | 
|  | if (ret < 0) | 
|  | continue; | 
|  | } else { | 
|  | if (wc->level == 1 && | 
|  | (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) | 
|  | continue; | 
|  | } | 
|  | reada: | 
|  | ret = readahead_tree_block(root, bytenr, blocksize, | 
|  | generation); | 
|  | if (ret) | 
|  | break; | 
|  | nread++; | 
|  | } | 
|  | wc->reada_slot = slot; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * hepler to process tree block while walking down the tree. | 
|  | * | 
|  | * when wc->stage == UPDATE_BACKREF, this function updates | 
|  | * back refs for pointers in the block. | 
|  | * | 
|  | * NOTE: return value 1 means we should stop walking down. | 
|  | */ | 
|  | static noinline int walk_down_proc(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct walk_control *wc, int lookup_info) | 
|  | { | 
|  | int level = wc->level; | 
|  | struct extent_buffer *eb = path->nodes[level]; | 
|  | u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; | 
|  | int ret; | 
|  |  | 
|  | if (wc->stage == UPDATE_BACKREF && | 
|  | btrfs_header_owner(eb) != root->root_key.objectid) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * when reference count of tree block is 1, it won't increase | 
|  | * again. once full backref flag is set, we never clear it. | 
|  | */ | 
|  | if (lookup_info && | 
|  | ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || | 
|  | (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { | 
|  | BUG_ON(!path->locks[level]); | 
|  | ret = btrfs_lookup_extent_info(trans, root, | 
|  | eb->start, eb->len, | 
|  | &wc->refs[level], | 
|  | &wc->flags[level]); | 
|  | BUG_ON(ret); | 
|  | BUG_ON(wc->refs[level] == 0); | 
|  | } | 
|  |  | 
|  | if (wc->stage == DROP_REFERENCE) { | 
|  | if (wc->refs[level] > 1) | 
|  | return 1; | 
|  |  | 
|  | if (path->locks[level] && !wc->keep_locks) { | 
|  | btrfs_tree_unlock(eb); | 
|  | path->locks[level] = 0; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* wc->stage == UPDATE_BACKREF */ | 
|  | if (!(wc->flags[level] & flag)) { | 
|  | BUG_ON(!path->locks[level]); | 
|  | ret = btrfs_inc_ref(trans, root, eb, 1); | 
|  | BUG_ON(ret); | 
|  | ret = btrfs_dec_ref(trans, root, eb, 0); | 
|  | BUG_ON(ret); | 
|  | ret = btrfs_set_disk_extent_flags(trans, root, eb->start, | 
|  | eb->len, flag, 0); | 
|  | BUG_ON(ret); | 
|  | wc->flags[level] |= flag; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the block is shared by multiple trees, so it's not good to | 
|  | * keep the tree lock | 
|  | */ | 
|  | if (path->locks[level] && level > 0) { | 
|  | btrfs_tree_unlock(eb); | 
|  | path->locks[level] = 0; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * hepler to process tree block pointer. | 
|  | * | 
|  | * when wc->stage == DROP_REFERENCE, this function checks | 
|  | * reference count of the block pointed to. if the block | 
|  | * is shared and we need update back refs for the subtree | 
|  | * rooted at the block, this function changes wc->stage to | 
|  | * UPDATE_BACKREF. if the block is shared and there is no | 
|  | * need to update back, this function drops the reference | 
|  | * to the block. | 
|  | * | 
|  | * NOTE: return value 1 means we should stop walking down. | 
|  | */ | 
|  | static noinline int do_walk_down(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct walk_control *wc, int *lookup_info) | 
|  | { | 
|  | u64 bytenr; | 
|  | u64 generation; | 
|  | u64 parent; | 
|  | u32 blocksize; | 
|  | struct btrfs_key key; | 
|  | struct extent_buffer *next; | 
|  | int level = wc->level; | 
|  | int reada = 0; | 
|  | int ret = 0; | 
|  |  | 
|  | generation = btrfs_node_ptr_generation(path->nodes[level], | 
|  | path->slots[level]); | 
|  | /* | 
|  | * if the lower level block was created before the snapshot | 
|  | * was created, we know there is no need to update back refs | 
|  | * for the subtree | 
|  | */ | 
|  | if (wc->stage == UPDATE_BACKREF && | 
|  | generation <= root->root_key.offset) { | 
|  | *lookup_info = 1; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); | 
|  | blocksize = btrfs_level_size(root, level - 1); | 
|  |  | 
|  | next = btrfs_find_tree_block(root, bytenr, blocksize); | 
|  | if (!next) { | 
|  | next = btrfs_find_create_tree_block(root, bytenr, blocksize); | 
|  | if (!next) | 
|  | return -ENOMEM; | 
|  | reada = 1; | 
|  | } | 
|  | btrfs_tree_lock(next); | 
|  | btrfs_set_lock_blocking(next); | 
|  |  | 
|  | ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize, | 
|  | &wc->refs[level - 1], | 
|  | &wc->flags[level - 1]); | 
|  | BUG_ON(ret); | 
|  | BUG_ON(wc->refs[level - 1] == 0); | 
|  | *lookup_info = 0; | 
|  |  | 
|  | if (wc->stage == DROP_REFERENCE) { | 
|  | if (wc->refs[level - 1] > 1) { | 
|  | if (level == 1 && | 
|  | (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) | 
|  | goto skip; | 
|  |  | 
|  | if (!wc->update_ref || | 
|  | generation <= root->root_key.offset) | 
|  | goto skip; | 
|  |  | 
|  | btrfs_node_key_to_cpu(path->nodes[level], &key, | 
|  | path->slots[level]); | 
|  | ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); | 
|  | if (ret < 0) | 
|  | goto skip; | 
|  |  | 
|  | wc->stage = UPDATE_BACKREF; | 
|  | wc->shared_level = level - 1; | 
|  | } | 
|  | } else { | 
|  | if (level == 1 && | 
|  | (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) | 
|  | goto skip; | 
|  | } | 
|  |  | 
|  | if (!btrfs_buffer_uptodate(next, generation)) { | 
|  | btrfs_tree_unlock(next); | 
|  | free_extent_buffer(next); | 
|  | next = NULL; | 
|  | *lookup_info = 1; | 
|  | } | 
|  |  | 
|  | if (!next) { | 
|  | if (reada && level == 1) | 
|  | reada_walk_down(trans, root, wc, path); | 
|  | next = read_tree_block(root, bytenr, blocksize, generation); | 
|  | btrfs_tree_lock(next); | 
|  | btrfs_set_lock_blocking(next); | 
|  | } | 
|  |  | 
|  | level--; | 
|  | BUG_ON(level != btrfs_header_level(next)); | 
|  | path->nodes[level] = next; | 
|  | path->slots[level] = 0; | 
|  | path->locks[level] = 1; | 
|  | wc->level = level; | 
|  | if (wc->level == 1) | 
|  | wc->reada_slot = 0; | 
|  | return 0; | 
|  | skip: | 
|  | wc->refs[level - 1] = 0; | 
|  | wc->flags[level - 1] = 0; | 
|  | if (wc->stage == DROP_REFERENCE) { | 
|  | if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { | 
|  | parent = path->nodes[level]->start; | 
|  | } else { | 
|  | BUG_ON(root->root_key.objectid != | 
|  | btrfs_header_owner(path->nodes[level])); | 
|  | parent = 0; | 
|  | } | 
|  |  | 
|  | ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, | 
|  | root->root_key.objectid, level - 1, 0); | 
|  | BUG_ON(ret); | 
|  | } | 
|  | btrfs_tree_unlock(next); | 
|  | free_extent_buffer(next); | 
|  | *lookup_info = 1; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * hepler to process tree block while walking up the tree. | 
|  | * | 
|  | * when wc->stage == DROP_REFERENCE, this function drops | 
|  | * reference count on the block. | 
|  | * | 
|  | * when wc->stage == UPDATE_BACKREF, this function changes | 
|  | * wc->stage back to DROP_REFERENCE if we changed wc->stage | 
|  | * to UPDATE_BACKREF previously while processing the block. | 
|  | * | 
|  | * NOTE: return value 1 means we should stop walking up. | 
|  | */ | 
|  | static noinline int walk_up_proc(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct walk_control *wc) | 
|  | { | 
|  | int ret; | 
|  | int level = wc->level; | 
|  | struct extent_buffer *eb = path->nodes[level]; | 
|  | u64 parent = 0; | 
|  |  | 
|  | if (wc->stage == UPDATE_BACKREF) { | 
|  | BUG_ON(wc->shared_level < level); | 
|  | if (level < wc->shared_level) | 
|  | goto out; | 
|  |  | 
|  | ret = find_next_key(path, level + 1, &wc->update_progress); | 
|  | if (ret > 0) | 
|  | wc->update_ref = 0; | 
|  |  | 
|  | wc->stage = DROP_REFERENCE; | 
|  | wc->shared_level = -1; | 
|  | path->slots[level] = 0; | 
|  |  | 
|  | /* | 
|  | * check reference count again if the block isn't locked. | 
|  | * we should start walking down the tree again if reference | 
|  | * count is one. | 
|  | */ | 
|  | if (!path->locks[level]) { | 
|  | BUG_ON(level == 0); | 
|  | btrfs_tree_lock(eb); | 
|  | btrfs_set_lock_blocking(eb); | 
|  | path->locks[level] = 1; | 
|  |  | 
|  | ret = btrfs_lookup_extent_info(trans, root, | 
|  | eb->start, eb->len, | 
|  | &wc->refs[level], | 
|  | &wc->flags[level]); | 
|  | BUG_ON(ret); | 
|  | BUG_ON(wc->refs[level] == 0); | 
|  | if (wc->refs[level] == 1) { | 
|  | btrfs_tree_unlock(eb); | 
|  | path->locks[level] = 0; | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* wc->stage == DROP_REFERENCE */ | 
|  | BUG_ON(wc->refs[level] > 1 && !path->locks[level]); | 
|  |  | 
|  | if (wc->refs[level] == 1) { | 
|  | if (level == 0) { | 
|  | if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) | 
|  | ret = btrfs_dec_ref(trans, root, eb, 1); | 
|  | else | 
|  | ret = btrfs_dec_ref(trans, root, eb, 0); | 
|  | BUG_ON(ret); | 
|  | } | 
|  | /* make block locked assertion in clean_tree_block happy */ | 
|  | if (!path->locks[level] && | 
|  | btrfs_header_generation(eb) == trans->transid) { | 
|  | btrfs_tree_lock(eb); | 
|  | btrfs_set_lock_blocking(eb); | 
|  | path->locks[level] = 1; | 
|  | } | 
|  | clean_tree_block(trans, root, eb); | 
|  | } | 
|  |  | 
|  | if (eb == root->node) { | 
|  | if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) | 
|  | parent = eb->start; | 
|  | else | 
|  | BUG_ON(root->root_key.objectid != | 
|  | btrfs_header_owner(eb)); | 
|  | } else { | 
|  | if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) | 
|  | parent = path->nodes[level + 1]->start; | 
|  | else | 
|  | BUG_ON(root->root_key.objectid != | 
|  | btrfs_header_owner(path->nodes[level + 1])); | 
|  | } | 
|  |  | 
|  | btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); | 
|  | out: | 
|  | wc->refs[level] = 0; | 
|  | wc->flags[level] = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static noinline int walk_down_tree(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct walk_control *wc) | 
|  | { | 
|  | int level = wc->level; | 
|  | int lookup_info = 1; | 
|  | int ret; | 
|  |  | 
|  | while (level >= 0) { | 
|  | ret = walk_down_proc(trans, root, path, wc, lookup_info); | 
|  | if (ret > 0) | 
|  | break; | 
|  |  | 
|  | if (level == 0) | 
|  | break; | 
|  |  | 
|  | if (path->slots[level] >= | 
|  | btrfs_header_nritems(path->nodes[level])) | 
|  | break; | 
|  |  | 
|  | ret = do_walk_down(trans, root, path, wc, &lookup_info); | 
|  | if (ret > 0) { | 
|  | path->slots[level]++; | 
|  | continue; | 
|  | } else if (ret < 0) | 
|  | return ret; | 
|  | level = wc->level; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static noinline int walk_up_tree(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct walk_control *wc, int max_level) | 
|  | { | 
|  | int level = wc->level; | 
|  | int ret; | 
|  |  | 
|  | path->slots[level] = btrfs_header_nritems(path->nodes[level]); | 
|  | while (level < max_level && path->nodes[level]) { | 
|  | wc->level = level; | 
|  | if (path->slots[level] + 1 < | 
|  | btrfs_header_nritems(path->nodes[level])) { | 
|  | path->slots[level]++; | 
|  | return 0; | 
|  | } else { | 
