|  | /* | 
|  | *  linux/mm/vmstat.c | 
|  | * | 
|  | *  Manages VM statistics | 
|  | *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
|  | * | 
|  | *  zoned VM statistics | 
|  | *  Copyright (C) 2006 Silicon Graphics, Inc., | 
|  | *		Christoph Lameter <christoph@lameter.com> | 
|  | */ | 
|  | #include <linux/fs.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/vmstat.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/math64.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/compaction.h> | 
|  |  | 
|  | #ifdef CONFIG_VM_EVENT_COUNTERS | 
|  | DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; | 
|  | EXPORT_PER_CPU_SYMBOL(vm_event_states); | 
|  |  | 
|  | static void sum_vm_events(unsigned long *ret) | 
|  | { | 
|  | int cpu; | 
|  | int i; | 
|  |  | 
|  | memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); | 
|  |  | 
|  | for_each_online_cpu(cpu) { | 
|  | struct vm_event_state *this = &per_cpu(vm_event_states, cpu); | 
|  |  | 
|  | for (i = 0; i < NR_VM_EVENT_ITEMS; i++) | 
|  | ret[i] += this->event[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Accumulate the vm event counters across all CPUs. | 
|  | * The result is unavoidably approximate - it can change | 
|  | * during and after execution of this function. | 
|  | */ | 
|  | void all_vm_events(unsigned long *ret) | 
|  | { | 
|  | get_online_cpus(); | 
|  | sum_vm_events(ret); | 
|  | put_online_cpus(); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(all_vm_events); | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG | 
|  | /* | 
|  | * Fold the foreign cpu events into our own. | 
|  | * | 
|  | * This is adding to the events on one processor | 
|  | * but keeps the global counts constant. | 
|  | */ | 
|  | void vm_events_fold_cpu(int cpu) | 
|  | { | 
|  | struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu); | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { | 
|  | count_vm_events(i, fold_state->event[i]); | 
|  | fold_state->event[i] = 0; | 
|  | } | 
|  | } | 
|  | #endif /* CONFIG_HOTPLUG */ | 
|  |  | 
|  | #endif /* CONFIG_VM_EVENT_COUNTERS */ | 
|  |  | 
|  | /* | 
|  | * Manage combined zone based / global counters | 
|  | * | 
|  | * vm_stat contains the global counters | 
|  | */ | 
|  | atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; | 
|  | EXPORT_SYMBOL(vm_stat); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  |  | 
|  | int calculate_pressure_threshold(struct zone *zone) | 
|  | { | 
|  | int threshold; | 
|  | int watermark_distance; | 
|  |  | 
|  | /* | 
|  | * As vmstats are not up to date, there is drift between the estimated | 
|  | * and real values. For high thresholds and a high number of CPUs, it | 
|  | * is possible for the min watermark to be breached while the estimated | 
|  | * value looks fine. The pressure threshold is a reduced value such | 
|  | * that even the maximum amount of drift will not accidentally breach | 
|  | * the min watermark | 
|  | */ | 
|  | watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone); | 
|  | threshold = max(1, (int)(watermark_distance / num_online_cpus())); | 
|  |  | 
|  | /* | 
|  | * Maximum threshold is 125 | 
|  | */ | 
|  | threshold = min(125, threshold); | 
|  |  | 
|  | return threshold; | 
|  | } | 
|  |  | 
|  | int calculate_normal_threshold(struct zone *zone) | 
|  | { | 
|  | int threshold; | 
|  | int mem;	/* memory in 128 MB units */ | 
|  |  | 
|  | /* | 
|  | * The threshold scales with the number of processors and the amount | 
|  | * of memory per zone. More memory means that we can defer updates for | 
|  | * longer, more processors could lead to more contention. | 
|  | * fls() is used to have a cheap way of logarithmic scaling. | 
|  | * | 
|  | * Some sample thresholds: | 
|  | * | 
|  | * Threshold	Processors	(fls)	Zonesize	fls(mem+1) | 
|  | * ------------------------------------------------------------------ | 
|  | * 8		1		1	0.9-1 GB	4 | 
|  | * 16		2		2	0.9-1 GB	4 | 
|  | * 20 		2		2	1-2 GB		5 | 
|  | * 24		2		2	2-4 GB		6 | 
|  | * 28		2		2	4-8 GB		7 | 
|  | * 32		2		2	8-16 GB		8 | 
|  | * 4		2		2	<128M		1 | 
|  | * 30		4		3	2-4 GB		5 | 
|  | * 48		4		3	8-16 GB		8 | 
|  | * 32		8		4	1-2 GB		4 | 
|  | * 32		8		4	0.9-1GB		4 | 
|  | * 10		16		5	<128M		1 | 
|  | * 40		16		5	900M		4 | 
|  | * 70		64		7	2-4 GB		5 | 
|  | * 84		64		7	4-8 GB		6 | 
|  | * 108		512		9	4-8 GB		6 | 
|  | * 125		1024		10	8-16 GB		8 | 
|  | * 125		1024		10	16-32 GB	9 | 
|  | */ | 
|  |  | 
|  | mem = zone->present_pages >> (27 - PAGE_SHIFT); | 
|  |  | 
|  | threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem)); | 
|  |  | 
|  | /* | 
|  | * Maximum threshold is 125 | 
|  | */ | 
|  | threshold = min(125, threshold); | 
|  |  | 
|  | return threshold; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Refresh the thresholds for each zone. | 
|  | */ | 
|  | static void refresh_zone_stat_thresholds(void) | 
|  | { | 
|  | struct zone *zone; | 
|  | int cpu; | 
|  | int threshold; | 
|  |  | 
|  | for_each_populated_zone(zone) { | 
|  | unsigned long max_drift, tolerate_drift; | 
|  |  | 
|  | threshold = calculate_normal_threshold(zone); | 
|  |  | 
|  | for_each_online_cpu(cpu) | 
|  | per_cpu_ptr(zone->pageset, cpu)->stat_threshold | 
