| /* | 
 |  * raid5.c : Multiple Devices driver for Linux | 
 |  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman | 
 |  *	   Copyright (C) 1999, 2000 Ingo Molnar | 
 |  *	   Copyright (C) 2002, 2003 H. Peter Anvin | 
 |  * | 
 |  * RAID-4/5/6 management functions. | 
 |  * Thanks to Penguin Computing for making the RAID-6 development possible | 
 |  * by donating a test server! | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation; either version 2, or (at your option) | 
 |  * any later version. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * (for example /usr/src/linux/COPYING); if not, write to the Free | 
 |  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
 |  */ | 
 |  | 
 | /* | 
 |  * BITMAP UNPLUGGING: | 
 |  * | 
 |  * The sequencing for updating the bitmap reliably is a little | 
 |  * subtle (and I got it wrong the first time) so it deserves some | 
 |  * explanation. | 
 |  * | 
 |  * We group bitmap updates into batches.  Each batch has a number. | 
 |  * We may write out several batches at once, but that isn't very important. | 
 |  * conf->bm_write is the number of the last batch successfully written. | 
 |  * conf->bm_flush is the number of the last batch that was closed to | 
 |  *    new additions. | 
 |  * When we discover that we will need to write to any block in a stripe | 
 |  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq | 
 |  * the number of the batch it will be in. This is bm_flush+1. | 
 |  * When we are ready to do a write, if that batch hasn't been written yet, | 
 |  *   we plug the array and queue the stripe for later. | 
 |  * When an unplug happens, we increment bm_flush, thus closing the current | 
 |  *   batch. | 
 |  * When we notice that bm_flush > bm_write, we write out all pending updates | 
 |  * to the bitmap, and advance bm_write to where bm_flush was. | 
 |  * This may occasionally write a bit out twice, but is sure never to | 
 |  * miss any bits. | 
 |  */ | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/bitops.h> | 
 | #include <linux/kthread.h> | 
 | #include <asm/atomic.h> | 
 | #include "raid6.h" | 
 |  | 
 | #include <linux/raid/bitmap.h> | 
 | #include <linux/async_tx.h> | 
 |  | 
 | /* | 
 |  * Stripe cache | 
 |  */ | 
 |  | 
 | #define NR_STRIPES		256 | 
 | #define STRIPE_SIZE		PAGE_SIZE | 
 | #define STRIPE_SHIFT		(PAGE_SHIFT - 9) | 
 | #define STRIPE_SECTORS		(STRIPE_SIZE>>9) | 
 | #define	IO_THRESHOLD		1 | 
 | #define BYPASS_THRESHOLD	1 | 
 | #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head)) | 
 | #define HASH_MASK		(NR_HASH - 1) | 
 |  | 
 | #define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK])) | 
 |  | 
 | /* bio's attached to a stripe+device for I/O are linked together in bi_sector | 
 |  * order without overlap.  There may be several bio's per stripe+device, and | 
 |  * a bio could span several devices. | 
 |  * When walking this list for a particular stripe+device, we must never proceed | 
 |  * beyond a bio that extends past this device, as the next bio might no longer | 
 |  * be valid. | 
 |  * This macro is used to determine the 'next' bio in the list, given the sector | 
 |  * of the current stripe+device | 
 |  */ | 
 | #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL) | 
 | /* | 
 |  * The following can be used to debug the driver | 
 |  */ | 
 | #define RAID5_PARANOIA	1 | 
 | #if RAID5_PARANOIA && defined(CONFIG_SMP) | 
 | # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock) | 
 | #else | 
 | # define CHECK_DEVLOCK() | 
 | #endif | 
 |  | 
 | #ifdef DEBUG | 
 | #define inline | 
 | #define __inline__ | 
 | #endif | 
 |  | 
 | #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args))) | 
 |  | 
 | #if !RAID6_USE_EMPTY_ZERO_PAGE | 
 | /* In .bss so it's zeroed */ | 
 | const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256))); | 
 | #endif | 
 |  | 
 | static inline int raid6_next_disk(int disk, int raid_disks) | 
 | { | 
 | 	disk++; | 
 | 	return (disk < raid_disks) ? disk : 0; | 
 | } | 
 |  | 
 | static void return_io(struct bio *return_bi) | 
 | { | 
 | 	struct bio *bi = return_bi; | 
 | 	while (bi) { | 
 |  | 
 | 		return_bi = bi->bi_next; | 
 | 		bi->bi_next = NULL; | 
 | 		bi->bi_size = 0; | 
 | 		bio_endio(bi, 0); | 
 | 		bi = return_bi; | 
 | 	} | 
 | } | 
 |  | 
 | static void print_raid5_conf (raid5_conf_t *conf); | 
 |  | 