|  | ret = walk_up_proc(trans, root, path, wc); | 
|  | if (ret > 0) | 
|  | return 0; | 
|  |  | 
|  | if (path->locks[level]) { | 
|  | btrfs_tree_unlock(path->nodes[level]); | 
|  | path->locks[level] = 0; | 
|  | } | 
|  | free_extent_buffer(path->nodes[level]); | 
|  | path->nodes[level] = NULL; | 
|  | level++; | 
|  | } | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * drop a subvolume tree. | 
|  | * | 
|  | * this function traverses the tree freeing any blocks that only | 
|  | * referenced by the tree. | 
|  | * | 
|  | * when a shared tree block is found. this function decreases its | 
|  | * reference count by one. if update_ref is true, this function | 
|  | * also make sure backrefs for the shared block and all lower level | 
|  | * blocks are properly updated. | 
|  | */ | 
|  | int btrfs_drop_snapshot(struct btrfs_root *root, | 
|  | struct btrfs_block_rsv *block_rsv, int update_ref) | 
|  | { | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_root *tree_root = root->fs_info->tree_root; | 
|  | struct btrfs_root_item *root_item = &root->root_item; | 
|  | struct walk_control *wc; | 
|  | struct btrfs_key key; | 
|  | int err = 0; | 
|  | int ret; | 
|  | int level; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | BUG_ON(!path); | 
|  |  | 
|  | wc = kzalloc(sizeof(*wc), GFP_NOFS); | 
|  | BUG_ON(!wc); | 
|  |  | 
|  | trans = btrfs_start_transaction(tree_root, 0); | 
|  | BUG_ON(IS_ERR(trans)); | 
|  |  | 
|  | if (block_rsv) | 
|  | trans->block_rsv = block_rsv; | 
|  |  | 
|  | if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { | 
|  | level = btrfs_header_level(root->node); | 
|  | path->nodes[level] = btrfs_lock_root_node(root); | 
|  | btrfs_set_lock_blocking(path->nodes[level]); | 
|  | path->slots[level] = 0; | 
|  | path->locks[level] = 1; | 
|  | memset(&wc->update_progress, 0, | 
|  | sizeof(wc->update_progress)); | 
|  | } else { | 
|  | btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); | 
|  | memcpy(&wc->update_progress, &key, | 
|  | sizeof(wc->update_progress)); | 
|  |  | 
|  | level = root_item->drop_level; | 
|  | BUG_ON(level == 0); | 
|  | path->lowest_level = level; | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | path->lowest_level = 0; | 
|  | if (ret < 0) { | 
|  | err = ret; | 
|  | goto out; | 
|  | } | 
|  | WARN_ON(ret > 0); | 
|  |  | 
|  | /* | 
|  | * unlock our path, this is safe because only this | 
|  | * function is allowed to delete this snapshot | 
|  | */ | 
|  | btrfs_unlock_up_safe(path, 0); | 
|  |  | 
|  | level = btrfs_header_level(root->node); | 
|  | while (1) { | 
|  | btrfs_tree_lock(path->nodes[level]); | 
|  | btrfs_set_lock_blocking(path->nodes[level]); | 
|  |  | 
|  | ret = btrfs_lookup_extent_info(trans, root, | 
|  | path->nodes[level]->start, | 
|  | path->nodes[level]->len, | 
|  | &wc->refs[level], | 
|  | &wc->flags[level]); | 
|  | BUG_ON(ret); | 
|  | BUG_ON(wc->refs[level] == 0); | 
|  |  | 
|  | if (level == root_item->drop_level) | 
|  | break; | 
|  |  | 
|  | btrfs_tree_unlock(path->nodes[level]); | 
|  | WARN_ON(wc->refs[level] != 1); | 
|  | level--; | 
|  | } | 
|  | } | 
|  |  | 
|  | wc->level = level; | 
|  | wc->shared_level = -1; | 
|  | wc->stage = DROP_REFERENCE; | 
|  | wc->update_ref = update_ref; | 
|  | wc->keep_locks = 0; | 
|  | wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); | 
|  |  | 
|  | while (1) { | 
|  | ret = walk_down_tree(trans, root, path, wc); | 
|  | if (ret < 0) { | 
|  | err = ret; | 
|  | break; | 
|  | } | 
|  |  | 
|  | ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); | 
|  | if (ret < 0) { | 
|  | err = ret; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (ret > 0) { | 
|  | BUG_ON(wc->stage != DROP_REFERENCE); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (wc->stage == DROP_REFERENCE) { | 
|  | level = wc->level; | 
|  | btrfs_node_key(path->nodes[level], | 
|  | &root_item->drop_progress, | 
|  | path->slots[level]); | 
|  | root_item->drop_level = level; | 
|  | } | 
|  |  | 
|  | BUG_ON(wc->level == 0); | 
|  | if (btrfs_should_end_transaction(trans, tree_root)) { | 
|  | ret = btrfs_update_root(trans, tree_root, | 
|  | &root->root_key, | 
|  | root_item); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | btrfs_end_transaction_throttle(trans, tree_root); | 
|  | trans = btrfs_start_transaction(tree_root, 0); | 
|  | BUG_ON(IS_ERR(trans)); | 
|  | if (block_rsv) | 
|  | trans->block_rsv = block_rsv; | 
|  | } | 
|  | } | 
|  | btrfs_release_path(root, path); | 
|  | BUG_ON(err); | 
|  |  | 
|  | ret = btrfs_del_root(trans, tree_root, &root->root_key); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { | 
|  | ret = btrfs_find_last_root(tree_root, root->root_key.objectid, | 
|  | NULL, NULL); | 
|  | BUG_ON(ret < 0); | 
|  | if (ret > 0) { | 
|  | /* if we fail to delete the orphan item this time | 
|  | * around, it'll get picked up the next time. | 
|  | * | 
|  | * The most common failure here is just -ENOENT. | 
|  | */ | 
|  | btrfs_del_orphan_item(trans, tree_root, | 
|  | root->root_key.objectid); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (root->in_radix) { | 
|  | btrfs_free_fs_root(tree_root->fs_info, root); | 
|  | } else { | 
|  | free_extent_buffer(root->node); | 
|  | free_extent_buffer(root->commit_root); | 
|  | kfree(root); | 
|  | } | 
|  | out: | 
|  | btrfs_end_transaction_throttle(trans, tree_root); | 
|  | kfree(wc); | 
|  | btrfs_free_path(path); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * drop subtree rooted at tree block 'node'. | 
|  | * | 
|  | * NOTE: this function will unlock and release tree block 'node' | 
|  | */ | 
|  | int btrfs_drop_subtree(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct extent_buffer *node, | 
|  | struct extent_buffer *parent) | 
|  | { | 
|  | struct btrfs_path *path; | 
|  | struct walk_control *wc; | 
|  | int level; | 
|  | int parent_level; | 
|  | int ret = 0; | 
|  | int wret; | 
|  |  | 
|  | BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | BUG_ON(!path); | 
|  |  | 
|  | wc = kzalloc(sizeof(*wc), GFP_NOFS); | 
|  | BUG_ON(!wc); | 
|  |  | 
|  | btrfs_assert_tree_locked(parent); | 
|  | parent_level = btrfs_header_level(parent); | 
|  | extent_buffer_get(parent); | 
|  | path->nodes[parent_level] = parent; | 
|  | path->slots[parent_level] = btrfs_header_nritems(parent); | 
|  |  | 
|  | btrfs_assert_tree_locked(node); | 
|  | level = btrfs_header_level(node); | 
|  | path->nodes[level] = node; | 
|  | path->slots[level] = 0; | 
|  | path->locks[level] = 1; | 
|  |  | 
|  | wc->refs[parent_level] = 1; | 
|  | wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; | 
|  | wc->level = level; | 
|  | wc->shared_level = -1; | 
|  | wc->stage = DROP_REFERENCE; | 
|  | wc->update_ref = 0; | 
|  | wc->keep_locks = 1; | 
|  | wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); | 
|  |  | 
|  | while (1) { | 
|  | wret = walk_down_tree(trans, root, path, wc); | 
|  | if (wret < 0) { | 
|  | ret = wret; | 
|  | break; | 
|  | } | 
|  |  | 
|  | wret = walk_up_tree(trans, root, path, wc, parent_level); | 
|  | if (wret < 0) | 
|  | ret = wret; | 
|  | if (wret != 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | kfree(wc); | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | static unsigned long calc_ra(unsigned long start, unsigned long last, | 
|  | unsigned long nr) | 
|  | { | 
|  | return min(last, start + nr - 1); | 
|  | } | 
|  |  | 
|  | static noinline int relocate_inode_pages(struct inode *inode, u64 start, | 
|  | u64 len) | 
|  | { | 
|  | u64 page_start; | 
|  | u64 page_end; | 
|  | unsigned long first_index; | 
|  | unsigned long last_index; | 
|  | unsigned long i; | 
|  | struct page *page; | 
|  | struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; | 
|  | struct file_ra_state *ra; | 
|  | struct btrfs_ordered_extent *ordered; | 
|  | unsigned int total_read = 0; | 
|  | unsigned int total_dirty = 0; | 
|  | int ret = 0; | 
|  |  | 
|  | ra = kzalloc(sizeof(*ra), GFP_NOFS); | 
|  | if (!ra) | 
|  | return -ENOMEM; | 
|  |  | 
|  | mutex_lock(&inode->i_mutex); | 
|  | first_index = start >> PAGE_CACHE_SHIFT; | 
|  | last_index = (start + len - 1) >> PAGE_CACHE_SHIFT; | 
|  |  | 
|  | /* make sure the dirty trick played by the caller work */ | 
|  | ret = invalidate_inode_pages2_range(inode->i_mapping, | 
|  | first_index, last_index); | 
|  | if (ret) | 
|  | goto out_unlock; | 
|  |  | 
|  | file_ra_state_init(ra, inode->i_mapping); | 
|  |  | 
|  | for (i = first_index ; i <= last_index; i++) { | 
|  | if (total_read % ra->ra_pages == 0) { | 
|  | btrfs_force_ra(inode->i_mapping, ra, NULL, i, | 
|  | calc_ra(i, last_index, ra->ra_pages)); | 
|  | } | 
|  | total_read++; | 
|  | again: | 
|  | if (((u64)i << PAGE_CACHE_SHIFT) > i_size_read(inode)) | 
|  | BUG_ON(1); | 
|  | page = grab_cache_page(inode->i_mapping, i); | 
|  | if (!page) { | 
|  | ret = -ENOMEM; | 
|  | goto out_unlock; | 
|  | } | 
|  | if (!PageUptodate(page)) { | 
|  | btrfs_readpage(NULL, page); | 
|  | lock_page(page); | 
|  | if (!PageUptodate(page)) { | 
|  | unlock_page(page); | 
|  | page_cache_release(page); | 
|  | ret = -EIO; | 
|  | goto out_unlock; | 
|  | } | 
|  | } | 
|  | wait_on_page_writeback(page); | 
|  |  | 
|  | page_start = (u64)page->index << PAGE_CACHE_SHIFT; | 
|  | page_end = page_start + PAGE_CACHE_SIZE - 1; | 
|  | lock_extent(io_tree, page_start, page_end, GFP_NOFS); | 
|  |  | 
|  | ordered = btrfs_lookup_ordered_extent(inode, page_start); | 
|  | if (ordered) { | 
|  | unlock_extent(io_tree, page_start, page_end, GFP_NOFS); | 
|  | unlock_page(page); | 
|  | page_cache_release(page); | 
|  | btrfs_start_ordered_extent(inode, ordered, 1); | 
|  | btrfs_put_ordered_extent(ordered); | 
|  | goto again; | 
|  | } | 
|  | set_page_extent_mapped(page); | 
|  |  | 
|  | if (i == first_index) | 
|  | set_extent_bits(io_tree, page_start, page_end, | 
|  | EXTENT_BOUNDARY, GFP_NOFS); | 
|  | btrfs_set_extent_delalloc(inode, page_start, page_end); | 
|  |  | 
|  | set_page_dirty(page); | 
|  | total_dirty++; | 
|  |  | 
|  | unlock_extent(io_tree, page_start, page_end, GFP_NOFS); | 
|  | unlock_page(page); | 
|  | page_cache_release(page); | 
|  | } | 
|  |  | 
|  | out_unlock: | 
|  | kfree(ra); | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | balance_dirty_pages_ratelimited_nr(inode->i_mapping, total_dirty); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline int relocate_data_extent(struct inode *reloc_inode, | 
|  | struct btrfs_key *extent_key, | 
|  | u64 offset) | 
|  | { | 
|  | struct btrfs_root *root = BTRFS_I(reloc_inode)->root; | 
|  | struct extent_map_tree *em_tree = &BTRFS_I(reloc_inode)->extent_tree; | 
|  | struct extent_map *em; | 
|  | u64 start = extent_key->objectid - offset; | 
|  | u64 end = start + extent_key->offset - 1; | 
|  |  | 
|  | em = alloc_extent_map(GFP_NOFS); | 
|  | BUG_ON(!em); | 
|  |  | 
|  | em->start = start; | 
|  | em->len = extent_key->offset; | 
|  | em->block_len = extent_key->offset; | 
|  | em->block_start = extent_key->objectid; | 
|  | em->bdev = root->fs_info->fs_devices->latest_bdev; | 
|  | set_bit(EXTENT_FLAG_PINNED, &em->flags); | 
|  |  | 