|  | = threshold; | 
|  |  | 
|  | /* | 
|  | * Only set percpu_drift_mark if there is a danger that | 
|  | * NR_FREE_PAGES reports the low watermark is ok when in fact | 
|  | * the min watermark could be breached by an allocation | 
|  | */ | 
|  | tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone); | 
|  | max_drift = num_online_cpus() * threshold; | 
|  | if (max_drift > tolerate_drift) | 
|  | zone->percpu_drift_mark = high_wmark_pages(zone) + | 
|  | max_drift; | 
|  | } | 
|  | } | 
|  |  | 
|  | void set_pgdat_percpu_threshold(pg_data_t *pgdat, | 
|  | int (*calculate_pressure)(struct zone *)) | 
|  | { | 
|  | struct zone *zone; | 
|  | int cpu; | 
|  | int threshold; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < pgdat->nr_zones; i++) { | 
|  | zone = &pgdat->node_zones[i]; | 
|  | if (!zone->percpu_drift_mark) | 
|  | continue; | 
|  |  | 
|  | threshold = (*calculate_pressure)(zone); | 
|  | for_each_possible_cpu(cpu) | 
|  | per_cpu_ptr(zone->pageset, cpu)->stat_threshold | 
|  | = threshold; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For use when we know that interrupts are disabled. | 
|  | */ | 
|  | void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, | 
|  | int delta) | 
|  | { | 
|  | struct per_cpu_pageset __percpu *pcp = zone->pageset; | 
|  | s8 __percpu *p = pcp->vm_stat_diff + item; | 
|  | long x; | 
|  | long t; | 
|  |  | 
|  | x = delta + __this_cpu_read(*p); | 
|  |  | 
|  | t = __this_cpu_read(pcp->stat_threshold); | 
|  |  | 
|  | if (unlikely(x > t || x < -t)) { | 
|  | zone_page_state_add(x, zone, item); | 
|  | x = 0; | 
|  | } | 
|  | __this_cpu_write(*p, x); | 
|  | } | 
|  | EXPORT_SYMBOL(__mod_zone_page_state); | 
|  |  | 
|  | /* | 
|  | * Optimized increment and decrement functions. | 
|  | * | 
|  | * These are only for a single page and therefore can take a struct page * | 
|  | * argument instead of struct zone *. This allows the inclusion of the code | 
|  | * generated for page_zone(page) into the optimized functions. | 
|  | * | 
|  | * No overflow check is necessary and therefore the differential can be | 
|  | * incremented or decremented in place which may allow the compilers to | 
|  | * generate better code. | 
|  | * The increment or decrement is known and therefore one boundary check can | 
|  | * be omitted. | 
|  | * | 
|  | * NOTE: These functions are very performance sensitive. Change only | 
|  | * with care. | 
|  | * | 
|  | * Some processors have inc/dec instructions that are atomic vs an interrupt. | 
|  | * However, the code must first determine the differential location in a zone | 
|  | * based on the processor number and then inc/dec the counter. There is no | 
|  | * guarantee without disabling preemption that the processor will not change | 
|  | * in between and therefore the atomicity vs. interrupt cannot be exploited | 
|  | * in a useful way here. | 
|  | */ | 
|  | void __inc_zone_state(struct zone *zone, enum zone_stat_item item) | 
|  | { | 
|  | struct per_cpu_pageset __percpu *pcp = zone->pageset; | 
|  | s8 __percpu *p = pcp->vm_stat_diff + item; | 
|  | s8 v, t; | 
|  |  | 
|  | v = __this_cpu_inc_return(*p); | 
|  | t = __this_cpu_read(pcp->stat_threshold); | 
|  | if (unlikely(v > t)) { | 
|  | s8 overstep = t >> 1; | 
|  |  | 
|  | zone_page_state_add(v + overstep, zone, item); | 
|  | __this_cpu_write(*p, -overstep); | 
|  | } | 
|  | } | 
|  |  | 
|  | void __inc_zone_page_state(struct page *page, enum zone_stat_item item) | 
|  | { | 
|  | __inc_zone_state(page_zone(page), item); | 
|  | } | 
|  | EXPORT_SYMBOL(__inc_zone_page_state); | 
|  |  | 
|  | void __dec_zone_state(struct zone *zone, enum zone_stat_item item) | 
|  | { | 
|  | struct per_cpu_pageset __percpu *pcp = zone->pageset; | 
|  | s8 __percpu *p = pcp->vm_stat_diff + item; | 
|  | s8 v, t; | 
|  |  | 
|  | v = __this_cpu_dec_return(*p); | 
|  | t = __this_cpu_read(pcp->stat_threshold); | 
|  | if (unlikely(v < - t)) { | 
|  | s8 overstep = t >> 1; | 
|  |  | 
|  | zone_page_state_add(v - overstep, zone, item); | 
|  | __this_cpu_write(*p, overstep); | 
|  | } | 
|  | } | 
|  |  | 
|  | void __dec_zone_page_state(struct page *page, enum zone_stat_item item) | 
|  | { | 
|  | __dec_zone_state(page_zone(page), item); | 
|  | } | 
|  | EXPORT_SYMBOL(__dec_zone_page_state); | 
|  |  | 
|  | #ifdef CONFIG_CMPXCHG_LOCAL | 
|  | /* | 
|  | * If we have cmpxchg_local support then we do not need to incur the overhead | 
|  | * that comes with local_irq_save/restore if we use this_cpu_cmpxchg. | 
|  | * | 
|  | * mod_state() modifies the zone counter state through atomic per cpu | 
|  | * operations. | 
|  | * | 
|  | * Overstep mode specifies how overstep should handled: | 
|  | *     0       No overstepping | 
|  | *     1       Overstepping half of threshold | 
|  | *     -1      Overstepping minus half of threshold | 
|  | */ | 
|  | static inline void mod_state(struct zone *zone, | 
|  | enum zone_stat_item item, int delta, int overstep_mode) | 
|  | { | 
|  | struct per_cpu_pageset __percpu *pcp = zone->pageset; | 
|  | s8 __percpu *p = pcp->vm_stat_diff + item; | 
|  | long o, n, t, z; | 
|  |  | 
|  | do { | 
|  | z = 0;  /* overflow to zone counters */ | 
|  |  | 