 | static int stripe_operations_active(struct stripe_head *sh) | 
 | { | 
 | 	return sh->check_state || sh->reconstruct_state || | 
 | 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) || | 
 | 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state); | 
 | } | 
 |  | 
 | static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh) | 
 | { | 
 | 	if (atomic_dec_and_test(&sh->count)) { | 
 | 		BUG_ON(!list_empty(&sh->lru)); | 
 | 		BUG_ON(atomic_read(&conf->active_stripes)==0); | 
 | 		if (test_bit(STRIPE_HANDLE, &sh->state)) { | 
 | 			if (test_bit(STRIPE_DELAYED, &sh->state)) { | 
 | 				list_add_tail(&sh->lru, &conf->delayed_list); | 
 | 				blk_plug_device(conf->mddev->queue); | 
 | 			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && | 
 | 				   sh->bm_seq - conf->seq_write > 0) { | 
 | 				list_add_tail(&sh->lru, &conf->bitmap_list); | 
 | 				blk_plug_device(conf->mddev->queue); | 
 | 			} else { | 
 | 				clear_bit(STRIPE_BIT_DELAY, &sh->state); | 
 | 				list_add_tail(&sh->lru, &conf->handle_list); | 
 | 			} | 
 | 			md_wakeup_thread(conf->mddev->thread); | 
 | 		} else { | 
 | 			BUG_ON(stripe_operations_active(sh)); | 
 | 			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { | 
 | 				atomic_dec(&conf->preread_active_stripes); | 
 | 				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) | 
 | 					md_wakeup_thread(conf->mddev->thread); | 
 | 			} | 
 | 			atomic_dec(&conf->active_stripes); | 
 | 			if (!test_bit(STRIPE_EXPANDING, &sh->state)) { | 
 | 				list_add_tail(&sh->lru, &conf->inactive_list); | 
 | 				wake_up(&conf->wait_for_stripe); | 
 | 				if (conf->retry_read_aligned) | 
 | 					md_wakeup_thread(conf->mddev->thread); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | } | 
 | static void release_stripe(struct stripe_head *sh) | 
 | { | 
 | 	raid5_conf_t *conf = sh->raid_conf; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&conf->device_lock, flags); | 
 | 	__release_stripe(conf, sh); | 
 | 	spin_unlock_irqrestore(&conf->device_lock, flags); | 
 | } | 
 |  | 
 | static inline void remove_hash(struct stripe_head *sh) | 
 | { | 
 | 	pr_debug("remove_hash(), stripe %llu\n", | 
 | 		(unsigned long long)sh->sector); | 
 |  | 
 | 	hlist_del_init(&sh->hash); | 
 | } | 
 |  | 
 | static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh) | 
 | { | 
 | 	struct hlist_head *hp = stripe_hash(conf, sh->sector); | 
 |  | 
 | 	pr_debug("insert_hash(), stripe %llu\n", | 
 | 		(unsigned long long)sh->sector); | 
 |  | 
 | 	CHECK_DEVLOCK(); | 
 | 	hlist_add_head(&sh->hash, hp); | 
 | } | 
 |  | 
 |  | 
 | /* find an idle stripe, make sure it is unhashed, and return it. */ | 
 | static struct stripe_head *get_free_stripe(raid5_conf_t *conf) | 
 | { | 
 | 	struct stripe_head *sh = NULL; | 
 | 	struct list_head *first; | 
 |  | 
 | 	CHECK_DEVLOCK(); | 
 | 	if (list_empty(&conf->inactive_list)) | 
 | 		goto out; | 
 | 	first = conf->inactive_list.next; | 
 | 	sh = list_entry(first, struct stripe_head, lru); | 
 | 	list_del_init(first); | 
 | 	remove_hash(sh); | 
 | 	atomic_inc(&conf->active_stripes); | 
 | out: | 
 | 	return sh; | 
 | } | 
 |  | 
 | static void shrink_buffers(struct stripe_head *sh, int num) | 
 | { | 
 | 	struct page *p; | 
 | 	int i; | 
 |  | 
 | 	for (i=0; i<num ; i++) { | 
 | 		p = sh->dev[i].page; | 
 | 		if (!p) | 
 | 			continue; | 
 | 		sh->dev[i].page = NULL; | 
 | 		put_page(p); | 
 | 	} | 
 | } | 
 |  | 
 | static int grow_buffers(struct stripe_head *sh, int num) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i=0; i<num; i++) { | 
 | 		struct page *page; | 
 |  | 
 | 		if (!(page = alloc_page(GFP_KERNEL))) { | 
 | 			return 1; | 
 | 		} | 
 | 		sh->dev[i].page = page; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void raid5_build_block (struct stripe_head *sh, int i); | 
 |  | 
 | static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks) | 
 | { | 
 | 	raid5_conf_t *conf = sh->raid_conf; | 
 | 	int i; | 
 |  | 
 | 	BUG_ON(atomic_read(&sh->count) != 0); | 
 | 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); | 
 | 	BUG_ON(stripe_operations_active(sh)); | 
 |  | 
 | 	CHECK_DEVLOCK(); | 
 | 	pr_debug("init_stripe called, stripe %llu\n", | 
 | 		(unsigned long long)sh->sector); | 
 |  | 
 | 	remove_hash(sh); | 
 |  | 
 | 	sh->sector = sector; | 
 | 	sh->pd_idx = pd_idx; | 
 | 	sh->state = 0; | 
 |  | 
 | 	sh->disks = disks; | 
 |  | 
 | 	for (i = sh->disks; i--; ) { | 