|  | /* setup extent map to cheat btrfs_readpage */ | 
|  | lock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS); | 
|  | while (1) { | 
|  | int ret; | 
|  | write_lock(&em_tree->lock); | 
|  | ret = add_extent_mapping(em_tree, em); | 
|  | write_unlock(&em_tree->lock); | 
|  | if (ret != -EEXIST) { | 
|  | free_extent_map(em); | 
|  | break; | 
|  | } | 
|  | btrfs_drop_extent_cache(reloc_inode, start, end, 0); | 
|  | } | 
|  | unlock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS); | 
|  |  | 
|  | return relocate_inode_pages(reloc_inode, start, extent_key->offset); | 
|  | } | 
|  |  | 
|  | struct btrfs_ref_path { | 
|  | u64 extent_start; | 
|  | u64 nodes[BTRFS_MAX_LEVEL]; | 
|  | u64 root_objectid; | 
|  | u64 root_generation; | 
|  | u64 owner_objectid; | 
|  | u32 num_refs; | 
|  | int lowest_level; | 
|  | int current_level; | 
|  | int shared_level; | 
|  |  | 
|  | struct btrfs_key node_keys[BTRFS_MAX_LEVEL]; | 
|  | u64 new_nodes[BTRFS_MAX_LEVEL]; | 
|  | }; | 
|  |  | 
|  | struct disk_extent { | 
|  | u64 ram_bytes; | 
|  | u64 disk_bytenr; | 
|  | u64 disk_num_bytes; | 
|  | u64 offset; | 
|  | u64 num_bytes; | 
|  | u8 compression; | 
|  | u8 encryption; | 
|  | u16 other_encoding; | 
|  | }; | 
|  |  | 
|  | static int is_cowonly_root(u64 root_objectid) | 
|  | { | 
|  | if (root_objectid == BTRFS_ROOT_TREE_OBJECTID || | 
|  | root_objectid == BTRFS_EXTENT_TREE_OBJECTID || | 
|  | root_objectid == BTRFS_CHUNK_TREE_OBJECTID || | 
|  | root_objectid == BTRFS_DEV_TREE_OBJECTID || | 
|  | root_objectid == BTRFS_TREE_LOG_OBJECTID || | 
|  | root_objectid == BTRFS_CSUM_TREE_OBJECTID) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static noinline int __next_ref_path(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *extent_root, | 
|  | struct btrfs_ref_path *ref_path, | 
|  | int first_time) | 
|  | { | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_extent_ref *ref; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key found_key; | 
|  | u64 bytenr; | 
|  | u32 nritems; | 
|  | int level; | 
|  | int ret = 1; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (first_time) { | 
|  | ref_path->lowest_level = -1; | 
|  | ref_path->current_level = -1; | 
|  | ref_path->shared_level = -1; | 
|  | goto walk_up; | 
|  | } | 
|  | walk_down: | 
|  | level = ref_path->current_level - 1; | 
|  | while (level >= -1) { | 
|  | u64 parent; | 
|  | if (level < ref_path->lowest_level) | 
|  | break; | 
|  |  | 
|  | if (level >= 0) | 
|  | bytenr = ref_path->nodes[level]; | 
|  | else | 
|  | bytenr = ref_path->extent_start; | 
|  | BUG_ON(bytenr == 0); | 
|  |  | 
|  | parent = ref_path->nodes[level + 1]; | 
|  | ref_path->nodes[level + 1] = 0; | 
|  | ref_path->current_level = level; | 
|  | BUG_ON(parent == 0); | 
|  |  | 
|  | key.objectid = bytenr; | 
|  | key.offset = parent + 1; | 
|  | key.type = BTRFS_EXTENT_REF_KEY; | 
|  |  | 
|  | ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | BUG_ON(ret == 0); | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | nritems = btrfs_header_nritems(leaf); | 
|  | if (path->slots[0] >= nritems) { | 
|  | ret = btrfs_next_leaf(extent_root, path); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret > 0) | 
|  | goto next; | 
|  | leaf = path->nodes[0]; | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | 
|  | if (found_key.objectid == bytenr && | 
|  | found_key.type == BTRFS_EXTENT_REF_KEY) { | 
|  | if (level < ref_path->shared_level) | 
|  | ref_path->shared_level = level; | 
|  | goto found; | 
|  | } | 
|  | next: | 
|  | level--; | 
|  | btrfs_release_path(extent_root, path); | 
|  | cond_resched(); | 
|  | } | 
|  | /* reached lowest level */ | 
|  | ret = 1; | 
|  | goto out; | 
|  | walk_up: | 
|  | level = ref_path->current_level; | 
|  | while (level < BTRFS_MAX_LEVEL - 1) { | 
|  | u64 ref_objectid; | 
|  |  | 
|  | if (level >= 0) | 
|  | bytenr = ref_path->nodes[level]; | 
|  | else | 
|  | bytenr = ref_path->extent_start; | 
|  |  | 
|  | BUG_ON(bytenr == 0); | 
|  |  | 
|  | key.objectid = bytenr; | 
|  | key.offset = 0; | 
|  | key.type = BTRFS_EXTENT_REF_KEY; | 
|  |  | 
|  | ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | nritems = btrfs_header_nritems(leaf); | 
|  | if (path->slots[0] >= nritems) { | 
|  | ret = btrfs_next_leaf(extent_root, path); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret > 0) { | 
|  | /* the extent was freed by someone */ | 
|  | if (ref_path->lowest_level == level) | 
|  | goto out; | 
|  | btrfs_release_path(extent_root, path); | 
|  | goto walk_down; | 
|  | } | 
|  | leaf = path->nodes[0]; | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | 
|  | if (found_key.objectid != bytenr || | 
|  | found_key.type != BTRFS_EXTENT_REF_KEY) { | 
|  | /* the extent was freed by someone */ | 
|  | if (ref_path->lowest_level == level) { | 
|  | ret = 1; | 
|  | goto out; | 
|  | } | 
|  | btrfs_release_path(extent_root, path); | 
|  | goto walk_down; | 
|  | } | 
|  | found: | 
|  | ref = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_extent_ref); | 
|  | ref_objectid = btrfs_ref_objectid(leaf, ref); | 
|  | if (ref_objectid < BTRFS_FIRST_FREE_OBJECTID) { | 
|  | if (first_time) { | 
|  | level = (int)ref_objectid; | 
|  | BUG_ON(level >= BTRFS_MAX_LEVEL); | 
|  | ref_path->lowest_level = level; | 
|  | ref_path->current_level = level; | 
|  | ref_path->nodes[level] = bytenr; | 
|  | } else { | 
|  | WARN_ON(ref_objectid != level); | 
|  | } | 
|  | } else { | 
|  | WARN_ON(level != -1); | 
|  | } | 
|  | first_time = 0; | 
|  |  | 
|  | if (ref_path->lowest_level == level) { | 
|  | ref_path->owner_objectid = ref_objectid; | 
|  | ref_path->num_refs = btrfs_ref_num_refs(leaf, ref); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the block is tree root or the block isn't in reference | 
|  | * counted tree. | 
|  | */ | 
|  | if (found_key.objectid == found_key.offset || | 
|  | is_cowonly_root(btrfs_ref_root(leaf, ref))) { | 
|  | ref_path->root_objectid = btrfs_ref_root(leaf, ref); | 
|  | ref_path->root_generation = | 
|  | btrfs_ref_generation(leaf, ref); | 
|  | if (level < 0) { | 
|  | /* special reference from the tree log */ | 
|  | ref_path->nodes[0] = found_key.offset; | 
|  | ref_path->current_level = 0; | 
|  | } | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | level++; | 
|  | BUG_ON(ref_path->nodes[level] != 0); | 
|  | ref_path->nodes[level] = found_key.offset; | 
|  | ref_path->current_level = level; | 
|  |  | 
|  | /* | 
|  | * the reference was created in the running transaction, | 
|  | * no need to continue walking up. | 
|  | */ | 
|  | if (btrfs_ref_generation(leaf, ref) == trans->transid) { | 
|  | ref_path->root_objectid = btrfs_ref_root(leaf, ref); | 
|  | ref_path->root_generation = | 
|  | btrfs_ref_generation(leaf, ref); | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | btrfs_release_path(extent_root, path); | 
|  | cond_resched(); | 
|  | } | 
|  | /* reached max tree level, but no tree root found. */ | 
|  | BUG(); | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_first_ref_path(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *extent_root, | 
|  | struct btrfs_ref_path *ref_path, | 
|  | u64 extent_start) | 
|  | { | 
|  | memset(ref_path, 0, sizeof(*ref_path)); | 
|  | ref_path->extent_start = extent_start; | 
|  |  | 
|  | return __next_ref_path(trans, extent_root, ref_path, 1); | 
|  | } | 
|  |  | 
|  | static int btrfs_next_ref_path(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *extent_root, | 
|  | struct btrfs_ref_path *ref_path) | 
|  | { | 
|  | return __next_ref_path(trans, extent_root, ref_path, 0); | 
|  | } | 
|  |  | 
|  | static noinline int get_new_locations(struct inode *reloc_inode, | 
|  | struct btrfs_key *extent_key, | 
|  | u64 offset, int no_fragment, | 
|  | struct disk_extent **extents, | 
|  | int *nr_extents) | 
|  | { | 
|  | struct btrfs_root *root = BTRFS_I(reloc_inode)->root; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_file_extent_item *fi; | 
|  | struct extent_buffer *leaf; | 
|  | struct disk_extent *exts = *extents; | 
|  | struct btrfs_key found_key; | 
|  | u64 cur_pos; | 
|  | u64 last_byte; | 
|  | u32 nritems; | 
|  | int nr = 0; | 
|  | int max = *nr_extents; | 
|  | int ret; | 
|  |  | 
|  | WARN_ON(!no_fragment && *extents); | 
|  | if (!exts) { | 
|  | max = 1; | 
|  | exts = kmalloc(sizeof(*exts) * max, GFP_NOFS); | 
|  | if (!exts) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | BUG_ON(!path); | 
|  |  | 
|  | cur_pos = extent_key->objectid - offset; | 
|  | last_byte = extent_key->objectid + extent_key->offset; | 
|  | ret = btrfs_lookup_file_extent(NULL, root, path, reloc_inode->i_ino, | 
|  | cur_pos, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret > 0) { | 
|  | ret = -ENOENT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | while (1) { | 
|  | leaf = path->nodes[0]; | 
|  | nritems = btrfs_header_nritems(leaf); | 
|  | if (path->slots[0] >= nritems) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret > 0) | 
|  | break; | 
|  | leaf = path->nodes[0]; | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | 
|  | if (found_key.offset != cur_pos || | 
|  | found_key.type != BTRFS_EXTENT_DATA_KEY || | 
|  | found_key.objectid != reloc_inode->i_ino) | 
|  | break; | 
|  |  | 
|  | fi = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  | if (btrfs_file_extent_type(leaf, fi) != | 
|  | BTRFS_FILE_EXTENT_REG || | 
|  | btrfs_file_extent_disk_bytenr(leaf, fi) == 0) | 
|  | break; | 
|  |  | 
|  | if (nr == max) { | 
|  | struct disk_extent *old = exts; | 
|  | max *= 2; | 
|  | exts = kzalloc(sizeof(*exts) * max, GFP_NOFS); | 
|  | memcpy(exts, old, sizeof(*exts) * nr); | 
|  | if (old != *extents) | 
|  | kfree(old); | 
|  | } | 
|  |  | 
|  | exts[nr].disk_bytenr = | 
|  | btrfs_file_extent_disk_bytenr(leaf, fi); | 
|  | exts[nr].disk_num_bytes = | 
|  | btrfs_file_extent_disk_num_bytes(leaf, fi); | 
|  | exts[nr].offset = btrfs_file_extent_offset(leaf, fi); | 
|  | exts[nr].num_bytes = btrfs_file_extent_num_bytes(leaf, fi); | 
|  | exts[nr].ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); | 
|  | exts[nr].compression = btrfs_file_extent_compression(leaf, fi); | 
|  | exts[nr].encryption = btrfs_file_extent_encryption(leaf, fi); | 
|  | exts[nr].other_encoding = btrfs_file_extent_other_encoding(leaf, | 
|  | fi); | 
|  | BUG_ON(exts[nr].offset > 0); | 
|  | BUG_ON(exts[nr].compression || exts[nr].encryption); | 
|  | BUG_ON(exts[nr].num_bytes != exts[nr].disk_num_bytes); | 
|  |  | 
|  | cur_pos += exts[nr].num_bytes; | 
|  | nr++; | 
|  |  | 
|  | if (cur_pos + offset >= last_byte) | 
|  | break; | 
|  |  | 
|  | if (no_fragment) { | 
|  | ret = 1; | 
|  | goto out; | 
|  | } | 
|  | path->slots[0]++; | 
|  | } | 
|  |  | 
|  | BUG_ON(cur_pos + offset > last_byte); | 
|  | if (cur_pos + offset < last_byte) { | 
|  | ret = -ENOENT; | 
|  | goto out; | 
|  | } | 
|  | ret = 0; | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | if (ret) { | 
|  | if (exts != *extents) | 
|  | kfree(exts); | 
|  | } else { | 
|  | *extents = exts; | 
|  | *nr_extents = nr; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline int replace_one_extent(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_key *extent_key, | 