|  | /* | 
|  | * The fetching of the stat_threshold is racy. We may apply | 
|  | * a counter threshold to the wrong the cpu if we get | 
|  | * rescheduled while executing here. However, the following | 
|  | * will apply the threshold again and therefore bring the | 
|  | * counter under the threshold. | 
|  | */ | 
|  | t = this_cpu_read(pcp->stat_threshold); | 
|  |  | 
|  | o = this_cpu_read(*p); | 
|  | n = delta + o; | 
|  |  | 
|  | if (n > t || n < -t) { | 
|  | int os = overstep_mode * (t >> 1) ; | 
|  |  | 
|  | /* Overflow must be added to zone counters */ | 
|  | z = n + os; | 
|  | n = -os; | 
|  | } | 
|  | } while (this_cpu_cmpxchg(*p, o, n) != o); | 
|  |  | 
|  | if (z) | 
|  | zone_page_state_add(z, zone, item); | 
|  | } | 
|  |  | 
|  | void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, | 
|  | int delta) | 
|  | { | 
|  | mod_state(zone, item, delta, 0); | 
|  | } | 
|  | EXPORT_SYMBOL(mod_zone_page_state); | 
|  |  | 
|  | void inc_zone_state(struct zone *zone, enum zone_stat_item item) | 
|  | { | 
|  | mod_state(zone, item, 1, 1); | 
|  | } | 
|  |  | 
|  | void inc_zone_page_state(struct page *page, enum zone_stat_item item) | 
|  | { | 
|  | mod_state(page_zone(page), item, 1, 1); | 
|  | } | 
|  | EXPORT_SYMBOL(inc_zone_page_state); | 
|  |  | 
|  | void dec_zone_page_state(struct page *page, enum zone_stat_item item) | 
|  | { | 
|  | mod_state(page_zone(page), item, -1, -1); | 
|  | } | 
|  | EXPORT_SYMBOL(dec_zone_page_state); | 
|  | #else | 
|  | /* | 
|  | * Use interrupt disable to serialize counter updates | 
|  | */ | 
|  | void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, | 
|  | int delta) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | __mod_zone_page_state(zone, item, delta); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  | EXPORT_SYMBOL(mod_zone_page_state); | 
|  |  | 
|  | void inc_zone_state(struct zone *zone, enum zone_stat_item item) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | __inc_zone_state(zone, item); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | void inc_zone_page_state(struct page *page, enum zone_stat_item item) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct zone *zone; | 
|  |  | 
|  | zone = page_zone(page); | 
|  | local_irq_save(flags); | 
|  | __inc_zone_state(zone, item); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  | EXPORT_SYMBOL(inc_zone_page_state); | 
|  |  | 
|  | void dec_zone_page_state(struct page *page, enum zone_stat_item item) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | __dec_zone_page_state(page, item); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  | EXPORT_SYMBOL(dec_zone_page_state); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Update the zone counters for one cpu. | 
|  | * | 
|  | * The cpu specified must be either the current cpu or a processor that | 
|  | * is not online. If it is the current cpu then the execution thread must | 
|  | * be pinned to the current cpu. | 
|  | * | 
|  | * Note that refresh_cpu_vm_stats strives to only access | 
|  | * node local memory. The per cpu pagesets on remote zones are placed | 
|  | * in the memory local to the processor using that pageset. So the | 
|  | * loop over all zones will access a series of cachelines local to | 
|  | * the processor. | 
|  | * | 
|  | * The call to zone_page_state_add updates the cachelines with the | 
|  | * statistics in the remote zone struct as well as the global cachelines | 
|  | * with the global counters. These could cause remote node cache line | 
|  | * bouncing and will have to be only done when necessary. | 
|  | */ | 
|  | void refresh_cpu_vm_stats(int cpu) | 
|  | { | 
|  | struct zone *zone; | 
|  | int i; | 
|  | int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; | 
|  |  | 
|  | for_each_populated_zone(zone) { | 
|  | struct per_cpu_pageset *p; | 
|  |  | 
|  | p = per_cpu_ptr(zone->pageset, cpu); | 
|  |  | 
|  | for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) | 
|  | if (p->vm_stat_diff[i]) { | 
|  | unsigned long flags; | 
|  | int v; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | v = p->vm_stat_diff[i]; | 
|  | p->vm_stat_diff[i] = 0; | 
|  | local_irq_restore(flags); | 
|  | atomic_long_add(v, &zone->vm_stat[i]); | 
|  | global_diff[i] += v; | 
|  | #ifdef CONFIG_NUMA | 
|  | /* 3 seconds idle till flush */ | 
|  | p->expire = 3; | 
|  | #endif | 
|  | } | 
|  | cond_resched(); | 
|  | #ifdef CONFIG_NUMA | 
|  | /* | 
|  | * Deal with draining the remote pageset of this | 
|  | * processor | 
|  | * | 
|  | * Check if there are pages remaining in this pageset | 
|  | * if not then there is nothing to expire. | 
|  | */ | 
|  | if (!p->expire || !p->pcp.count) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * We never drain zones local to this processor. | 
|  | */ | 
|  | if (zone_to_nid(zone) == numa_node_id()) { | 
|  | p->expire = 0; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | p->expire--; | 
|  | if (p->expire) | 
|  | continue; | 
|  |  | 
|  | if (p->pcp.count) | 
|  | drain_zone_pages(zone, &p->pcp); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) | 
|  | if (global_diff[i]) | 
|  | atomic_long_add(global_diff[i], &vm_stat[i]); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | /* | 