 | 		struct r5dev *dev = &sh->dev[i]; | 
 |  | 
 | 		if (dev->toread || dev->read || dev->towrite || dev->written || | 
 | 		    test_bit(R5_LOCKED, &dev->flags)) { | 
 | 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n", | 
 | 			       (unsigned long long)sh->sector, i, dev->toread, | 
 | 			       dev->read, dev->towrite, dev->written, | 
 | 			       test_bit(R5_LOCKED, &dev->flags)); | 
 | 			BUG(); | 
 | 		} | 
 | 		dev->flags = 0; | 
 | 		raid5_build_block(sh, i); | 
 | 	} | 
 | 	insert_hash(conf, sh); | 
 | } | 
 |  | 
 | static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks) | 
 | { | 
 | 	struct stripe_head *sh; | 
 | 	struct hlist_node *hn; | 
 |  | 
 | 	CHECK_DEVLOCK(); | 
 | 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); | 
 | 	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash) | 
 | 		if (sh->sector == sector && sh->disks == disks) | 
 | 			return sh; | 
 | 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void unplug_slaves(mddev_t *mddev); | 
 | static void raid5_unplug_device(struct request_queue *q); | 
 |  | 
 | static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks, | 
 | 					     int pd_idx, int noblock) | 
 | { | 
 | 	struct stripe_head *sh; | 
 |  | 
 | 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); | 
 |  | 
 | 	spin_lock_irq(&conf->device_lock); | 
 |  | 
 | 	do { | 
 | 		wait_event_lock_irq(conf->wait_for_stripe, | 
 | 				    conf->quiesce == 0, | 
 | 				    conf->device_lock, /* nothing */); | 
 | 		sh = __find_stripe(conf, sector, disks); | 
 | 		if (!sh) { | 
 | 			if (!conf->inactive_blocked) | 
 | 				sh = get_free_stripe(conf); | 
 | 			if (noblock && sh == NULL) | 
 | 				break; | 
 | 			if (!sh) { | 
 | 				conf->inactive_blocked = 1; | 
 | 				wait_event_lock_irq(conf->wait_for_stripe, | 
 | 						    !list_empty(&conf->inactive_list) && | 
 | 						    (atomic_read(&conf->active_stripes) | 
 | 						     < (conf->max_nr_stripes *3/4) | 
 | 						     || !conf->inactive_blocked), | 
 | 						    conf->device_lock, | 
 | 						    raid5_unplug_device(conf->mddev->queue) | 
 | 					); | 
 | 				conf->inactive_blocked = 0; | 
 | 			} else | 
 | 				init_stripe(sh, sector, pd_idx, disks); | 
 | 		} else { | 
 | 			if (atomic_read(&sh->count)) { | 
 | 			  BUG_ON(!list_empty(&sh->lru)); | 
 | 			} else { | 
 | 				if (!test_bit(STRIPE_HANDLE, &sh->state)) | 
 | 					atomic_inc(&conf->active_stripes); | 
 | 				if (list_empty(&sh->lru) && | 
 | 				    !test_bit(STRIPE_EXPANDING, &sh->state)) | 
 | 					BUG(); | 
 | 				list_del_init(&sh->lru); | 
 | 			} | 
 | 		} | 
 | 	} while (sh == NULL); | 
 |  | 
 | 	if (sh) | 
 | 		atomic_inc(&sh->count); | 
 |  | 
 | 	spin_unlock_irq(&conf->device_lock); | 
 | 	return sh; | 
 | } | 
 |  | 
 | static void | 
 | raid5_end_read_request(struct bio *bi, int error); | 
 | static void | 
 | raid5_end_write_request(struct bio *bi, int error); | 
 |  | 
 | static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) | 
 | { | 
 | 	raid5_conf_t *conf = sh->raid_conf; | 
 | 	int i, disks = sh->disks; | 
 |  | 
 | 	might_sleep(); | 
 |  | 
 | 	for (i = disks; i--; ) { | 
 | 		int rw; | 
 | 		struct bio *bi; | 
 | 		mdk_rdev_t *rdev; | 
 | 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) | 
 | 			rw = WRITE; | 
 | 		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) | 
 | 			rw = READ; | 
 | 		else | 
 | 			continue; | 
 |  | 
 | 		bi = &sh->dev[i].req; | 
 |  | 
 | 		bi->bi_rw = rw; | 
 | 		if (rw == WRITE) | 
 | 			bi->bi_end_io = raid5_end_write_request; | 
 | 		else | 
 | 			bi->bi_end_io = raid5_end_read_request; | 
 |  | 
 | 		rcu_read_lock(); | 
 | 		rdev = rcu_dereference(conf->disks[i].rdev); | 
 | 		if (rdev && test_bit(Faulty, &rdev->flags)) | 
 | 			rdev = NULL; | 
 | 		if (rdev) | 
 | 			atomic_inc(&rdev->nr_pending); | 
 | 		rcu_read_unlock(); | 
 |  | 
 | 		if (rdev) { | 
 | 			if (s->syncing || s->expanding || s->expanded) | 
 | 				md_sync_acct(rdev->bdev, STRIPE_SECTORS); | 
 |  | 
 | 			set_bit(STRIPE_IO_STARTED, &sh->state); | 
 |  | 
 | 			bi->bi_bdev = rdev->bdev; | 
 | 			pr_debug("%s: for %llu schedule op %ld on disc %d\n", | 
 | 				__func__, (unsigned long long)sh->sector, | 
 | 				bi->bi_rw, i); | 
 | 			atomic_inc(&sh->count); | 
 | 			bi->bi_sector = sh->sector + rdev->data_offset; | 
 | 			bi->bi_flags = 1 << BIO_UPTODATE; | 
 | 			bi->bi_vcnt = 1; | 