|  | struct btrfs_key *leaf_key, | 
|  | struct btrfs_ref_path *ref_path, | 
|  | struct disk_extent *new_extents, | 
|  | int nr_extents) | 
|  | { | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_file_extent_item *fi; | 
|  | struct inode *inode = NULL; | 
|  | struct btrfs_key key; | 
|  | u64 lock_start = 0; | 
|  | u64 lock_end = 0; | 
|  | u64 num_bytes; | 
|  | u64 ext_offset; | 
|  | u64 search_end = (u64)-1; | 
|  | u32 nritems; | 
|  | int nr_scaned = 0; | 
|  | int extent_locked = 0; | 
|  | int extent_type; | 
|  | int ret; | 
|  |  | 
|  | memcpy(&key, leaf_key, sizeof(key)); | 
|  | if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) { | 
|  | if (key.objectid < ref_path->owner_objectid || | 
|  | (key.objectid == ref_path->owner_objectid && | 
|  | key.type < BTRFS_EXTENT_DATA_KEY)) { | 
|  | key.objectid = ref_path->owner_objectid; | 
|  | key.type = BTRFS_EXTENT_DATA_KEY; | 
|  | key.offset = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | while (1) { | 
|  | ret = btrfs_search_slot(trans, root, &key, path, 0, 1); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | nritems = btrfs_header_nritems(leaf); | 
|  | next: | 
|  | if (extent_locked && ret > 0) { | 
|  | /* | 
|  | * the file extent item was modified by someone | 
|  | * before the extent got locked. | 
|  | */ | 
|  | unlock_extent(&BTRFS_I(inode)->io_tree, lock_start, | 
|  | lock_end, GFP_NOFS); | 
|  | extent_locked = 0; | 
|  | } | 
|  |  | 
|  | if (path->slots[0] >= nritems) { | 
|  | if (++nr_scaned > 2) | 
|  | break; | 
|  |  | 
|  | BUG_ON(extent_locked); | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret > 0) | 
|  | break; | 
|  | leaf = path->nodes[0]; | 
|  | nritems = btrfs_header_nritems(leaf); | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  |  | 
|  | if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) { | 
|  | if ((key.objectid > ref_path->owner_objectid) || | 
|  | (key.objectid == ref_path->owner_objectid && | 
|  | key.type > BTRFS_EXTENT_DATA_KEY) || | 
|  | key.offset >= search_end) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (inode && key.objectid != inode->i_ino) { | 
|  | BUG_ON(extent_locked); | 
|  | btrfs_release_path(root, path); | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | iput(inode); | 
|  | inode = NULL; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (key.type != BTRFS_EXTENT_DATA_KEY) { | 
|  | path->slots[0]++; | 
|  | ret = 1; | 
|  | goto next; | 
|  | } | 
|  | fi = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  | extent_type = btrfs_file_extent_type(leaf, fi); | 
|  | if ((extent_type != BTRFS_FILE_EXTENT_REG && | 
|  | extent_type != BTRFS_FILE_EXTENT_PREALLOC) || | 
|  | (btrfs_file_extent_disk_bytenr(leaf, fi) != | 
|  | extent_key->objectid)) { | 
|  | path->slots[0]++; | 
|  | ret = 1; | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | num_bytes = btrfs_file_extent_num_bytes(leaf, fi); | 
|  | ext_offset = btrfs_file_extent_offset(leaf, fi); | 
|  |  | 
|  | if (search_end == (u64)-1) { | 
|  | search_end = key.offset - ext_offset + | 
|  | btrfs_file_extent_ram_bytes(leaf, fi); | 
|  | } | 
|  |  | 
|  | if (!extent_locked) { | 
|  | lock_start = key.offset; | 
|  | lock_end = lock_start + num_bytes - 1; | 
|  | } else { | 
|  | if (lock_start > key.offset || | 
|  | lock_end + 1 < key.offset + num_bytes) { | 
|  | unlock_extent(&BTRFS_I(inode)->io_tree, | 
|  | lock_start, lock_end, GFP_NOFS); | 
|  | extent_locked = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!inode) { | 
|  | btrfs_release_path(root, path); | 
|  |  | 
|  | inode = btrfs_iget_locked(root->fs_info->sb, | 
|  | key.objectid, root); | 
|  | if (inode->i_state & I_NEW) { | 
|  | BTRFS_I(inode)->root = root; | 
|  | BTRFS_I(inode)->location.objectid = | 
|  | key.objectid; | 
|  | BTRFS_I(inode)->location.type = | 
|  | BTRFS_INODE_ITEM_KEY; | 
|  | BTRFS_I(inode)->location.offset = 0; | 
|  | btrfs_read_locked_inode(inode); | 
|  | unlock_new_inode(inode); | 
|  | } | 
|  | /* | 
|  | * some code call btrfs_commit_transaction while | 
|  | * holding the i_mutex, so we can't use mutex_lock | 
|  | * here. | 
|  | */ | 
|  | if (is_bad_inode(inode) || | 
|  | !mutex_trylock(&inode->i_mutex)) { | 
|  | iput(inode); | 
|  | inode = NULL; | 
|  | key.offset = (u64)-1; | 
|  | goto skip; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!extent_locked) { | 
|  | struct btrfs_ordered_extent *ordered; | 
|  |  | 
|  | btrfs_release_path(root, path); | 
|  |  | 
|  | lock_extent(&BTRFS_I(inode)->io_tree, lock_start, | 
|  | lock_end, GFP_NOFS); | 
|  | ordered = btrfs_lookup_first_ordered_extent(inode, | 
|  | lock_end); | 
|  | if (ordered && | 
|  | ordered->file_offset <= lock_end && | 
|  | ordered->file_offset + ordered->len > lock_start) { | 
|  | unlock_extent(&BTRFS_I(inode)->io_tree, | 
|  | lock_start, lock_end, GFP_NOFS); | 
|  | btrfs_start_ordered_extent(inode, ordered, 1); | 
|  | btrfs_put_ordered_extent(ordered); | 
|  | key.offset += num_bytes; | 
|  | goto skip; | 
|  | } | 
|  | if (ordered) | 
|  | btrfs_put_ordered_extent(ordered); | 
|  |  | 
|  | extent_locked = 1; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (nr_extents == 1) { | 
|  | /* update extent pointer in place */ | 
|  | btrfs_set_file_extent_disk_bytenr(leaf, fi, | 
|  | new_extents[0].disk_bytenr); | 
|  | btrfs_set_file_extent_disk_num_bytes(leaf, fi, | 
|  | new_extents[0].disk_num_bytes); | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  |  | 
|  | btrfs_drop_extent_cache(inode, key.offset, | 
|  | key.offset + num_bytes - 1, 0); | 
|  |  | 
|  | ret = btrfs_inc_extent_ref(trans, root, | 
|  | new_extents[0].disk_bytenr, | 
|  | new_extents[0].disk_num_bytes, | 
|  | leaf->start, | 
|  | root->root_key.objectid, | 
|  | trans->transid, | 
|  | key.objectid); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | ret = btrfs_free_extent(trans, root, | 
|  | extent_key->objectid, | 
|  | extent_key->offset, | 
|  | leaf->start, | 
|  | btrfs_header_owner(leaf), | 
|  | btrfs_header_generation(leaf), | 
|  | key.objectid, 0); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | btrfs_release_path(root, path); | 
|  | key.offset += num_bytes; | 
|  | } else { | 
|  | BUG_ON(1); | 
|  | #if 0 | 
|  | u64 alloc_hint; | 
|  | u64 extent_len; | 
|  | int i; | 
|  | /* | 
|  | * drop old extent pointer at first, then insert the | 
|  | * new pointers one bye one | 
|  | */ | 
|  | btrfs_release_path(root, path); | 
|  | ret = btrfs_drop_extents(trans, root, inode, key.offset, | 
|  | key.offset + num_bytes, | 
|  | key.offset, &alloc_hint); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | for (i = 0; i < nr_extents; i++) { | 
|  | if (ext_offset >= new_extents[i].num_bytes) { | 
|  | ext_offset -= new_extents[i].num_bytes; | 
|  | continue; | 
|  | } | 
|  | extent_len = min(new_extents[i].num_bytes - | 
|  | ext_offset, num_bytes); | 
|  |  | 
|  | ret = btrfs_insert_empty_item(trans, root, | 
|  | path, &key, | 
|  | sizeof(*fi)); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | fi = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  | btrfs_set_file_extent_generation(leaf, fi, | 
|  | trans->transid); | 
|  | btrfs_set_file_extent_type(leaf, fi, | 
|  | BTRFS_FILE_EXTENT_REG); | 
|  | btrfs_set_file_extent_disk_bytenr(leaf, fi, | 
|  | new_extents[i].disk_bytenr); | 
|  | btrfs_set_file_extent_disk_num_bytes(leaf, fi, | 
|  | new_extents[i].disk_num_bytes); | 
|  | btrfs_set_file_extent_ram_bytes(leaf, fi, | 
|  | new_extents[i].ram_bytes); | 
|  |  | 
|  | btrfs_set_file_extent_compression(leaf, fi, | 
|  | new_extents[i].compression); | 
|  | btrfs_set_file_extent_encryption(leaf, fi, | 
|  | new_extents[i].encryption); | 
|  | btrfs_set_file_extent_other_encoding(leaf, fi, | 
|  | new_extents[i].other_encoding); | 
|  |  | 
|  | btrfs_set_file_extent_num_bytes(leaf, fi, | 
|  | extent_len); | 
|  | ext_offset += new_extents[i].offset; | 
|  | btrfs_set_file_extent_offset(leaf, fi, | 
|  | ext_offset); | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  |  | 
|  | btrfs_drop_extent_cache(inode, key.offset, | 
|  | key.offset + extent_len - 1, 0); | 
|  |  | 
|  | ret = btrfs_inc_extent_ref(trans, root, | 
|  | new_extents[i].disk_bytenr, | 
|  | new_extents[i].disk_num_bytes, | 
|  | leaf->start, | 
|  | root->root_key.objectid, | 
|  | trans->transid, key.objectid); | 
|  | BUG_ON(ret); | 
|  | btrfs_release_path(root, path); | 
|  |  | 
|  | inode_add_bytes(inode, extent_len); | 
|  |  | 
|  | ext_offset = 0; | 
|  | num_bytes -= extent_len; | 
|  | key.offset += extent_len; | 
|  |  | 
|  | if (num_bytes == 0) | 
|  | break; | 
|  | } | 
|  | BUG_ON(i >= nr_extents); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | if (extent_locked) { | 
|  | unlock_extent(&BTRFS_I(inode)->io_tree, lock_start, | 
|  | lock_end, GFP_NOFS); | 
|  | extent_locked = 0; | 
|  | } | 
|  | skip: | 
|  | if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS && | 
|  | key.offset >= search_end) | 
|  | break; | 
|  |  | 
|  | cond_resched(); | 
|  | } | 
|  | ret = 0; | 
|  | out: | 
|  | btrfs_release_path(root, path); | 
|  | if (inode) { | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | if (extent_locked) { | 
|  | unlock_extent(&BTRFS_I(inode)->io_tree, lock_start, | 
|  | lock_end, GFP_NOFS); | 
|  | } | 
|  | iput(inode); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_reloc_tree_cache_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct extent_buffer *buf, u64 orig_start) | 
|  | { | 
|  | int level; | 
|  | int ret; | 
|  |  | 
|  | BUG_ON(btrfs_header_generation(buf) != trans->transid); | 
|  | BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); | 
|  |  | 
|  | level = btrfs_header_level(buf); | 
|  | if (level == 0) { | 
|  | struct btrfs_leaf_ref *ref; | 
|  | struct btrfs_leaf_ref *orig_ref; | 
|  |  | 
|  | orig_ref = btrfs_lookup_leaf_ref(root, orig_start); | 
|  | if (!orig_ref) | 
|  | return -ENOENT; | 
|  |  | 
|  | ref = btrfs_alloc_leaf_ref(root, orig_ref->nritems); | 
|  | if (!ref) { | 
|  | btrfs_free_leaf_ref(root, orig_ref); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | ref->nritems = orig_ref->nritems; | 
|  | memcpy(ref->extents, orig_ref->extents, | 
|  | sizeof(ref->extents[0]) * ref->nritems); | 
|  |  | 
|  | btrfs_free_leaf_ref(root, orig_ref); | 
|  |  | 
|  | ref->root_gen = trans->transid; | 
|  | ref->bytenr = buf->start; | 
|  | ref->owner = btrfs_header_owner(buf); | 
|  | ref->generation = btrfs_header_generation(buf); | 
|  |  | 
|  | ret = btrfs_add_leaf_ref(root, ref, 0); | 
|  | WARN_ON(ret); | 
|  | btrfs_free_leaf_ref(root, ref); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static noinline int invalidate_extent_cache(struct btrfs_root *root, | 
|  | struct extent_buffer *leaf, | 
|  | struct btrfs_block_group_cache *group, | 
|  | struct btrfs_root *target_root) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | struct inode *inode = NULL; | 
|  | struct btrfs_file_extent_item *fi; | 
|  | struct extent_state *cached_state = NULL; | 
|  | u64 num_bytes; | 
|  | u64 skip_objectid = 0; | 