|  | * zonelist = the list of zones passed to the allocator | 
|  | * z 	    = the zone from which the allocation occurred. | 
|  | * | 
|  | * Must be called with interrupts disabled. | 
|  | */ | 
|  | void zone_statistics(struct zone *preferred_zone, struct zone *z) | 
|  | { | 
|  | if (z->zone_pgdat == preferred_zone->zone_pgdat) { | 
|  | __inc_zone_state(z, NUMA_HIT); | 
|  | } else { | 
|  | __inc_zone_state(z, NUMA_MISS); | 
|  | __inc_zone_state(preferred_zone, NUMA_FOREIGN); | 
|  | } | 
|  | if (z->node == numa_node_id()) | 
|  | __inc_zone_state(z, NUMA_LOCAL); | 
|  | else | 
|  | __inc_zone_state(z, NUMA_OTHER); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_COMPACTION | 
|  |  | 
|  | struct contig_page_info { | 
|  | unsigned long free_pages; | 
|  | unsigned long free_blocks_total; | 
|  | unsigned long free_blocks_suitable; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Calculate the number of free pages in a zone, how many contiguous | 
|  | * pages are free and how many are large enough to satisfy an allocation of | 
|  | * the target size. Note that this function makes no attempt to estimate | 
|  | * how many suitable free blocks there *might* be if MOVABLE pages were | 
|  | * migrated. Calculating that is possible, but expensive and can be | 
|  | * figured out from userspace | 
|  | */ | 
|  | static void fill_contig_page_info(struct zone *zone, | 
|  | unsigned int suitable_order, | 
|  | struct contig_page_info *info) | 
|  | { | 
|  | unsigned int order; | 
|  |  | 
|  | info->free_pages = 0; | 
|  | info->free_blocks_total = 0; | 
|  | info->free_blocks_suitable = 0; | 
|  |  | 
|  | for (order = 0; order < MAX_ORDER; order++) { | 
|  | unsigned long blocks; | 
|  |  | 
|  | /* Count number of free blocks */ | 
|  | blocks = zone->free_area[order].nr_free; | 
|  | info->free_blocks_total += blocks; | 
|  |  | 
|  | /* Count free base pages */ | 
|  | info->free_pages += blocks << order; | 
|  |  | 
|  | /* Count the suitable free blocks */ | 
|  | if (order >= suitable_order) | 
|  | info->free_blocks_suitable += blocks << | 
|  | (order - suitable_order); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A fragmentation index only makes sense if an allocation of a requested | 
|  | * size would fail. If that is true, the fragmentation index indicates | 
|  | * whether external fragmentation or a lack of memory was the problem. | 
|  | * The value can be used to determine if page reclaim or compaction | 
|  | * should be used | 
|  | */ | 
|  | static int __fragmentation_index(unsigned int order, struct contig_page_info *info) | 
|  | { | 
|  | unsigned long requested = 1UL << order; | 
|  |  | 
|  | if (!info->free_blocks_total) | 
|  | return 0; | 
|  |  | 
|  | /* Fragmentation index only makes sense when a request would fail */ | 
|  | if (info->free_blocks_suitable) | 
|  | return -1000; | 
|  |  | 
|  | /* | 
|  | * Index is between 0 and 1 so return within 3 decimal places | 
|  | * | 
|  | * 0 => allocation would fail due to lack of memory | 
|  | * 1 => allocation would fail due to fragmentation | 
|  | */ | 
|  | return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total); | 
|  | } | 
|  |  | 
|  | /* Same as __fragmentation index but allocs contig_page_info on stack */ | 
|  | int fragmentation_index(struct zone *zone, unsigned int order) | 
|  | { | 
|  | struct contig_page_info info; | 
|  |  | 
|  | fill_contig_page_info(zone, order, &info); | 
|  | return __fragmentation_index(order, &info); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION) | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/seq_file.h> | 
|  |  | 
|  | static char * const migratetype_names[MIGRATE_TYPES] = { | 
|  | "Unmovable", | 
|  | "Reclaimable", | 
|  | "Movable", | 
|  | "Reserve", | 
|  | "Isolate", | 
|  | }; | 
|  |  | 
|  | static void *frag_start(struct seq_file *m, loff_t *pos) | 
|  | { | 
|  | pg_data_t *pgdat; | 
|  | loff_t node = *pos; | 
|  | for (pgdat = first_online_pgdat(); | 
|  | pgdat && node; | 
|  | pgdat = next_online_pgdat(pgdat)) | 
|  | --node; | 
|  |  | 
|  | return pgdat; | 
|  | } | 
|  |  | 
|  | static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) | 
|  | { | 
|  | pg_data_t *pgdat = (pg_data_t *)arg; | 
|  |  | 
|  | (*pos)++; | 
|  | return next_online_pgdat(pgdat); | 
|  | } | 
|  |  | 
|  | static void frag_stop(struct seq_file *m, void *arg) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* Walk all the zones in a node and print using a callback */ | 
|  | static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat, | 
|  | void (*print)(struct seq_file *m, pg_data_t *, struct zone *)) | 
|  | { | 
|  | struct zone *zone; | 
|  | struct zone *node_zones = pgdat->node_zones; | 
|  | unsigned long flags; | 
|  |  | 
|  | for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { | 
|  | if (!populated_zone(zone)) | 
|  | continue; | 
|  |  | 
|  | spin_lock_irqsave(&zone->lock, flags); | 
|  | print(m, pgdat, zone); | 
|  | spin_unlock_irqrestore(&zone->lock, flags); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_PROC_FS | 
|  | static void frag_show_print(struct seq_file *m, pg_data_t *pgdat, | 