 | 			bi->bi_max_vecs = 1; | 
 | 			bi->bi_idx = 0; | 
 | 			bi->bi_io_vec = &sh->dev[i].vec; | 
 | 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE; | 
 | 			bi->bi_io_vec[0].bv_offset = 0; | 
 | 			bi->bi_size = STRIPE_SIZE; | 
 | 			bi->bi_next = NULL; | 
 | 			if (rw == WRITE && | 
 | 			    test_bit(R5_ReWrite, &sh->dev[i].flags)) | 
 | 				atomic_add(STRIPE_SECTORS, | 
 | 					&rdev->corrected_errors); | 
 | 			generic_make_request(bi); | 
 | 		} else { | 
 | 			if (rw == WRITE) | 
 | 				set_bit(STRIPE_DEGRADED, &sh->state); | 
 | 			pr_debug("skip op %ld on disc %d for sector %llu\n", | 
 | 				bi->bi_rw, i, (unsigned long long)sh->sector); | 
 | 			clear_bit(R5_LOCKED, &sh->dev[i].flags); | 
 | 			set_bit(STRIPE_HANDLE, &sh->state); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static struct dma_async_tx_descriptor * | 
 | async_copy_data(int frombio, struct bio *bio, struct page *page, | 
 | 	sector_t sector, struct dma_async_tx_descriptor *tx) | 
 | { | 
 | 	struct bio_vec *bvl; | 
 | 	struct page *bio_page; | 
 | 	int i; | 
 | 	int page_offset; | 
 |  | 
 | 	if (bio->bi_sector >= sector) | 
 | 		page_offset = (signed)(bio->bi_sector - sector) * 512; | 
 | 	else | 
 | 		page_offset = (signed)(sector - bio->bi_sector) * -512; | 
 | 	bio_for_each_segment(bvl, bio, i) { | 
 | 		int len = bio_iovec_idx(bio, i)->bv_len; | 
 | 		int clen; | 
 | 		int b_offset = 0; | 
 |  | 
 | 		if (page_offset < 0) { | 
 | 			b_offset = -page_offset; | 
 | 			page_offset += b_offset; | 
 | 			len -= b_offset; | 
 | 		} | 
 |  | 
 | 		if (len > 0 && page_offset + len > STRIPE_SIZE) | 
 | 			clen = STRIPE_SIZE - page_offset; | 
 | 		else | 
 | 			clen = len; | 
 |  | 
 | 		if (clen > 0) { | 
 | 			b_offset += bio_iovec_idx(bio, i)->bv_offset; | 
 | 			bio_page = bio_iovec_idx(bio, i)->bv_page; | 
 | 			if (frombio) | 
 | 				tx = async_memcpy(page, bio_page, page_offset, | 
 | 					b_offset, clen, | 
 | 					ASYNC_TX_DEP_ACK, | 
 | 					tx, NULL, NULL); | 
 | 			else | 
 | 				tx = async_memcpy(bio_page, page, b_offset, | 
 | 					page_offset, clen, | 
 | 					ASYNC_TX_DEP_ACK, | 
 | 					tx, NULL, NULL); | 
 | 		} | 
 | 		if (clen < len) /* hit end of page */ | 
 | 			break; | 
 | 		page_offset +=  len; | 
 | 	} | 
 |  | 
 | 	return tx; | 
 | } | 
 |  | 
 | static void ops_complete_biofill(void *stripe_head_ref) | 
 | { | 
 | 	struct stripe_head *sh = stripe_head_ref; | 
 | 	struct bio *return_bi = NULL; | 
 | 	raid5_conf_t *conf = sh->raid_conf; | 
 | 	int i; | 
 |  | 
 | 	pr_debug("%s: stripe %llu\n", __func__, | 
 | 		(unsigned long long)sh->sector); | 
 |  | 
 | 	/* clear completed biofills */ | 
 | 	spin_lock_irq(&conf->device_lock); | 
 | 	for (i = sh->disks; i--; ) { | 
 | 		struct r5dev *dev = &sh->dev[i]; | 
 |  | 
 | 		/* acknowledge completion of a biofill operation */ | 
 | 		/* and check if we need to reply to a read request, | 
 | 		 * new R5_Wantfill requests are held off until | 
 | 		 * !STRIPE_BIOFILL_RUN | 
 | 		 */ | 
 | 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { | 
 | 			struct bio *rbi, *rbi2; | 
 |  | 
 | 			BUG_ON(!dev->read); | 
 | 			rbi = dev->read; | 
 | 			dev->read = NULL; | 
 | 			while (rbi && rbi->bi_sector < | 
 | 				dev->sector + STRIPE_SECTORS) { | 
 | 				rbi2 = r5_next_bio(rbi, dev->sector); | 
 | 				if (--rbi->bi_phys_segments == 0) { | 
 | 					rbi->bi_next = return_bi; | 
 | 					return_bi = rbi; | 
 | 				} | 
 | 				rbi = rbi2; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	spin_unlock_irq(&conf->device_lock); | 
 | 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state); | 
 |  | 
 | 	return_io(return_bi); | 
 |  | 
 | 	set_bit(STRIPE_HANDLE, &sh->state); | 
 | 	release_stripe(sh); | 
 | } | 
 |  | 
 | static void ops_run_biofill(struct stripe_head *sh) | 
 | { | 
 | 	struct dma_async_tx_descriptor *tx = NULL; | 
 | 	raid5_conf_t *conf = sh->raid_conf; | 
 | 	int i; | 
 |  | 
 | 	pr_debug("%s: stripe %llu\n", __func__, | 
 | 		(unsigned long long)sh->sector); | 
 |  | 
 | 	for (i = sh->disks; i--; ) { | 
 | 		struct r5dev *dev = &sh->dev[i]; | 
 | 		if (test_bit(R5_Wantfill, &dev->flags)) { | 
 | 			struct bio *rbi; | 
 | 			spin_lock_irq(&conf->device_lock); | 
 | 			dev->read = rbi = dev->toread; | 
 | 			dev->toread = NULL; | 
 | 			spin_unlock_irq(&conf->device_lock); | 
 | 			while (rbi && rbi->bi_sector < | 
 | 				dev->sector + STRIPE_SECTORS) { | 