|  | u32 nritems; | 
|  | u32 i; | 
|  |  | 
|  | nritems = btrfs_header_nritems(leaf); | 
|  | for (i = 0; i < nritems; i++) { | 
|  | btrfs_item_key_to_cpu(leaf, &key, i); | 
|  | if (key.objectid == skip_objectid || | 
|  | key.type != BTRFS_EXTENT_DATA_KEY) | 
|  | continue; | 
|  | fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); | 
|  | if (btrfs_file_extent_type(leaf, fi) == | 
|  | BTRFS_FILE_EXTENT_INLINE) | 
|  | continue; | 
|  | if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) | 
|  | continue; | 
|  | if (!inode || inode->i_ino != key.objectid) { | 
|  | iput(inode); | 
|  | inode = btrfs_ilookup(target_root->fs_info->sb, | 
|  | key.objectid, target_root, 1); | 
|  | } | 
|  | if (!inode) { | 
|  | skip_objectid = key.objectid; | 
|  | continue; | 
|  | } | 
|  | num_bytes = btrfs_file_extent_num_bytes(leaf, fi); | 
|  |  | 
|  | lock_extent_bits(&BTRFS_I(inode)->io_tree, key.offset, | 
|  | key.offset + num_bytes - 1, 0, &cached_state, | 
|  | GFP_NOFS); | 
|  | btrfs_drop_extent_cache(inode, key.offset, | 
|  | key.offset + num_bytes - 1, 1); | 
|  | unlock_extent_cached(&BTRFS_I(inode)->io_tree, key.offset, | 
|  | key.offset + num_bytes - 1, &cached_state, | 
|  | GFP_NOFS); | 
|  | cond_resched(); | 
|  | } | 
|  | iput(inode); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static noinline int replace_extents_in_leaf(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct extent_buffer *leaf, | 
|  | struct btrfs_block_group_cache *group, | 
|  | struct inode *reloc_inode) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key extent_key; | 
|  | struct btrfs_file_extent_item *fi; | 
|  | struct btrfs_leaf_ref *ref; | 
|  | struct disk_extent *new_extent; | 
|  | u64 bytenr; | 
|  | u64 num_bytes; | 
|  | u32 nritems; | 
|  | u32 i; | 
|  | int ext_index; | 
|  | int nr_extent; | 
|  | int ret; | 
|  |  | 
|  | new_extent = kmalloc(sizeof(*new_extent), GFP_NOFS); | 
|  | BUG_ON(!new_extent); | 
|  |  | 
|  | ref = btrfs_lookup_leaf_ref(root, leaf->start); | 
|  | BUG_ON(!ref); | 
|  |  | 
|  | ext_index = -1; | 
|  | nritems = btrfs_header_nritems(leaf); | 
|  | for (i = 0; i < nritems; i++) { | 
|  | btrfs_item_key_to_cpu(leaf, &key, i); | 
|  | if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) | 
|  | continue; | 
|  | fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); | 
|  | if (btrfs_file_extent_type(leaf, fi) == | 
|  | BTRFS_FILE_EXTENT_INLINE) | 
|  | continue; | 
|  | bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); | 
|  | num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); | 
|  | if (bytenr == 0) | 
|  | continue; | 
|  |  | 
|  | ext_index++; | 
|  | if (bytenr >= group->key.objectid + group->key.offset || | 
|  | bytenr + num_bytes <= group->key.objectid) | 
|  | continue; | 
|  |  | 
|  | extent_key.objectid = bytenr; | 
|  | extent_key.offset = num_bytes; | 
|  | extent_key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | nr_extent = 1; | 
|  | ret = get_new_locations(reloc_inode, &extent_key, | 
|  | group->key.objectid, 1, | 
|  | &new_extent, &nr_extent); | 
|  | if (ret > 0) | 
|  | continue; | 
|  | BUG_ON(ret < 0); | 
|  |  | 
|  | BUG_ON(ref->extents[ext_index].bytenr != bytenr); | 
|  | BUG_ON(ref->extents[ext_index].num_bytes != num_bytes); | 
|  | ref->extents[ext_index].bytenr = new_extent->disk_bytenr; | 
|  | ref->extents[ext_index].num_bytes = new_extent->disk_num_bytes; | 
|  |  | 
|  | btrfs_set_file_extent_disk_bytenr(leaf, fi, | 
|  | new_extent->disk_bytenr); | 
|  | btrfs_set_file_extent_disk_num_bytes(leaf, fi, | 
|  | new_extent->disk_num_bytes); | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  |  | 
|  | ret = btrfs_inc_extent_ref(trans, root, | 
|  | new_extent->disk_bytenr, | 
|  | new_extent->disk_num_bytes, | 
|  | leaf->start, | 
|  | root->root_key.objectid, | 
|  | trans->transid, key.objectid); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | ret = btrfs_free_extent(trans, root, | 
|  | bytenr, num_bytes, leaf->start, | 
|  | btrfs_header_owner(leaf), | 
|  | btrfs_header_generation(leaf), | 
|  | key.objectid, 0); | 
|  | BUG_ON(ret); | 
|  | cond_resched(); | 
|  | } | 
|  | kfree(new_extent); | 
|  | BUG_ON(ext_index + 1 != ref->nritems); | 
|  | btrfs_free_leaf_ref(root, ref); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_free_reloc_root(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_root *reloc_root; | 
|  | int ret; | 
|  |  | 
|  | if (root->reloc_root) { | 
|  | reloc_root = root->reloc_root; | 
|  | root->reloc_root = NULL; | 
|  | list_add(&reloc_root->dead_list, | 
|  | &root->fs_info->dead_reloc_roots); | 
|  |  | 
|  | btrfs_set_root_bytenr(&reloc_root->root_item, | 
|  | reloc_root->node->start); | 
|  | btrfs_set_root_level(&root->root_item, | 
|  | btrfs_header_level(reloc_root->node)); | 
|  | memset(&reloc_root->root_item.drop_progress, 0, | 
|  | sizeof(struct btrfs_disk_key)); | 
|  | reloc_root->root_item.drop_level = 0; | 
|  |  | 
|  | ret = btrfs_update_root(trans, root->fs_info->tree_root, | 
|  | &reloc_root->root_key, | 
|  | &reloc_root->root_item); | 
|  | BUG_ON(ret); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_drop_dead_reloc_roots(struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_root *reloc_root; | 
|  | struct btrfs_root *prev_root = NULL; | 
|  | struct list_head dead_roots; | 
|  | int ret; | 
|  | unsigned long nr; | 
|  |  | 
|  | INIT_LIST_HEAD(&dead_roots); | 
|  | list_splice_init(&root->fs_info->dead_reloc_roots, &dead_roots); | 
|  |  | 
|  | while (!list_empty(&dead_roots)) { | 
|  | reloc_root = list_entry(dead_roots.prev, | 
|  | struct btrfs_root, dead_list); | 
|  | list_del_init(&reloc_root->dead_list); | 
|  |  | 
|  | BUG_ON(reloc_root->commit_root != NULL); | 
|  | while (1) { | 
|  | trans = btrfs_join_transaction(root, 1); | 
|  | BUG_ON(IS_ERR(trans)); | 
|  |  | 
|  | mutex_lock(&root->fs_info->drop_mutex); | 
|  | ret = btrfs_drop_snapshot(trans, reloc_root); | 
|  | if (ret != -EAGAIN) | 
|  | break; | 
|  | mutex_unlock(&root->fs_info->drop_mutex); | 
|  |  | 
|  | nr = trans->blocks_used; | 
|  | ret = btrfs_end_transaction(trans, root); | 
|  | BUG_ON(ret); | 
|  | btrfs_btree_balance_dirty(root, nr); | 
|  | } | 
|  |  | 
|  | free_extent_buffer(reloc_root->node); | 
|  |  | 
|  | ret = btrfs_del_root(trans, root->fs_info->tree_root, | 
|  | &reloc_root->root_key); | 
|  | BUG_ON(ret); | 
|  | mutex_unlock(&root->fs_info->drop_mutex); | 
|  |  | 
|  | nr = trans->blocks_used; | 
|  | ret = btrfs_end_transaction(trans, root); | 
|  | BUG_ON(ret); | 
|  | btrfs_btree_balance_dirty(root, nr); | 
|  |  | 
|  | kfree(prev_root); | 
|  | prev_root = reloc_root; | 
|  | } | 
|  | if (prev_root) { | 
|  | btrfs_remove_leaf_refs(prev_root, (u64)-1, 0); | 
|  | kfree(prev_root); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_add_dead_reloc_root(struct btrfs_root *root) | 
|  | { | 
|  | list_add(&root->dead_list, &root->fs_info->dead_reloc_roots); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_cleanup_reloc_trees(struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_root *reloc_root; | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_key location; | 
|  | int found; | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(&root->fs_info->tree_reloc_mutex); | 
|  | ret = btrfs_find_dead_roots(root, BTRFS_TREE_RELOC_OBJECTID, NULL); | 
|  | BUG_ON(ret); | 
|  | found = !list_empty(&root->fs_info->dead_reloc_roots); | 
|  | mutex_unlock(&root->fs_info->tree_reloc_mutex); | 
|  |  | 
|  | if (found) { | 
|  | trans = btrfs_start_transaction(root, 1); | 
|  | BUG_ON(IS_ERR(trans)); | 
|  | ret = btrfs_commit_transaction(trans, root); | 
|  | BUG_ON(ret); | 
|  | } | 
|  |  | 
|  | location.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID; | 
|  | location.offset = (u64)-1; | 
|  | location.type = BTRFS_ROOT_ITEM_KEY; | 
|  |  | 
|  | reloc_root = btrfs_read_fs_root_no_name(root->fs_info, &location); | 
|  | BUG_ON(!reloc_root); | 
|  | btrfs_orphan_cleanup(reloc_root); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static noinline int init_reloc_tree(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_root *reloc_root; | 
|  | struct extent_buffer *eb; | 
|  | struct btrfs_root_item *root_item; | 
|  | struct btrfs_key root_key; | 
|  | int ret; | 
|  |  | 
|  | BUG_ON(!root->ref_cows); | 
|  | if (root->reloc_root) | 
|  | return 0; | 
|  |  | 
|  | root_item = kmalloc(sizeof(*root_item), GFP_NOFS); | 
|  | BUG_ON(!root_item); | 
|  |  | 
|  | ret = btrfs_copy_root(trans, root, root->commit_root, | 
|  | &eb, BTRFS_TREE_RELOC_OBJECTID); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; | 
|  | root_key.offset = root->root_key.objectid; | 
|  | root_key.type = BTRFS_ROOT_ITEM_KEY; | 
|  |  | 
|  | memcpy(root_item, &root->root_item, sizeof(root_item)); | 
|  | btrfs_set_root_refs(root_item, 0); | 
|  | btrfs_set_root_bytenr(root_item, eb->start); | 
|  | btrfs_set_root_level(root_item, btrfs_header_level(eb)); | 
|  | btrfs_set_root_generation(root_item, trans->transid); | 
|  |  | 
|  | btrfs_tree_unlock(eb); | 
|  | free_extent_buffer(eb); | 
|  |  | 
|  | ret = btrfs_insert_root(trans, root->fs_info->tree_root, | 
|  | &root_key, root_item); | 
|  | BUG_ON(ret); | 
|  | kfree(root_item); | 
|  |  | 
|  | reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root, | 
|  | &root_key); | 
|  | BUG_ON(!reloc_root); | 
|  | reloc_root->last_trans = trans->transid; | 
|  | reloc_root->commit_root = NULL; | 
|  | reloc_root->ref_tree = &root->fs_info->reloc_ref_tree; | 
|  |  | 
|  | root->reloc_root = reloc_root; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Core function of space balance. | 
|  | * | 
|  | * The idea is using reloc trees to relocate tree blocks in reference | 
|  | * counted roots. There is one reloc tree for each subvol, and all | 
|  | * reloc trees share same root key objectid. Reloc trees are snapshots | 
|  | * of the latest committed roots of subvols (root->commit_root). | 
|  | * | 
|  | * To relocate a tree block referenced by a subvol, there are two steps. | 
|  | * COW the block through subvol's reloc tree, then update block pointer | 
|  | * in the subvol to point to the new block. Since all reloc trees share | 
|  | * same root key objectid, doing special handing for tree blocks owned | 
|  | * by them is easy. Once a tree block has been COWed in one reloc tree, | 
|  | * we can use the resulting new block directly when the same block is | 
|  | * required to COW again through other reloc trees. By this way, relocated | 
|  | * tree blocks are shared between reloc trees, so they are also shared | 
|  | * between subvols. | 
|  | */ | 
|  | static noinline int relocate_one_path(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_key *first_key, | 
|  | struct btrfs_ref_path *ref_path, | 
|  | struct btrfs_block_group_cache *group, | 
|  | struct inode *reloc_inode) | 
|  | { | 
|  | struct btrfs_root *reloc_root; | 
|  | struct extent_buffer *eb = NULL; | 
|  | struct btrfs_key *keys; | 
|  | u64 *nodes; | 
|  | int level; | 
|  | int shared_level; | 
|  | int lowest_level = 0; | 
|  | int ret; | 
|  |  | 