|  | struct zone *zone) | 
|  | { | 
|  | int order; | 
|  |  | 
|  | seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); | 
|  | for (order = 0; order < MAX_ORDER; ++order) | 
|  | seq_printf(m, "%6lu ", zone->free_area[order].nr_free); | 
|  | seq_putc(m, '\n'); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This walks the free areas for each zone. | 
|  | */ | 
|  | static int frag_show(struct seq_file *m, void *arg) | 
|  | { | 
|  | pg_data_t *pgdat = (pg_data_t *)arg; | 
|  | walk_zones_in_node(m, pgdat, frag_show_print); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void pagetypeinfo_showfree_print(struct seq_file *m, | 
|  | pg_data_t *pgdat, struct zone *zone) | 
|  | { | 
|  | int order, mtype; | 
|  |  | 
|  | for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) { | 
|  | seq_printf(m, "Node %4d, zone %8s, type %12s ", | 
|  | pgdat->node_id, | 
|  | zone->name, | 
|  | migratetype_names[mtype]); | 
|  | for (order = 0; order < MAX_ORDER; ++order) { | 
|  | unsigned long freecount = 0; | 
|  | struct free_area *area; | 
|  | struct list_head *curr; | 
|  |  | 
|  | area = &(zone->free_area[order]); | 
|  |  | 
|  | list_for_each(curr, &area->free_list[mtype]) | 
|  | freecount++; | 
|  | seq_printf(m, "%6lu ", freecount); | 
|  | } | 
|  | seq_putc(m, '\n'); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Print out the free pages at each order for each migatetype */ | 
|  | static int pagetypeinfo_showfree(struct seq_file *m, void *arg) | 
|  | { | 
|  | int order; | 
|  | pg_data_t *pgdat = (pg_data_t *)arg; | 
|  |  | 
|  | /* Print header */ | 
|  | seq_printf(m, "%-43s ", "Free pages count per migrate type at order"); | 
|  | for (order = 0; order < MAX_ORDER; ++order) | 
|  | seq_printf(m, "%6d ", order); | 
|  | seq_putc(m, '\n'); | 
|  |  | 
|  | walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void pagetypeinfo_showblockcount_print(struct seq_file *m, | 
|  | pg_data_t *pgdat, struct zone *zone) | 
|  | { | 
|  | int mtype; | 
|  | unsigned long pfn; | 
|  | unsigned long start_pfn = zone->zone_start_pfn; | 
|  | unsigned long end_pfn = start_pfn + zone->spanned_pages; | 
|  | unsigned long count[MIGRATE_TYPES] = { 0, }; | 
|  |  | 
|  | for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { | 
|  | struct page *page; | 
|  |  | 
|  | if (!pfn_valid(pfn)) | 
|  | continue; | 
|  |  | 
|  | page = pfn_to_page(pfn); | 
|  |  | 
|  | /* Watch for unexpected holes punched in the memmap */ | 
|  | if (!memmap_valid_within(pfn, page, zone)) | 
|  | continue; | 
|  |  | 
|  | mtype = get_pageblock_migratetype(page); | 
|  |  | 
|  | if (mtype < MIGRATE_TYPES) | 
|  | count[mtype]++; | 
|  | } | 
|  |  | 
|  | /* Print counts */ | 
|  | seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); | 
|  | for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) | 
|  | seq_printf(m, "%12lu ", count[mtype]); | 
|  | seq_putc(m, '\n'); | 
|  | } | 
|  |  | 
|  | /* Print out the free pages at each order for each migratetype */ | 
|  | static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg) | 
|  | { | 
|  | int mtype; | 
|  | pg_data_t *pgdat = (pg_data_t *)arg; | 
|  |  | 
|  | seq_printf(m, "\n%-23s", "Number of blocks type "); | 
|  | for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) | 
|  | seq_printf(m, "%12s ", migratetype_names[mtype]); | 
|  | seq_putc(m, '\n'); | 
|  | walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This prints out statistics in relation to grouping pages by mobility. | 
|  | * It is expensive to collect so do not constantly read the file. | 
|  | */ | 
|  | static int pagetypeinfo_show(struct seq_file *m, void *arg) | 
|  | { | 
|  | pg_data_t *pgdat = (pg_data_t *)arg; | 
|  |  | 
|  | /* check memoryless node */ | 
|  | if (!node_state(pgdat->node_id, N_HIGH_MEMORY)) | 
|  | return 0; | 
|  |  | 
|  | seq_printf(m, "Page block order: %d\n", pageblock_order); | 
|  | seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages); | 
|  | seq_putc(m, '\n'); | 
|  | pagetypeinfo_showfree(m, pgdat); | 
|  | pagetypeinfo_showblockcount(m, pgdat); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct seq_operations fragmentation_op = { | 
|  | .start	= frag_start, | 
|  | .next	= frag_next, | 
|  | .stop	= frag_stop, | 
|  | .show	= frag_show, | 
|  | }; | 
|  |  | 
|  | static int fragmentation_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return seq_open(file, &fragmentation_op); | 
|  | } | 
|  |  | 
|  | static const struct file_operations fragmentation_file_operations = { | 
|  | .open		= fragmentation_open, | 
|  | .read		= seq_read, | 
|  | .llseek		= seq_lseek, | 
|  | .release	= seq_release, | 
|  | }; | 
|  |  | 
|  | static const struct seq_operations pagetypeinfo_op = { | 
|  | .start	= frag_start, | 
|  | .next	= frag_next, | 
|  | .stop	= frag_stop, | 
|  | .show	= pagetypeinfo_show, | 
|  | }; | 
|  |  | 
|  | static int pagetypeinfo_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return seq_open(file, &pagetypeinfo_op); | 
|  | } | 
|  |  | 
|  | static const struct file_operations pagetypeinfo_file_ops = { | 
|  | .open		= pagetypeinfo_open, | 
|  | .read		= seq_read, | 
|  | .llseek		= seq_lseek, | 
|  | .release	= seq_release, | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_ZONE_DMA | 