 | 				tx = async_copy_data(0, rbi, dev->page, | 
 | 					dev->sector, tx); | 
 | 				rbi = r5_next_bio(rbi, dev->sector); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	atomic_inc(&sh->count); | 
 | 	async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx, | 
 | 		ops_complete_biofill, sh); | 
 | } | 
 |  | 
 | static void ops_complete_compute5(void *stripe_head_ref) | 
 | { | 
 | 	struct stripe_head *sh = stripe_head_ref; | 
 | 	int target = sh->ops.target; | 
 | 	struct r5dev *tgt = &sh->dev[target]; | 
 |  | 
 | 	pr_debug("%s: stripe %llu\n", __func__, | 
 | 		(unsigned long long)sh->sector); | 
 |  | 
 | 	set_bit(R5_UPTODATE, &tgt->flags); | 
 | 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); | 
 | 	clear_bit(R5_Wantcompute, &tgt->flags); | 
 | 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state); | 
 | 	if (sh->check_state == check_state_compute_run) | 
 | 		sh->check_state = check_state_compute_result; | 
 | 	set_bit(STRIPE_HANDLE, &sh->state); | 
 | 	release_stripe(sh); | 
 | } | 
 |  | 
 | static struct dma_async_tx_descriptor *ops_run_compute5(struct stripe_head *sh) | 
 | { | 
 | 	/* kernel stack size limits the total number of disks */ | 
 | 	int disks = sh->disks; | 
 | 	struct page *xor_srcs[disks]; | 
 | 	int target = sh->ops.target; | 
 | 	struct r5dev *tgt = &sh->dev[target]; | 
 | 	struct page *xor_dest = tgt->page; | 
 | 	int count = 0; | 
 | 	struct dma_async_tx_descriptor *tx; | 
 | 	int i; | 
 |  | 
 | 	pr_debug("%s: stripe %llu block: %d\n", | 
 | 		__func__, (unsigned long long)sh->sector, target); | 
 | 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); | 
 |  | 
 | 	for (i = disks; i--; ) | 
 | 		if (i != target) | 
 | 			xor_srcs[count++] = sh->dev[i].page; | 
 |  | 
 | 	atomic_inc(&sh->count); | 
 |  | 
 | 	if (unlikely(count == 1)) | 
 | 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, | 
 | 			0, NULL, ops_complete_compute5, sh); | 
 | 	else | 
 | 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, | 
 | 			ASYNC_TX_XOR_ZERO_DST, NULL, | 
 | 			ops_complete_compute5, sh); | 
 |  | 
 | 	return tx; | 
 | } | 
 |  | 
 | static void ops_complete_prexor(void *stripe_head_ref) | 
 | { | 
 | 	struct stripe_head *sh = stripe_head_ref; | 
 |  | 
 | 	pr_debug("%s: stripe %llu\n", __func__, | 
 | 		(unsigned long long)sh->sector); | 
 | } | 
 |  | 
 | static struct dma_async_tx_descriptor * | 
 | ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) | 
 | { | 
 | 	/* kernel stack size limits the total number of disks */ | 
 | 	int disks = sh->disks; | 
 | 	struct page *xor_srcs[disks]; | 
 | 	int count = 0, pd_idx = sh->pd_idx, i; | 
 |  | 
 | 	/* existing parity data subtracted */ | 
 | 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; | 
 |  | 
 | 	pr_debug("%s: stripe %llu\n", __func__, | 
 | 		(unsigned long long)sh->sector); | 
 |  | 
 | 	for (i = disks; i--; ) { | 
 | 		struct r5dev *dev = &sh->dev[i]; | 
 | 		/* Only process blocks that are known to be uptodate */ | 
 | 		if (test_bit(R5_Wantdrain, &dev->flags)) | 
 | 			xor_srcs[count++] = dev->page; | 
 | 	} | 
 |  | 
 | 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, | 
 | 		ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx, | 
 | 		ops_complete_prexor, sh); | 
 |  | 
 | 	return tx; | 
 | } | 
 |  | 
 | static struct dma_async_tx_descriptor * | 
 | ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) | 
 | { | 
 | 	int disks = sh->disks; | 
 | 	int i; | 
 |  | 
 | 	pr_debug("%s: stripe %llu\n", __func__, | 
 | 		(unsigned long long)sh->sector); | 
 |  | 
 | 	for (i = disks; i--; ) { | 
 | 		struct r5dev *dev = &sh->dev[i]; | 
 | 		struct bio *chosen; | 
 |  | 
 | 		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) { | 
 | 			struct bio *wbi; | 
 |  | 
 | 			spin_lock(&sh->lock); | 
 | 			chosen = dev->towrite; | 
 | 			dev->towrite = NULL; | 
 | 			BUG_ON(dev->written); | 
 | 			wbi = dev->written = chosen; | 
 | 			spin_unlock(&sh->lock); | 
 |  | 
 | 			while (wbi && wbi->bi_sector < | 
 | 				dev->sector + STRIPE_SECTORS) { | 
 | 				tx = async_copy_data(1, wbi, dev->page, | 
 | 					dev->sector, tx); | 
 | 				wbi = r5_next_bio(wbi, dev->sector); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return tx; | 
 | } | 
 |  | 
 | static void ops_complete_postxor(void *stripe_head_ref) | 
 | { | 
 | 	struct stripe_head *sh = stripe_head_ref; | 
 | 	int disks = sh->disks, i, pd_idx = sh->pd_idx; | 