|  | if (ref_path->owner_objectid < BTRFS_FIRST_FREE_OBJECTID) | 
|  | lowest_level = ref_path->owner_objectid; | 
|  |  | 
|  | if (!root->ref_cows) { | 
|  | path->lowest_level = lowest_level; | 
|  | ret = btrfs_search_slot(trans, root, first_key, path, 0, 1); | 
|  | BUG_ON(ret < 0); | 
|  | path->lowest_level = 0; | 
|  | btrfs_release_path(root, path); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | mutex_lock(&root->fs_info->tree_reloc_mutex); | 
|  | ret = init_reloc_tree(trans, root); | 
|  | BUG_ON(ret); | 
|  | reloc_root = root->reloc_root; | 
|  |  | 
|  | shared_level = ref_path->shared_level; | 
|  | ref_path->shared_level = BTRFS_MAX_LEVEL - 1; | 
|  |  | 
|  | keys = ref_path->node_keys; | 
|  | nodes = ref_path->new_nodes; | 
|  | memset(&keys[shared_level + 1], 0, | 
|  | sizeof(*keys) * (BTRFS_MAX_LEVEL - shared_level - 1)); | 
|  | memset(&nodes[shared_level + 1], 0, | 
|  | sizeof(*nodes) * (BTRFS_MAX_LEVEL - shared_level - 1)); | 
|  |  | 
|  | if (nodes[lowest_level] == 0) { | 
|  | path->lowest_level = lowest_level; | 
|  | ret = btrfs_search_slot(trans, reloc_root, first_key, path, | 
|  | 0, 1); | 
|  | BUG_ON(ret); | 
|  | for (level = lowest_level; level < BTRFS_MAX_LEVEL; level++) { | 
|  | eb = path->nodes[level]; | 
|  | if (!eb || eb == reloc_root->node) | 
|  | break; | 
|  | nodes[level] = eb->start; | 
|  | if (level == 0) | 
|  | btrfs_item_key_to_cpu(eb, &keys[level], 0); | 
|  | else | 
|  | btrfs_node_key_to_cpu(eb, &keys[level], 0); | 
|  | } | 
|  | if (nodes[0] && | 
|  | ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) { | 
|  | eb = path->nodes[0]; | 
|  | ret = replace_extents_in_leaf(trans, reloc_root, eb, | 
|  | group, reloc_inode); | 
|  | BUG_ON(ret); | 
|  | } | 
|  | btrfs_release_path(reloc_root, path); | 
|  | } else { | 
|  | ret = btrfs_merge_path(trans, reloc_root, keys, nodes, | 
|  | lowest_level); | 
|  | BUG_ON(ret); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * replace tree blocks in the fs tree with tree blocks in | 
|  | * the reloc tree. | 
|  | */ | 
|  | ret = btrfs_merge_path(trans, root, keys, nodes, lowest_level); | 
|  | BUG_ON(ret < 0); | 
|  |  | 
|  | if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) { | 
|  | ret = btrfs_search_slot(trans, reloc_root, first_key, path, | 
|  | 0, 0); | 
|  | BUG_ON(ret); | 
|  | extent_buffer_get(path->nodes[0]); | 
|  | eb = path->nodes[0]; | 
|  | btrfs_release_path(reloc_root, path); | 
|  | ret = invalidate_extent_cache(reloc_root, eb, group, root); | 
|  | BUG_ON(ret); | 
|  | free_extent_buffer(eb); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&root->fs_info->tree_reloc_mutex); | 
|  | path->lowest_level = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static noinline int relocate_tree_block(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_key *first_key, | 
|  | struct btrfs_ref_path *ref_path) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = relocate_one_path(trans, root, path, first_key, | 
|  | ref_path, NULL, NULL); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static noinline int del_extent_zero(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *extent_root, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_key *extent_key) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = btrfs_search_slot(trans, extent_root, extent_key, path, -1, 1); | 
|  | if (ret) | 
|  | goto out; | 
|  | ret = btrfs_del_item(trans, extent_root, path); | 
|  | out: | 
|  | btrfs_release_path(extent_root, path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline struct btrfs_root *read_ref_root(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_ref_path *ref_path) | 
|  | { | 
|  | struct btrfs_key root_key; | 
|  |  | 
|  | root_key.objectid = ref_path->root_objectid; | 
|  | root_key.type = BTRFS_ROOT_ITEM_KEY; | 
|  | if (is_cowonly_root(ref_path->root_objectid)) | 
|  | root_key.offset = 0; | 
|  | else | 
|  | root_key.offset = (u64)-1; | 
|  |  | 
|  | return btrfs_read_fs_root_no_name(fs_info, &root_key); | 
|  | } | 
|  |  | 
|  | static noinline int relocate_one_extent(struct btrfs_root *extent_root, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_key *extent_key, | 
|  | struct btrfs_block_group_cache *group, | 
|  | struct inode *reloc_inode, int pass) | 
|  | { | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_root *found_root; | 
|  | struct btrfs_ref_path *ref_path = NULL; | 
|  | struct disk_extent *new_extents = NULL; | 
|  | int nr_extents = 0; | 
|  | int loops; | 
|  | int ret; | 
|  | int level; | 
|  | struct btrfs_key first_key; | 
|  | u64 prev_block = 0; | 
|  |  | 
|  |  | 
|  | trans = btrfs_start_transaction(extent_root, 1); | 
|  | BUG_ON(IS_ERR(trans)); | 
|  |  | 
|  | if (extent_key->objectid == 0) { | 
|  | ret = del_extent_zero(trans, extent_root, path, extent_key); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ref_path = kmalloc(sizeof(*ref_path), GFP_NOFS); | 
|  | if (!ref_path) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | for (loops = 0; ; loops++) { | 
|  | if (loops == 0) { | 
|  | ret = btrfs_first_ref_path(trans, extent_root, ref_path, | 
|  | extent_key->objectid); | 
|  | } else { | 
|  | ret = btrfs_next_ref_path(trans, extent_root, ref_path); | 
|  | } | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret > 0) | 
|  | break; | 
|  |  | 
|  | if (ref_path->root_objectid == BTRFS_TREE_LOG_OBJECTID || | 
|  | ref_path->root_objectid == BTRFS_TREE_RELOC_OBJECTID) | 
|  | continue; | 
|  |  | 
|  | found_root = read_ref_root(extent_root->fs_info, ref_path); | 
|  | BUG_ON(!found_root); | 
|  | /* | 
|  | * for reference counted tree, only process reference paths | 
|  | * rooted at the latest committed root. | 
|  | */ | 
|  | if (found_root->ref_cows && | 
|  | ref_path->root_generation != found_root->root_key.offset) | 
|  | continue; | 
|  |  | 
|  | if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) { | 
|  | if (pass == 0) { | 
|  | /* | 
|  | * copy data extents to new locations | 
|  | */ | 
|  | u64 group_start = group->key.objectid; | 
|  | ret = relocate_data_extent(reloc_inode, | 
|  | extent_key, | 
|  | group_start); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | break; | 
|  | } | 
|  | level = 0; | 
|  | } else { | 
|  | level = ref_path->owner_objectid; | 
|  | } | 
|  |  | 
|  | if (prev_block != ref_path->nodes[level]) { | 
|  | struct extent_buffer *eb; | 
|  | u64 block_start = ref_path->nodes[level]; | 
|  | u64 block_size = btrfs_level_size(found_root, level); | 
|  |  | 
|  | eb = read_tree_block(found_root, block_start, | 
|  | block_size, 0); | 
|  | btrfs_tree_lock(eb); | 
|  | BUG_ON(level != btrfs_header_level(eb)); | 
|  |  | 
|  | if (level == 0) | 
|  | btrfs_item_key_to_cpu(eb, &first_key, 0); | 
|  | else | 
|  | btrfs_node_key_to_cpu(eb, &first_key, 0); | 
|  |  | 
|  | btrfs_tree_unlock(eb); | 
|  | free_extent_buffer(eb); | 
|  | prev_block = block_start; | 
|  | } | 
|  |  | 
|  | mutex_lock(&extent_root->fs_info->trans_mutex); | 
|  | btrfs_record_root_in_trans(found_root); | 
|  | mutex_unlock(&extent_root->fs_info->trans_mutex); | 
|  | if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) { | 
|  | /* | 
|  | * try to update data extent references while | 
|  | * keeping metadata shared between snapshots. | 
|  | */ | 
|  | if (pass == 1) { | 
|  | ret = relocate_one_path(trans, found_root, | 
|  | path, &first_key, ref_path, | 
|  | group, reloc_inode); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | continue; | 
|  | } | 
|  | /* | 
|  | * use fallback method to process the remaining | 
|  | * references. | 
|  | */ | 
|  | if (!new_extents) { | 
|  | u64 group_start = group->key.objectid; | 
|  | new_extents = kmalloc(sizeof(*new_extents), | 
|  | GFP_NOFS); | 
|  | nr_extents = 1; | 
|  | ret = get_new_locations(reloc_inode, | 
|  | extent_key, | 
|  | group_start, 1, | 
|  | &new_extents, | 
|  | &nr_extents); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  | ret = replace_one_extent(trans, found_root, | 
|  | path, extent_key, | 
|  | &first_key, ref_path, | 
|  | new_extents, nr_extents); | 
|  | } else { | 
|  | ret = relocate_tree_block(trans, found_root, path, | 
|  | &first_key, ref_path); | 
|  | } | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  | ret = 0; | 
|  | out: | 
|  | btrfs_end_transaction(trans, extent_root); | 
|  | kfree(new_extents); | 
|  | kfree(ref_path); | 
|  | return ret; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) | 
|  | { | 
|  | u64 num_devices; | 
|  | u64 stripped = BTRFS_BLOCK_GROUP_RAID0 | | 
|  | BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; | 
|  |  | 
|  | /* | 
|  | * we add in the count of missing devices because we want | 
|  | * to make sure that any RAID levels on a degraded FS | 
|  | * continue to be honored. | 
|  | */ | 
|  | num_devices = root->fs_info->fs_devices->rw_devices + | 
|  | root->fs_info->fs_devices->missing_devices; | 
|  |  | 
|  | if (num_devices == 1) { | 
|  | stripped |= BTRFS_BLOCK_GROUP_DUP; | 
|  | stripped = flags & ~stripped; | 
|  |  | 
|  | /* turn raid0 into single device chunks */ | 
|  | if (flags & BTRFS_BLOCK_GROUP_RAID0) | 
|  | return stripped; | 
|  |  | 
|  | /* turn mirroring into duplication */ | 
|  | if (flags & (BTRFS_BLOCK_GROUP_RAID1 | | 
|  | BTRFS_BLOCK_GROUP_RAID10)) | 
|  | return stripped | BTRFS_BLOCK_GROUP_DUP; | 
|  | return flags; | 
|  | } else { | 
|  | /* they already had raid on here, just return */ | 
|  | if (flags & stripped) | 
|  | return flags; | 
|  |  | 
|  | stripped |= BTRFS_BLOCK_GROUP_DUP; | 
|  | stripped = flags & ~stripped; | 
|  |  | 
|  | /* switch duplicated blocks with raid1 */ | 
|  | if (flags & BTRFS_BLOCK_GROUP_DUP) | 
|  | return stripped | BTRFS_BLOCK_GROUP_RAID1; | 
|  |  | 
|  | /* turn single device chunks into raid0 */ | 
|  | return stripped | BTRFS_BLOCK_GROUP_RAID0; | 
|  | } | 
|  | return flags; | 
|  | } | 
|  |  | 
|  | static int set_block_group_ro(struct btrfs_block_group_cache *cache) | 
|  | { | 
|  | struct btrfs_space_info *sinfo = cache->space_info; | 
|  | u64 num_bytes; | 
|  | int ret = -ENOSPC; | 
|  |  | 
|  | if (cache->ro) | 
|  | return 0; | 
|  |  | 
|  | spin_lock(&sinfo->lock); | 
|  | spin_lock(&cache->lock); | 
|  | num_bytes = cache->key.offset - cache->reserved - cache->pinned - | 
|  | cache->bytes_super - btrfs_block_group_used(&cache->item); | 
|  |  | 
|  | if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + | 
|  | sinfo->bytes_may_use + sinfo->bytes_readonly + | 
|  | cache->reserved_pinned + num_bytes <= sinfo->total_bytes) { | 
|  | sinfo->bytes_readonly += num_bytes; | 
|  | sinfo->bytes_reserved += cache->reserved_pinned; | 
|  | cache->reserved_pinned = 0; | 
|  | cache->ro = 1; | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | spin_unlock(&cache->lock); | 
|  | spin_unlock(&sinfo->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_set_block_group_ro(struct btrfs_root *root, | 
|  | struct btrfs_block_group_cache *cache) | 
|  |  | 
|  | { | 
|  | struct btrfs_trans_handle *trans; | 
|  | u64 alloc_flags; | 
|  | int ret; | 
|  |  | 
|  | BUG_ON(cache->ro); | 
|  |  | 
|  | trans = btrfs_join_transaction(root, 1); | 