|  | #define TEXT_FOR_DMA(xx) xx "_dma", | 
|  | #else | 
|  | #define TEXT_FOR_DMA(xx) | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_ZONE_DMA32 | 
|  | #define TEXT_FOR_DMA32(xx) xx "_dma32", | 
|  | #else | 
|  | #define TEXT_FOR_DMA32(xx) | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | #define TEXT_FOR_HIGHMEM(xx) xx "_high", | 
|  | #else | 
|  | #define TEXT_FOR_HIGHMEM(xx) | 
|  | #endif | 
|  |  | 
|  | #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \ | 
|  | TEXT_FOR_HIGHMEM(xx) xx "_movable", | 
|  |  | 
|  | static const char * const vmstat_text[] = { | 
|  | /* Zoned VM counters */ | 
|  | "nr_free_pages", | 
|  | "nr_inactive_anon", | 
|  | "nr_active_anon", | 
|  | "nr_inactive_file", | 
|  | "nr_active_file", | 
|  | "nr_unevictable", | 
|  | "nr_mlock", | 
|  | "nr_anon_pages", | 
|  | "nr_mapped", | 
|  | "nr_file_pages", | 
|  | "nr_dirty", | 
|  | "nr_writeback", | 
|  | "nr_slab_reclaimable", | 
|  | "nr_slab_unreclaimable", | 
|  | "nr_page_table_pages", | 
|  | "nr_kernel_stack", | 
|  | "nr_unstable", | 
|  | "nr_bounce", | 
|  | "nr_vmscan_write", | 
|  | "nr_writeback_temp", | 
|  | "nr_isolated_anon", | 
|  | "nr_isolated_file", | 
|  | "nr_shmem", | 
|  | "nr_dirtied", | 
|  | "nr_written", | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | "numa_hit", | 
|  | "numa_miss", | 
|  | "numa_foreign", | 
|  | "numa_interleave", | 
|  | "numa_local", | 
|  | "numa_other", | 
|  | #endif | 
|  | "nr_anon_transparent_hugepages", | 
|  | "nr_dirty_threshold", | 
|  | "nr_dirty_background_threshold", | 
|  |  | 
|  | #ifdef CONFIG_VM_EVENT_COUNTERS | 
|  | "pgpgin", | 
|  | "pgpgout", | 
|  | "pswpin", | 
|  | "pswpout", | 
|  |  | 
|  | TEXTS_FOR_ZONES("pgalloc") | 
|  |  | 
|  | "pgfree", | 
|  | "pgactivate", | 
|  | "pgdeactivate", | 
|  |  | 
|  | "pgfault", | 
|  | "pgmajfault", | 
|  |  | 
|  | TEXTS_FOR_ZONES("pgrefill") | 
|  | TEXTS_FOR_ZONES("pgsteal") | 
|  | TEXTS_FOR_ZONES("pgscan_kswapd") | 
|  | TEXTS_FOR_ZONES("pgscan_direct") | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | "zone_reclaim_failed", | 
|  | #endif | 
|  | "pginodesteal", | 
|  | "slabs_scanned", | 
|  | "kswapd_steal", | 
|  | "kswapd_inodesteal", | 
|  | "kswapd_low_wmark_hit_quickly", | 
|  | "kswapd_high_wmark_hit_quickly", | 
|  | "kswapd_skip_congestion_wait", | 
|  | "pageoutrun", | 
|  | "allocstall", | 
|  |  | 
|  | "pgrotated", | 
|  |  | 
|  | #ifdef CONFIG_COMPACTION | 
|  | "compact_blocks_moved", | 
|  | "compact_pages_moved", | 
|  | "compact_pagemigrate_failed", | 
|  | "compact_stall", | 
|  | "compact_fail", | 
|  | "compact_success", | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_HUGETLB_PAGE | 
|  | "htlb_buddy_alloc_success", | 
|  | "htlb_buddy_alloc_fail", | 
|  | #endif | 
|  | "unevictable_pgs_culled", | 
|  | "unevictable_pgs_scanned", | 
|  | "unevictable_pgs_rescued", | 
|  | "unevictable_pgs_mlocked", | 
|  | "unevictable_pgs_munlocked", | 
|  | "unevictable_pgs_cleared", | 
|  | "unevictable_pgs_stranded", | 
|  | "unevictable_pgs_mlockfreed", | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, | 
|  | struct zone *zone) | 
|  | { | 
|  | int i; | 
|  | seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); | 
|  | seq_printf(m, | 
|  | "\n  pages free     %lu" | 
|  | "\n        min      %lu" | 
|  | "\n        low      %lu" | 
|  | "\n        high     %lu" | 
|  | "\n        scanned  %lu" | 
|  | "\n        spanned  %lu" | 
|  | "\n        present  %lu", | 
|  | zone_page_state(zone, NR_FREE_PAGES), | 
|  | min_wmark_pages(zone), | 
|  | low_wmark_pages(zone), | 
|  | high_wmark_pages(zone), | 
|  | zone->pages_scanned, | 
|  | zone->spanned_pages, | 
|  | zone->present_pages); | 
|  |  | 
|  | for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) | 
|  | seq_printf(m, "\n    %-12s %lu", vmstat_text[i], | 
|  | zone_page_state(zone, i)); | 
|  |  | 
|  | seq_printf(m, | 
|  | "\n        protection: (%lu", | 
|  | zone->lowmem_reserve[0]); | 
|  | for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) | 
|  | seq_printf(m, ", %lu", zone->lowmem_reserve[i]); | 
|  | seq_printf(m, | 
|  | ")" | 
|  | "\n  pagesets"); | 
|  | for_each_online_cpu(i) { | 
|  | struct per_cpu_pageset *pageset; | 
|  |  | 
|  | pageset = per_cpu_ptr(zone->pageset, i); | 
|  | seq_printf(m, | 
|  | "\n    cpu: %i" | 
|  | "\n              count: %i" | 
|  | "\n              high:  %i" | 
|  | "\n              batch: %i", | 
|  | i, | 
|  | pageset->pcp.count, | 
|  | pageset->pcp.high, | 
|  | pageset->pcp.batch); | 
|  | #ifdef CONFIG_SMP | 
|  | seq_printf(m, "\n  vm stats threshold: %d", | 
|  | pageset->stat_threshold); | 
|  | #endif | 
|  | } | 
|  | seq_printf(m, | 
|  | "\n  all_unreclaimable: %u" | 
|  | "\n  start_pfn:         %lu" | 
|  | "\n  inactive_ratio:    %u", | 
|  | zone->all_unreclaimable, | 
|  | zone->zone_start_pfn, | 
|  | zone->inactive_ratio); | 
|  | seq_putc(m, '\n'); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Output information about zones in @pgdat. | 
|  | */ | 
|  | static int zoneinfo_show(struct seq_file *m, void *arg) | 
|  | { | 
|  | pg_data_t *pgdat = (pg_data_t *)arg; | 