 |  | 
 | 	pr_debug("%s: stripe %llu\n", __func__, | 
 | 		(unsigned long long)sh->sector); | 
 |  | 
 | 	for (i = disks; i--; ) { | 
 | 		struct r5dev *dev = &sh->dev[i]; | 
 | 		if (dev->written || i == pd_idx) | 
 | 			set_bit(R5_UPTODATE, &dev->flags); | 
 | 	} | 
 |  | 
 | 	if (sh->reconstruct_state == reconstruct_state_drain_run) | 
 | 		sh->reconstruct_state = reconstruct_state_drain_result; | 
 | 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) | 
 | 		sh->reconstruct_state = reconstruct_state_prexor_drain_result; | 
 | 	else { | 
 | 		BUG_ON(sh->reconstruct_state != reconstruct_state_run); | 
 | 		sh->reconstruct_state = reconstruct_state_result; | 
 | 	} | 
 |  | 
 | 	set_bit(STRIPE_HANDLE, &sh->state); | 
 | 	release_stripe(sh); | 
 | } | 
 |  | 
 | static void | 
 | ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) | 
 | { | 
 | 	/* kernel stack size limits the total number of disks */ | 
 | 	int disks = sh->disks; | 
 | 	struct page *xor_srcs[disks]; | 
 |  | 
 | 	int count = 0, pd_idx = sh->pd_idx, i; | 
 | 	struct page *xor_dest; | 
 | 	int prexor = 0; | 
 | 	unsigned long flags; | 
 |  | 
 | 	pr_debug("%s: stripe %llu\n", __func__, | 
 | 		(unsigned long long)sh->sector); | 
 |  | 
 | 	/* check if prexor is active which means only process blocks | 
 | 	 * that are part of a read-modify-write (written) | 
 | 	 */ | 
 | 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { | 
 | 		prexor = 1; | 
 | 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; | 
 | 		for (i = disks; i--; ) { | 
 | 			struct r5dev *dev = &sh->dev[i]; | 
 | 			if (dev->written) | 
 | 				xor_srcs[count++] = dev->page; | 
 | 		} | 
 | 	} else { | 
 | 		xor_dest = sh->dev[pd_idx].page; | 
 | 		for (i = disks; i--; ) { | 
 | 			struct r5dev *dev = &sh->dev[i]; | 
 | 			if (i != pd_idx) | 
 | 				xor_srcs[count++] = dev->page; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* 1/ if we prexor'd then the dest is reused as a source | 
 | 	 * 2/ if we did not prexor then we are redoing the parity | 
 | 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST | 
 | 	 * for the synchronous xor case | 
 | 	 */ | 
 | 	flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK | | 
 | 		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); | 
 |  | 
 | 	atomic_inc(&sh->count); | 
 |  | 
 | 	if (unlikely(count == 1)) { | 
 | 		flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST); | 
 | 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, | 
 | 			flags, tx, ops_complete_postxor, sh); | 
 | 	} else | 
 | 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, | 
 | 			flags, tx, ops_complete_postxor, sh); | 
 | } | 
 |  | 
 | static void ops_complete_check(void *stripe_head_ref) | 
 | { | 
 | 	struct stripe_head *sh = stripe_head_ref; | 
 |  | 
 | 	pr_debug("%s: stripe %llu\n", __func__, | 
 | 		(unsigned long long)sh->sector); | 
 |  | 
 | 	sh->check_state = check_state_check_result; | 
 | 	set_bit(STRIPE_HANDLE, &sh->state); | 
 | 	release_stripe(sh); | 
 | } | 
 |  | 
 | static void ops_run_check(struct stripe_head *sh) | 
 | { | 
 | 	/* kernel stack size limits the total number of disks */ | 
 | 	int disks = sh->disks; | 
 | 	struct page *xor_srcs[disks]; | 
 | 	struct dma_async_tx_descriptor *tx; | 
 |  | 
 | 	int count = 0, pd_idx = sh->pd_idx, i; | 
 | 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; | 
 |  | 
 | 	pr_debug("%s: stripe %llu\n", __func__, | 
 | 		(unsigned long long)sh->sector); | 
 |  | 
 | 	for (i = disks; i--; ) { | 
 | 		struct r5dev *dev = &sh->dev[i]; | 
 | 		if (i != pd_idx) | 
 | 			xor_srcs[count++] = dev->page; | 
 | 	} | 
 |  | 
 | 	tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, | 
 | 		&sh->ops.zero_sum_result, 0, NULL, NULL, NULL); | 
 |  | 
 | 	atomic_inc(&sh->count); | 
 | 	tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx, | 
 | 		ops_complete_check, sh); | 
 | } | 
 |  | 
 | static void raid5_run_ops(struct stripe_head *sh, unsigned long ops_request) | 
 | { | 
 | 	int overlap_clear = 0, i, disks = sh->disks; | 
 | 	struct dma_async_tx_descriptor *tx = NULL; | 
 |  | 
 | 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { | 
 | 		ops_run_biofill(sh); | 
 | 		overlap_clear++; | 
 | 	} | 
 |  | 
 | 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { | 
 | 		tx = ops_run_compute5(sh); | 
 | 		/* terminate the chain if postxor is not set to be run */ | 