|  | BUG_ON(IS_ERR(trans)); | 
|  |  | 
|  | alloc_flags = update_block_group_flags(root, cache->flags); | 
|  | if (alloc_flags != cache->flags) | 
|  | do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 1); | 
|  |  | 
|  | ret = set_block_group_ro(cache); | 
|  | if (!ret) | 
|  | goto out; | 
|  | alloc_flags = get_alloc_profile(root, cache->space_info->flags); | 
|  | ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 1); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | ret = set_block_group_ro(cache); | 
|  | out: | 
|  | btrfs_end_transaction(trans, root); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, u64 type) | 
|  | { | 
|  | u64 alloc_flags = get_alloc_profile(root, type); | 
|  | return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to account the unused space of all the readonly block group in the | 
|  | * list. takes mirrors into account. | 
|  | */ | 
|  | static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list) | 
|  | { | 
|  | struct btrfs_block_group_cache *block_group; | 
|  | u64 free_bytes = 0; | 
|  | int factor; | 
|  |  | 
|  | list_for_each_entry(block_group, groups_list, list) { | 
|  | spin_lock(&block_group->lock); | 
|  |  | 
|  | if (!block_group->ro) { | 
|  | spin_unlock(&block_group->lock); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | | 
|  | BTRFS_BLOCK_GROUP_RAID10 | | 
|  | BTRFS_BLOCK_GROUP_DUP)) | 
|  | factor = 2; | 
|  | else | 
|  | factor = 1; | 
|  |  | 
|  | free_bytes += (block_group->key.offset - | 
|  | btrfs_block_group_used(&block_group->item)) * | 
|  | factor; | 
|  |  | 
|  | spin_unlock(&block_group->lock); | 
|  | } | 
|  |  | 
|  | return free_bytes; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to account the unused space of all the readonly block group in the | 
|  | * space_info. takes mirrors into account. | 
|  | */ | 
|  | u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) | 
|  | { | 
|  | int i; | 
|  | u64 free_bytes = 0; | 
|  |  | 
|  | spin_lock(&sinfo->lock); | 
|  |  | 
|  | for(i = 0; i < BTRFS_NR_RAID_TYPES; i++) | 
|  | if (!list_empty(&sinfo->block_groups[i])) | 
|  | free_bytes += __btrfs_get_ro_block_group_free_space( | 
|  | &sinfo->block_groups[i]); | 
|  |  | 
|  | spin_unlock(&sinfo->lock); | 
|  |  | 
|  | return free_bytes; | 
|  | } | 
|  |  | 
|  | int btrfs_set_block_group_rw(struct btrfs_root *root, | 
|  | struct btrfs_block_group_cache *cache) | 
|  | { | 
|  | struct btrfs_space_info *sinfo = cache->space_info; | 
|  | u64 num_bytes; | 
|  |  | 
|  | BUG_ON(!cache->ro); | 
|  |  | 
|  | spin_lock(&sinfo->lock); | 
|  | spin_lock(&cache->lock); | 
|  | num_bytes = cache->key.offset - cache->reserved - cache->pinned - | 
|  | cache->bytes_super - btrfs_block_group_used(&cache->item); | 
|  | sinfo->bytes_readonly -= num_bytes; | 
|  | cache->ro = 0; | 
|  | spin_unlock(&cache->lock); | 
|  | spin_unlock(&sinfo->lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * checks to see if its even possible to relocate this block group. | 
|  | * | 
|  | * @return - -1 if it's not a good idea to relocate this block group, 0 if its | 
|  | * ok to go ahead and try. | 
|  | */ | 
|  | int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) | 
|  | { | 
|  | struct btrfs_block_group_cache *block_group; | 
|  | struct btrfs_space_info *space_info; | 
|  | struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; | 
|  | struct btrfs_device *device; | 
|  | int full = 0; | 
|  | int ret = 0; | 
|  |  | 
|  | block_group = btrfs_lookup_block_group(root->fs_info, bytenr); | 
|  |  | 
|  | /* odd, couldn't find the block group, leave it alone */ | 
|  | if (!block_group) | 
|  | return -1; | 
|  |  | 
|  | /* no bytes used, we're good */ | 
|  | if (!btrfs_block_group_used(&block_group->item)) | 
|  | goto out; | 
|  |  | 
|  | space_info = block_group->space_info; | 
|  | spin_lock(&space_info->lock); | 
|  |  | 
|  | full = space_info->full; | 
|  |  | 
|  | /* | 
|  | * if this is the last block group we have in this space, we can't | 
|  | * relocate it unless we're able to allocate a new chunk below. | 
|  | * | 
|  | * Otherwise, we need to make sure we have room in the space to handle | 
|  | * all of the extents from this block group.  If we can, we're good | 
|  | */ | 
|  | if ((space_info->total_bytes != block_group->key.offset) && | 
|  | (space_info->bytes_used + space_info->bytes_reserved + | 
|  | space_info->bytes_pinned + space_info->bytes_readonly + | 
|  | btrfs_block_group_used(&block_group->item) < | 
|  | space_info->total_bytes)) { | 
|  | spin_unlock(&space_info->lock); | 
|  | goto out; | 
|  | } | 
|  | spin_unlock(&space_info->lock); | 
|  |  | 
|  | /* | 
|  | * ok we don't have enough space, but maybe we have free space on our | 
|  | * devices to allocate new chunks for relocation, so loop through our | 
|  | * alloc devices and guess if we have enough space.  However, if we | 
|  | * were marked as full, then we know there aren't enough chunks, and we | 
|  | * can just return. | 
|  | */ | 
|  | ret = -1; | 
|  | if (full) | 
|  | goto out; | 
|  |  | 
|  | mutex_lock(&root->fs_info->chunk_mutex); | 
|  | list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { | 
|  | u64 min_free = btrfs_block_group_used(&block_group->item); | 
|  | u64 dev_offset; | 
|  |  | 
|  | /* | 
|  | * check to make sure we can actually find a chunk with enough | 
|  | * space to fit our block group in. | 
|  | */ | 
|  | if (device->total_bytes > device->bytes_used + min_free) { | 
|  | ret = find_free_dev_extent(NULL, device, min_free, | 
|  | &dev_offset, NULL); | 
|  | if (!ret) | 
|  | break; | 
|  | ret = -1; | 
|  | } | 
|  | } | 
|  | mutex_unlock(&root->fs_info->chunk_mutex); | 
|  | out: | 
|  | btrfs_put_block_group(block_group); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int find_first_block_group(struct btrfs_root *root, | 
|  | struct btrfs_path *path, struct btrfs_key *key) | 
|  | { | 
|  | int ret = 0; | 
|  | struct btrfs_key found_key; | 
|  | struct extent_buffer *leaf; | 
|  | int slot; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, root, key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | while (1) { | 
|  | slot = path->slots[0]; | 
|  | leaf = path->nodes[0]; | 
|  | if (slot >= btrfs_header_nritems(leaf)) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret == 0) | 
|  | continue; | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | break; | 
|  | } | 
|  | btrfs_item_key_to_cpu(leaf, &found_key, slot); | 
|  |  | 
|  | if (found_key.objectid >= key->objectid && | 
|  | found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  | path->slots[0]++; | 
|  | } | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void btrfs_put_block_group_cache(struct btrfs_fs_info *info) | 
|  | { | 
|  | struct btrfs_block_group_cache *block_group; | 
|  | u64 last = 0; | 
|  |  | 
|  | while (1) { | 
|  | struct inode *inode; | 
|  |  | 
|  | block_group = btrfs_lookup_first_block_group(info, last); | 
|  | while (block_group) { | 
|  | spin_lock(&block_group->lock); | 
|  | if (block_group->iref) | 
|  | break; | 
|  | spin_unlock(&block_group->lock); | 
|  | block_group = next_block_group(info->tree_root, | 
|  | block_group); | 
|  | } | 
|  | if (!block_group) { | 
|  | if (last == 0) | 
|  | break; | 
|  | last = 0; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | inode = block_group->inode; | 
|  | block_group->iref = 0; | 
|  | block_group->inode = NULL; | 
|  | spin_unlock(&block_group->lock); | 
|  | iput(inode); | 
|  | last = block_group->key.objectid + block_group->key.offset; | 
|  | btrfs_put_block_group(block_group); | 
|  | } | 
|  | } | 
|  |  | 
|  | int btrfs_free_block_groups(struct btrfs_fs_info *info) | 
|  | { | 
|  | struct btrfs_block_group_cache *block_group; | 
|  | struct btrfs_space_info *space_info; | 
|  | struct btrfs_caching_control *caching_ctl; | 
|  | struct rb_node *n; | 
|  |  | 
|  | down_write(&info->extent_commit_sem); | 
|  | while (!list_empty(&info->caching_block_groups)) { | 
|  | caching_ctl = list_entry(info->caching_block_groups.next, | 
|  | struct btrfs_caching_control, list); | 
|  | list_del(&caching_ctl->list); | 
|  | put_caching_control(caching_ctl); | 
|  | } | 
|  | up_write(&info->extent_commit_sem); | 
|  |  | 
|  | spin_lock(&info->block_group_cache_lock); | 
|  | while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { | 
|  | block_group = rb_entry(n, struct btrfs_block_group_cache, | 
|  | cache_node); | 
|  | rb_erase(&block_group->cache_node, | 
|  | &info->block_group_cache_tree); | 
|  | spin_unlock(&info->block_group_cache_lock); | 
|  |  | 
|  | down_write(&block_group->space_info->groups_sem); | 
|  | list_del(&block_group->list); | 
|  | up_write(&block_group->space_info->groups_sem); | 
|  |  | 
|  | if (block_group->cached == BTRFS_CACHE_STARTED) | 
|  | wait_block_group_cache_done(block_group); | 
|  |  | 
|  | /* | 
|  | * We haven't cached this block group, which means we could | 
|  | * possibly have excluded extents on this block group. | 
|  | */ | 
|  | if (block_group->cached == BTRFS_CACHE_NO) | 
|  | free_excluded_extents(info->extent_root, block_group); | 
|  |  | 
|  | btrfs_remove_free_space_cache(block_group); | 
|  | btrfs_put_block_group(block_group); | 
|  |  | 
|  | spin_lock(&info->block_group_cache_lock); | 
|  | } | 
|  | spin_unlock(&info->block_group_cache_lock); | 
|  |  | 
|  | /* now that all the block groups are freed, go through and | 
|  | * free all the space_info structs.  This is only called during | 
|  | * the final stages of unmount, and so we know nobody is | 
|  | * using them.  We call synchronize_rcu() once before we start, | 
|  | * just to be on the safe side. | 
|  | */ | 
|  | synchronize_rcu(); | 
|  |  | 
|  | release_global_block_rsv(info); | 
|  |  | 
|  | while(!list_empty(&info->space_info)) { | 
|  | space_info = list_entry(info->space_info.next, | 
|  | struct btrfs_space_info, | 
|  | list); | 
|  | if (space_info->bytes_pinned > 0 || | 
|  | space_info->bytes_reserved > 0) { | 
|  | WARN_ON(1); | 
|  | dump_space_info(space_info, 0, 0); | 
|  | } | 
|  | list_del(&space_info->list); | 
|  | kfree(space_info); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __link_block_group(struct btrfs_space_info *space_info, | 
|  | struct btrfs_block_group_cache *cache) | 
|  | { | 
|  | int index = get_block_group_index(cache); | 
|  |  | 
|  | down_write(&space_info->groups_sem); | 
|  | list_add_tail(&cache->list, &space_info->block_groups[index]); | 
|  | up_write(&space_info->groups_sem); | 
|  | } | 
|  |  | 
|  | int btrfs_read_block_groups(struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_path *path; | 
|  | int ret; | 
|  | struct btrfs_block_group_cache *cache; | 
|  | struct btrfs_fs_info *info = root->fs_info; | 
|  | struct btrfs_space_info *space_info; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key found_key; | 
|  | struct extent_buffer *leaf; | 
|  | int need_clear = 0; | 
|  | u64 cache_gen; | 
|  |  | 
|  | root = info->extent_root; | 
|  | key.objectid = 0; | 
|  | key.offset = 0; | 