|  | walk_zones_in_node(m, pgdat, zoneinfo_show_print); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct seq_operations zoneinfo_op = { | 
|  | .start	= frag_start, /* iterate over all zones. The same as in | 
|  | * fragmentation. */ | 
|  | .next	= frag_next, | 
|  | .stop	= frag_stop, | 
|  | .show	= zoneinfo_show, | 
|  | }; | 
|  |  | 
|  | static int zoneinfo_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return seq_open(file, &zoneinfo_op); | 
|  | } | 
|  |  | 
|  | static const struct file_operations proc_zoneinfo_file_operations = { | 
|  | .open		= zoneinfo_open, | 
|  | .read		= seq_read, | 
|  | .llseek		= seq_lseek, | 
|  | .release	= seq_release, | 
|  | }; | 
|  |  | 
|  | enum writeback_stat_item { | 
|  | NR_DIRTY_THRESHOLD, | 
|  | NR_DIRTY_BG_THRESHOLD, | 
|  | NR_VM_WRITEBACK_STAT_ITEMS, | 
|  | }; | 
|  |  | 
|  | static void *vmstat_start(struct seq_file *m, loff_t *pos) | 
|  | { | 
|  | unsigned long *v; | 
|  | int i, stat_items_size; | 
|  |  | 
|  | if (*pos >= ARRAY_SIZE(vmstat_text)) | 
|  | return NULL; | 
|  | stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) + | 
|  | NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long); | 
|  |  | 
|  | #ifdef CONFIG_VM_EVENT_COUNTERS | 
|  | stat_items_size += sizeof(struct vm_event_state); | 
|  | #endif | 
|  |  | 
|  | v = kmalloc(stat_items_size, GFP_KERNEL); | 
|  | m->private = v; | 
|  | if (!v) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) | 
|  | v[i] = global_page_state(i); | 
|  | v += NR_VM_ZONE_STAT_ITEMS; | 
|  |  | 
|  | global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD, | 
|  | v + NR_DIRTY_THRESHOLD); | 
|  | v += NR_VM_WRITEBACK_STAT_ITEMS; | 
|  |  | 
|  | #ifdef CONFIG_VM_EVENT_COUNTERS | 
|  | all_vm_events(v); | 
|  | v[PGPGIN] /= 2;		/* sectors -> kbytes */ | 
|  | v[PGPGOUT] /= 2; | 
|  | #endif | 
|  | return (unsigned long *)m->private + *pos; | 
|  | } | 
|  |  | 
|  | static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) | 
|  | { | 
|  | (*pos)++; | 
|  | if (*pos >= ARRAY_SIZE(vmstat_text)) | 
|  | return NULL; | 
|  | return (unsigned long *)m->private + *pos; | 
|  | } | 
|  |  | 
|  | static int vmstat_show(struct seq_file *m, void *arg) | 
|  | { | 
|  | unsigned long *l = arg; | 
|  | unsigned long off = l - (unsigned long *)m->private; | 
|  |  | 
|  | seq_printf(m, "%s %lu\n", vmstat_text[off], *l); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void vmstat_stop(struct seq_file *m, void *arg) | 
|  | { | 
|  | kfree(m->private); | 
|  | m->private = NULL; | 
|  | } | 
|  |  | 
|  | static const struct seq_operations vmstat_op = { | 
|  | .start	= vmstat_start, | 
|  | .next	= vmstat_next, | 
|  | .stop	= vmstat_stop, | 
|  | .show	= vmstat_show, | 
|  | }; | 
|  |  | 
|  | static int vmstat_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return seq_open(file, &vmstat_op); | 
|  | } | 
|  |  | 
|  | static const struct file_operations proc_vmstat_file_operations = { | 
|  | .open		= vmstat_open, | 
|  | .read		= seq_read, | 
|  | .llseek		= seq_lseek, | 
|  | .release	= seq_release, | 
|  | }; | 
|  | #endif /* CONFIG_PROC_FS */ | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | static DEFINE_PER_CPU(struct delayed_work, vmstat_work); | 
|  | int sysctl_stat_interval __read_mostly = HZ; | 
|  |  | 
|  | static void vmstat_update(struct work_struct *w) | 
|  | { | 
|  | refresh_cpu_vm_stats(smp_processor_id()); | 
|  | schedule_delayed_work(&__get_cpu_var(vmstat_work), | 
|  | round_jiffies_relative(sysctl_stat_interval)); | 
|  | } | 
|  |  | 
|  | static void __cpuinit start_cpu_timer(int cpu) | 
|  | { | 
|  | struct delayed_work *work = &per_cpu(vmstat_work, cpu); | 
|  |  | 
|  | INIT_DELAYED_WORK_DEFERRABLE(work, vmstat_update); | 
|  | schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Use the cpu notifier to insure that the thresholds are recalculated | 
|  | * when necessary. | 
|  | */ | 
|  | static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb, | 
|  | unsigned long action, | 
|  | void *hcpu) | 
|  | { | 
|  | long cpu = (long)hcpu; | 
|  |  | 
|  | switch (action) { | 
|  | case CPU_ONLINE: | 
|  | case CPU_ONLINE_FROZEN: | 
|  | refresh_zone_stat_thresholds(); | 
|  | start_cpu_timer(cpu); | 
|  | node_set_state(cpu_to_node(cpu), N_CPU); | 
|  | break; | 
|  | case CPU_DOWN_PREPARE: | 
|  | case CPU_DOWN_PREPARE_FROZEN: | 
|  | cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu)); | 
|  | per_cpu(vmstat_work, cpu).work.func = NULL; | 
|  | break; | 
|  | case CPU_DOWN_FAILED: | 
|  | case CPU_DOWN_FAILED_FROZEN: | 
|  | start_cpu_timer(cpu); | 
|  | break; | 
|  | case CPU_DEAD: | 
|  | case CPU_DEAD_FROZEN: | 
|  | refresh_zone_stat_thresholds(); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | static struct notifier_block __cpuinitdata vmstat_notifier = | 
|  | { &vmstat_cpuup_callback, NULL, 0 }; | 
|  | #endif | 
|  |  | 
|  | static int __init setup_vmstat(void) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | int cpu; | 
|  |  | 
|  | refresh_zone_stat_thresholds(); | 
|  | register_cpu_notifier(&vmstat_notifier); | 
|  |  | 
|  | for_each_online_cpu(cpu) | 
|  | start_cpu_timer(cpu); | 
|  | #endif | 
|  | #ifdef CONFIG_PROC_FS | 