 | 		if (tx && !test_bit(STRIPE_OP_POSTXOR, &ops_request)) | 
 | 			async_tx_ack(tx); | 
 | 	} | 
 |  | 
 | 	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) | 
 | 		tx = ops_run_prexor(sh, tx); | 
 |  | 
 | 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { | 
 | 		tx = ops_run_biodrain(sh, tx); | 
 | 		overlap_clear++; | 
 | 	} | 
 |  | 
 | 	if (test_bit(STRIPE_OP_POSTXOR, &ops_request)) | 
 | 		ops_run_postxor(sh, tx); | 
 |  | 
 | 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) | 
 | 		ops_run_check(sh); | 
 |  | 
 | 	if (overlap_clear) | 
 | 		for (i = disks; i--; ) { | 
 | 			struct r5dev *dev = &sh->dev[i]; | 
 | 			if (test_and_clear_bit(R5_Overlap, &dev->flags)) | 
 | 				wake_up(&sh->raid_conf->wait_for_overlap); | 
 | 		} | 
 | } | 
 |  | 
 | static int grow_one_stripe(raid5_conf_t *conf) | 
 | { | 
 | 	struct stripe_head *sh; | 
 | 	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL); | 
 | 	if (!sh) | 
 | 		return 0; | 
 | 	memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev)); | 
 | 	sh->raid_conf = conf; | 
 | 	spin_lock_init(&sh->lock); | 
 |  | 
 | 	if (grow_buffers(sh, conf->raid_disks)) { | 
 | 		shrink_buffers(sh, conf->raid_disks); | 
 | 		kmem_cache_free(conf->slab_cache, sh); | 
 | 		return 0; | 
 | 	} | 
 | 	sh->disks = conf->raid_disks; | 
 | 	/* we just created an active stripe so... */ | 
 | 	atomic_set(&sh->count, 1); | 
 | 	atomic_inc(&conf->active_stripes); | 
 | 	INIT_LIST_HEAD(&sh->lru); | 
 | 	release_stripe(sh); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int grow_stripes(raid5_conf_t *conf, int num) | 
 | { | 
 | 	struct kmem_cache *sc; | 
 | 	int devs = conf->raid_disks; | 
 |  | 
 | 	sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev)); | 
 | 	sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev)); | 
 | 	conf->active_name = 0; | 
 | 	sc = kmem_cache_create(conf->cache_name[conf->active_name], | 
 | 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), | 
 | 			       0, 0, NULL); | 
 | 	if (!sc) | 
 | 		return 1; | 
 | 	conf->slab_cache = sc; | 
 | 	conf->pool_size = devs; | 
 | 	while (num--) | 
 | 		if (!grow_one_stripe(conf)) | 
 | 			return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_MD_RAID5_RESHAPE | 
 | static int resize_stripes(raid5_conf_t *conf, int newsize) | 
 | { | 
 | 	/* Make all the stripes able to hold 'newsize' devices. | 
 | 	 * New slots in each stripe get 'page' set to a new page. | 
 | 	 * | 
 | 	 * This happens in stages: | 
 | 	 * 1/ create a new kmem_cache and allocate the required number of | 
 | 	 *    stripe_heads. | 
 | 	 * 2/ gather all the old stripe_heads and tranfer the pages across | 
 | 	 *    to the new stripe_heads.  This will have the side effect of | 
 | 	 *    freezing the array as once all stripe_heads have been collected, | 
 | 	 *    no IO will be possible.  Old stripe heads are freed once their | 
 | 	 *    pages have been transferred over, and the old kmem_cache is | 
 | 	 *    freed when all stripes are done. | 
 | 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails, | 
 | 	 *    we simple return a failre status - no need to clean anything up. | 
 | 	 * 4/ allocate new pages for the new slots in the new stripe_heads. | 
 | 	 *    If this fails, we don't bother trying the shrink the | 
 | 	 *    stripe_heads down again, we just leave them as they are. | 
 | 	 *    As each stripe_head is processed the new one is released into | 
 | 	 *    active service. | 
 | 	 * | 
 | 	 * Once step2 is started, we cannot afford to wait for a write, | 
 | 	 * so we use GFP_NOIO allocations. | 
 | 	 */ | 
 | 	struct stripe_head *osh, *nsh; | 
 | 	LIST_HEAD(newstripes); | 
 | 	struct disk_info *ndisks; | 
 | 	int err; | 
 | 	struct kmem_cache *sc; | 
 | 	int i; | 
 |  | 
 | 	if (newsize <= conf->pool_size) | 
 | 		return 0; /* never bother to shrink */ | 
 |  | 
 | 	err = md_allow_write(conf->mddev); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	/* Step 1 */ | 
 | 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name], | 
 | 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), | 
 | 			       0, 0, NULL); | 
 | 	if (!sc) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	for (i = conf->max_nr_stripes; i; i--) { | 
 | 		nsh = kmem_cache_alloc(sc, GFP_KERNEL); | 
 | 		if (!nsh) | 
 | 			break; | 
 |  | 
 | 		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev)); | 