|  | btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY); | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | cache_gen = btrfs_super_cache_generation(&root->fs_info->super_copy); | 
|  | if (cache_gen != 0 && | 
|  | btrfs_super_generation(&root->fs_info->super_copy) != cache_gen) | 
|  | need_clear = 1; | 
|  | if (btrfs_test_opt(root, CLEAR_CACHE)) | 
|  | need_clear = 1; | 
|  | if (!btrfs_test_opt(root, SPACE_CACHE) && cache_gen) | 
|  | printk(KERN_INFO "btrfs: disk space caching is enabled\n"); | 
|  |  | 
|  | while (1) { | 
|  | ret = find_first_block_group(root, path, &key); | 
|  | if (ret > 0) | 
|  | break; | 
|  | if (ret != 0) | 
|  | goto error; | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | 
|  | cache = kzalloc(sizeof(*cache), GFP_NOFS); | 
|  | if (!cache) { | 
|  | ret = -ENOMEM; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | atomic_set(&cache->count, 1); | 
|  | spin_lock_init(&cache->lock); | 
|  | spin_lock_init(&cache->tree_lock); | 
|  | cache->fs_info = info; | 
|  | INIT_LIST_HEAD(&cache->list); | 
|  | INIT_LIST_HEAD(&cache->cluster_list); | 
|  |  | 
|  | if (need_clear) | 
|  | cache->disk_cache_state = BTRFS_DC_CLEAR; | 
|  |  | 
|  | /* | 
|  | * we only want to have 32k of ram per block group for keeping | 
|  | * track of free space, and if we pass 1/2 of that we want to | 
|  | * start converting things over to using bitmaps | 
|  | */ | 
|  | cache->extents_thresh = ((1024 * 32) / 2) / | 
|  | sizeof(struct btrfs_free_space); | 
|  |  | 
|  | read_extent_buffer(leaf, &cache->item, | 
|  | btrfs_item_ptr_offset(leaf, path->slots[0]), | 
|  | sizeof(cache->item)); | 
|  | memcpy(&cache->key, &found_key, sizeof(found_key)); | 
|  |  | 
|  | key.objectid = found_key.objectid + found_key.offset; | 
|  | btrfs_release_path(root, path); | 
|  | cache->flags = btrfs_block_group_flags(&cache->item); | 
|  | cache->sectorsize = root->sectorsize; | 
|  |  | 
|  | /* | 
|  | * We need to exclude the super stripes now so that the space | 
|  | * info has super bytes accounted for, otherwise we'll think | 
|  | * we have more space than we actually do. | 
|  | */ | 
|  | exclude_super_stripes(root, cache); | 
|  |  | 
|  | /* | 
|  | * check for two cases, either we are full, and therefore | 
|  | * don't need to bother with the caching work since we won't | 
|  | * find any space, or we are empty, and we can just add all | 
|  | * the space in and be done with it.  This saves us _alot_ of | 
|  | * time, particularly in the full case. | 
|  | */ | 
|  | if (found_key.offset == btrfs_block_group_used(&cache->item)) { | 
|  | cache->last_byte_to_unpin = (u64)-1; | 
|  | cache->cached = BTRFS_CACHE_FINISHED; | 
|  | free_excluded_extents(root, cache); | 
|  | } else if (btrfs_block_group_used(&cache->item) == 0) { | 
|  | cache->last_byte_to_unpin = (u64)-1; | 
|  | cache->cached = BTRFS_CACHE_FINISHED; | 
|  | add_new_free_space(cache, root->fs_info, | 
|  | found_key.objectid, | 
|  | found_key.objectid + | 
|  | found_key.offset); | 
|  | free_excluded_extents(root, cache); | 
|  | } | 
|  |  | 
|  | ret = update_space_info(info, cache->flags, found_key.offset, | 
|  | btrfs_block_group_used(&cache->item), | 
|  | &space_info); | 
|  | BUG_ON(ret); | 
|  | cache->space_info = space_info; | 
|  | spin_lock(&cache->space_info->lock); | 
|  | cache->space_info->bytes_readonly += cache->bytes_super; | 
|  | spin_unlock(&cache->space_info->lock); | 
|  |  | 
|  | __link_block_group(space_info, cache); | 
|  |  | 
|  | ret = btrfs_add_block_group_cache(root->fs_info, cache); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | set_avail_alloc_bits(root->fs_info, cache->flags); | 
|  | if (btrfs_chunk_readonly(root, cache->key.objectid)) | 
|  | set_block_group_ro(cache); | 
|  | } | 
|  |  | 
|  | list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { | 
|  | if (!(get_alloc_profile(root, space_info->flags) & | 
|  | (BTRFS_BLOCK_GROUP_RAID10 | | 
|  | BTRFS_BLOCK_GROUP_RAID1 | | 
|  | BTRFS_BLOCK_GROUP_DUP))) | 
|  | continue; | 
|  | /* | 
|  | * avoid allocating from un-mirrored block group if there are | 
|  | * mirrored block groups. | 
|  | */ | 
|  | list_for_each_entry(cache, &space_info->block_groups[3], list) | 
|  | set_block_group_ro(cache); | 
|  | list_for_each_entry(cache, &space_info->block_groups[4], list) | 
|  | set_block_group_ro(cache); | 
|  | } | 
|  |  | 
|  | init_global_block_rsv(info); | 
|  | ret = 0; | 
|  | error: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_make_block_group(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, u64 bytes_used, | 
|  | u64 type, u64 chunk_objectid, u64 chunk_offset, | 
|  | u64 size) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_root *extent_root; | 
|  | struct btrfs_block_group_cache *cache; | 
|  |  | 
|  | extent_root = root->fs_info->extent_root; | 
|  |  | 
|  | root->fs_info->last_trans_log_full_commit = trans->transid; | 
|  |  | 
|  | cache = kzalloc(sizeof(*cache), GFP_NOFS); | 
|  | if (!cache) | 
|  | return -ENOMEM; | 
|  |  | 
|  | cache->key.objectid = chunk_offset; | 
|  | cache->key.offset = size; | 
|  | cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; | 
|  | cache->sectorsize = root->sectorsize; | 
|  | cache->fs_info = root->fs_info; | 
|  |  | 
|  | /* | 
|  | * we only want to have 32k of ram per block group for keeping track | 
|  | * of free space, and if we pass 1/2 of that we want to start | 
|  | * converting things over to using bitmaps | 
|  | */ | 
|  | cache->extents_thresh = ((1024 * 32) / 2) / | 
|  | sizeof(struct btrfs_free_space); | 
|  | atomic_set(&cache->count, 1); | 
|  | spin_lock_init(&cache->lock); | 
|  | spin_lock_init(&cache->tree_lock); | 
|  | INIT_LIST_HEAD(&cache->list); | 
|  | INIT_LIST_HEAD(&cache->cluster_list); | 
|  |  | 
|  | btrfs_set_block_group_used(&cache->item, bytes_used); | 
|  | btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); | 
|  | cache->flags = type; | 
|  | btrfs_set_block_group_flags(&cache->item, type); | 
|  |  | 
|  | cache->last_byte_to_unpin = (u64)-1; | 
|  | cache->cached = BTRFS_CACHE_FINISHED; | 
|  | exclude_super_stripes(root, cache); | 
|  |  | 
|  | add_new_free_space(cache, root->fs_info, chunk_offset, | 
|  | chunk_offset + size); | 
|  |  | 
|  | free_excluded_extents(root, cache); | 
|  |  | 
|  | ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, | 
|  | &cache->space_info); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | spin_lock(&cache->space_info->lock); | 
|  | cache->space_info->bytes_readonly += cache->bytes_super; | 
|  | spin_unlock(&cache->space_info->lock); | 
|  |  | 
|  | __link_block_group(cache->space_info, cache); | 
|  |  | 
|  | ret = btrfs_add_block_group_cache(root->fs_info, cache); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item, | 
|  | sizeof(cache->item)); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | set_avail_alloc_bits(extent_root->fs_info, type); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_remove_block_group(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, u64 group_start) | 
|  | { | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_block_group_cache *block_group; | 
|  | struct btrfs_free_cluster *cluster; | 
|  | struct btrfs_root *tree_root = root->fs_info->tree_root; | 
|  | struct btrfs_key key; | 
|  | struct inode *inode; | 
|  | int ret; | 
|  | int factor; | 
|  |  | 
|  | root = root->fs_info->extent_root; | 
|  |  | 
|  | block_group = btrfs_lookup_block_group(root->fs_info, group_start); | 
|  | BUG_ON(!block_group); | 
|  | BUG_ON(!block_group->ro); | 
|  |  | 
|  | memcpy(&key, &block_group->key, sizeof(key)); | 
|  | if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | | 
|  | BTRFS_BLOCK_GROUP_RAID1 | | 
|  | BTRFS_BLOCK_GROUP_RAID10)) | 
|  | factor = 2; | 
|  | else | 
|  | factor = 1; | 
|  |  | 
|  | /* make sure this block group isn't part of an allocation cluster */ | 
|  | cluster = &root->fs_info->data_alloc_cluster; | 
|  | spin_lock(&cluster->refill_lock); | 
|  | btrfs_return_cluster_to_free_space(block_group, cluster); | 
|  | spin_unlock(&cluster->refill_lock); | 
|  |  | 
|  | /* | 
|  | * make sure this block group isn't part of a metadata | 
|  | * allocation cluster | 
|  | */ | 
|  | cluster = &root->fs_info->meta_alloc_cluster; | 
|  | spin_lock(&cluster->refill_lock); | 
|  | btrfs_return_cluster_to_free_space(block_group, cluster); | 
|  | spin_unlock(&cluster->refill_lock); | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | BUG_ON(!path); | 
|  |  | 
|  | inode = lookup_free_space_inode(root, block_group, path); | 
|  | if (!IS_ERR(inode)) { | 
|  | btrfs_orphan_add(trans, inode); | 
|  | clear_nlink(inode); | 
|  | /* One for the block groups ref */ | 
|  | spin_lock(&block_group->lock); | 
|  | if (block_group->iref) { | 
|  | block_group->iref = 0; | 
|  | block_group->inode = NULL; | 
|  | spin_unlock(&block_group->lock); | 
|  | iput(inode); | 
|  | } else { | 
|  | spin_unlock(&block_group->lock); | 
|  | } | 
|  | /* One for our lookup ref */ | 
|  | iput(inode); | 
|  | } | 
|  |  | 
|  | key.objectid = BTRFS_FREE_SPACE_OBJECTID; | 
|  | key.offset = block_group->key.objectid; | 
|  | key.type = 0; | 
|  |  | 
|  | ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret > 0) | 
|  | btrfs_release_path(tree_root, path); | 
|  | if (ret == 0) { | 
|  | ret = btrfs_del_item(trans, tree_root, path); | 
|  | if (ret) | 
|  | goto out; | 
|  | btrfs_release_path(tree_root, path); | 
|  | } | 
|  |  | 
|  | spin_lock(&root->fs_info->block_group_cache_lock); | 
|  | rb_erase(&block_group->cache_node, | 
|  | &root->fs_info->block_group_cache_tree); | 
|  | spin_unlock(&root->fs_info->block_group_cache_lock); | 
|  |  | 
|  | down_write(&block_group->space_info->groups_sem); | 
|  | /* | 
|  | * we must use list_del_init so people can check to see if they | 
|  | * are still on the list after taking the semaphore | 
|  | */ | 
|  | list_del_init(&block_group->list); | 
|  | up_write(&block_group->space_info->groups_sem); | 
|  |  | 
|  | if (block_group->cached == BTRFS_CACHE_STARTED) | 
|  | wait_block_group_cache_done(block_group); | 
|  |  | 
|  | btrfs_remove_free_space_cache(block_group); | 
|  |  | 
|  | spin_lock(&block_group->space_info->lock); | 
|  | block_group->space_info->total_bytes -= block_group->key.offset; | 
|  | block_group->space_info->bytes_readonly -= block_group->key.offset; | 
|  | block_group->space_info->disk_total -= block_group->key.offset * factor; | 
|  | spin_unlock(&block_group->space_info->lock); | 
|  |  | 
|  | memcpy(&key, &block_group->key, sizeof(key)); | 
|  |  | 
|  | btrfs_clear_space_info_full(root->fs_info); | 
|  |  | 
|  | btrfs_put_block_group(block_group); | 
|  | btrfs_put_block_group(block_group); | 
|  |  | 
|  | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
|  | if (ret > 0) | 
|  | ret = -EIO; | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | ret = btrfs_del_item(trans, root, path); | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) | 
|  | { | 
|  | return unpin_extent_range(root, start, end); | 
|  | } | 
|  |  | 
|  | int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr, | 
|  | u64 num_bytes) | 
|  | { | 
|  | return btrfs_discard_extent(root, bytenr, num_bytes); | 
|  | } |