|  | proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations); | 
|  | proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops); | 
|  | proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations); | 
|  | proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations); | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  | module_init(setup_vmstat) | 
|  |  | 
|  | #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION) | 
|  | #include <linux/debugfs.h> | 
|  |  | 
|  | static struct dentry *extfrag_debug_root; | 
|  |  | 
|  | /* | 
|  | * Return an index indicating how much of the available free memory is | 
|  | * unusable for an allocation of the requested size. | 
|  | */ | 
|  | static int unusable_free_index(unsigned int order, | 
|  | struct contig_page_info *info) | 
|  | { | 
|  | /* No free memory is interpreted as all free memory is unusable */ | 
|  | if (info->free_pages == 0) | 
|  | return 1000; | 
|  |  | 
|  | /* | 
|  | * Index should be a value between 0 and 1. Return a value to 3 | 
|  | * decimal places. | 
|  | * | 
|  | * 0 => no fragmentation | 
|  | * 1 => high fragmentation | 
|  | */ | 
|  | return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages); | 
|  |  | 
|  | } | 
|  |  | 
|  | static void unusable_show_print(struct seq_file *m, | 
|  | pg_data_t *pgdat, struct zone *zone) | 
|  | { | 
|  | unsigned int order; | 
|  | int index; | 
|  | struct contig_page_info info; | 
|  |  | 
|  | seq_printf(m, "Node %d, zone %8s ", | 
|  | pgdat->node_id, | 
|  | zone->name); | 
|  | for (order = 0; order < MAX_ORDER; ++order) { | 
|  | fill_contig_page_info(zone, order, &info); | 
|  | index = unusable_free_index(order, &info); | 
|  | seq_printf(m, "%d.%03d ", index / 1000, index % 1000); | 
|  | } | 
|  |  | 
|  | seq_putc(m, '\n'); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Display unusable free space index | 
|  | * | 
|  | * The unusable free space index measures how much of the available free | 
|  | * memory cannot be used to satisfy an allocation of a given size and is a | 
|  | * value between 0 and 1. The higher the value, the more of free memory is | 
|  | * unusable and by implication, the worse the external fragmentation is. This | 
|  | * can be expressed as a percentage by multiplying by 100. | 
|  | */ | 
|  | static int unusable_show(struct seq_file *m, void *arg) | 
|  | { | 
|  | pg_data_t *pgdat = (pg_data_t *)arg; | 
|  |  | 
|  | /* check memoryless node */ | 
|  | if (!node_state(pgdat->node_id, N_HIGH_MEMORY)) | 
|  | return 0; | 
|  |  | 
|  | walk_zones_in_node(m, pgdat, unusable_show_print); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct seq_operations unusable_op = { | 
|  | .start	= frag_start, | 
|  | .next	= frag_next, | 
|  | .stop	= frag_stop, | 
|  | .show	= unusable_show, | 
|  | }; | 
|  |  | 
|  | static int unusable_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return seq_open(file, &unusable_op); | 
|  | } | 
|  |  | 
|  | static const struct file_operations unusable_file_ops = { | 
|  | .open		= unusable_open, | 
|  | .read		= seq_read, | 
|  | .llseek		= seq_lseek, | 
|  | .release	= seq_release, | 
|  | }; | 
|  |  | 
|  | static void extfrag_show_print(struct seq_file *m, | 
|  | pg_data_t *pgdat, struct zone *zone) | 
|  | { | 
|  | unsigned int order; | 
|  | int index; | 
|  |  | 
|  | /* Alloc on stack as interrupts are disabled for zone walk */ | 
|  | struct contig_page_info info; | 
|  |  | 
|  | seq_printf(m, "Node %d, zone %8s ", | 
|  | pgdat->node_id, | 
|  | zone->name); | 
|  | for (order = 0; order < MAX_ORDER; ++order) { | 
|  | fill_contig_page_info(zone, order, &info); | 
|  | index = __fragmentation_index(order, &info); | 
|  | seq_printf(m, "%d.%03d ", index / 1000, index % 1000); | 
|  | } | 
|  |  | 
|  | seq_putc(m, '\n'); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Display fragmentation index for orders that allocations would fail for | 
|  | */ | 
|  | static int extfrag_show(struct seq_file *m, void *arg) | 
|  | { | 
|  | pg_data_t *pgdat = (pg_data_t *)arg; | 
|  |  | 
|  | walk_zones_in_node(m, pgdat, extfrag_show_print); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct seq_operations extfrag_op = { | 
|  | .start	= frag_start, | 
|  | .next	= frag_next, | 
|  | .stop	= frag_stop, | 
|  | .show	= extfrag_show, | 
|  | }; | 
|  |  | 
|  | static int extfrag_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return seq_open(file, &extfrag_op); | 
|  | } | 
|  |  | 
|  | static const struct file_operations extfrag_file_ops = { | 
|  | .open		= extfrag_open, | 
|  | .read		= seq_read, | 
|  | .llseek		= seq_lseek, | 
|  | .release	= seq_release, | 
|  | }; | 
|  |  | 
|  | static int __init extfrag_debug_init(void) | 
|  | { | 
|  | extfrag_debug_root = debugfs_create_dir("extfrag", NULL); | 
|  | if (!extfrag_debug_root) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (!debugfs_create_file("unusable_index", 0444, | 
|  | extfrag_debug_root, NULL, &unusable_file_ops)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (!debugfs_create_file("extfrag_index", 0444, | 
|  | extfrag_debug_root, NULL, &extfrag_file_ops)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | module_init(extfrag_debug_init); | 
|  | #endif |