 |  | 
 | 		nsh->raid_conf = conf; | 
 | 		spin_lock_init(&nsh->lock); | 
 |  | 
 | 		list_add(&nsh->lru, &newstripes); | 
 | 	} | 
 | 	if (i) { | 
 | 		/* didn't get enough, give up */ | 
 | 		while (!list_empty(&newstripes)) { | 
 | 			nsh = list_entry(newstripes.next, struct stripe_head, lru); | 
 | 			list_del(&nsh->lru); | 
 | 			kmem_cache_free(sc, nsh); | 
 | 		} | 
 | 		kmem_cache_destroy(sc); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	/* Step 2 - Must use GFP_NOIO now. | 
 | 	 * OK, we have enough stripes, start collecting inactive | 
 | 	 * stripes and copying them over | 
 | 	 */ | 
 | 	list_for_each_entry(nsh, &newstripes, lru) { | 
 | 		spin_lock_irq(&conf->device_lock); | 
 | 		wait_event_lock_irq(conf->wait_for_stripe, | 
 | 				    !list_empty(&conf->inactive_list), | 
 | 				    conf->device_lock, | 
 | 				    unplug_slaves(conf->mddev) | 
 | 			); | 
 | 		osh = get_free_stripe(conf); | 
 | 		spin_unlock_irq(&conf->device_lock); | 
 | 		atomic_set(&nsh->count, 1); | 
 | 		for(i=0; i<conf->pool_size; i++) | 
 | 			nsh->dev[i].page = osh->dev[i].page; | 
 | 		for( ; i<newsize; i++) | 
 | 			nsh->dev[i].page = NULL; | 
 | 		kmem_cache_free(conf->slab_cache, osh); | 
 | 	} | 
 | 	kmem_cache_destroy(conf->slab_cache); | 
 |  | 
 | 	/* Step 3. | 
 | 	 * At this point, we are holding all the stripes so the array | 
 | 	 * is completely stalled, so now is a good time to resize | 
 | 	 * conf->disks. | 
 | 	 */ | 
 | 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO); | 
 | 	if (ndisks) { | 
 | 		for (i=0; i<conf->raid_disks; i++) | 
 | 			ndisks[i] = conf->disks[i]; | 
 | 		kfree(conf->disks); | 
 | 		conf->disks = ndisks; | 
 | 	} else | 
 | 		err = -ENOMEM; | 
 |  | 
 | 	/* Step 4, return new stripes to service */ | 
 | 	while(!list_empty(&newstripes)) { | 
 | 		nsh = list_entry(newstripes.next, struct stripe_head, lru); | 
 | 		list_del_init(&nsh->lru); | 
 | 		for (i=conf->raid_disks; i < newsize; i++) | 
 | 			if (nsh->dev[i].page == NULL) { | 
 | 				struct page *p = alloc_page(GFP_NOIO); | 
 | 				nsh->dev[i].page = p; | 
 | 				if (!p) | 
 | 					err = -ENOMEM; | 
 | 			} | 
 | 		release_stripe(nsh); | 
 | 	} | 
 | 	/* critical section pass, GFP_NOIO no longer needed */ | 
 |  | 
 | 	conf->slab_cache = sc; | 
 | 	conf->active_name = 1-conf->active_name; | 
 | 	conf->pool_size = newsize; | 
 | 	return err; | 
 | } | 
 | #endif | 
 |  | 
 | static int drop_one_stripe(raid5_conf_t *conf) | 
 | { | 
 | 	struct stripe_head *sh; | 
 |  | 
 | 	spin_lock_irq(&conf->device_lock); | 
 | 	sh = get_free_stripe(conf); | 
 | 	spin_unlock_irq(&conf->device_lock); | 
 | 	if (!sh) | 
 | 		return 0; | 
 | 	BUG_ON(atomic_read(&sh->count)); | 
 | 	shrink_buffers(sh, conf->pool_size); | 
 | 	kmem_cache_free(conf->slab_cache, sh); | 
 | 	atomic_dec(&conf->active_stripes); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static void shrink_stripes(raid5_conf_t *conf) | 
 | { | 
 | 	while (drop_one_stripe(conf)) | 
 | 		; | 
 |  | 
 | 	if (conf->slab_cache) | 
 | 		kmem_cache_destroy(conf->slab_cache); | 
 | 	conf->slab_cache = NULL; | 
 | } | 
 |  | 
 | static void raid5_end_read_request(struct bio * bi, int error) | 
 | { | 
 |  	struct stripe_head *sh = bi->bi_private; | 
 | 	raid5_conf_t *conf = sh->raid_conf; | 
 | 	int disks = sh->disks, i; | 
 | 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); | 
 | 	char b[BDEVNAME_SIZE]; | 
 | 	mdk_rdev_t *rdev; | 
 |  | 
 |  | 
 | 	for (i=0 ; i<disks; i++) | 
 | 		if (bi == &sh->dev[i].req) | 
 | 			break; | 
 |  | 
 | 	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n", | 
 | 		(unsigned long long)sh->sector, i, atomic_read(&sh->count), | 
 | 		uptodate); | 
 | 	if (i == disks) { | 
 | 		BUG(); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (uptodate) { | 
 | 		set_bit(R5_UPTODATE, &sh->dev[i].flags); | 
 | 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) { | 
 | 			rdev = conf->disks[i].rdev; | 
 | 			printk_rl(KERN_INFO "raid5:%s: read error corrected" | 
 | 				  " (%lu sectors at %llu on %s)\n", | 
 | 				  mdname(conf->mddev), STRIPE_SECTORS, | 
 | 				  (unsigned long long)(sh->sector | 
 | 						       + rdev->data_offset), | 
 | 				  bdevname(rdev->bdev, b)); | 
 | 			clear_bit(R5_ReadError, &sh->dev[i].flags); | 
 | 			clear_bit(R5_ReWrite, &sh->dev[i].flags); | 
 | 		} | 
 | 		if (atomic_read(&conf->disks[i].rdev->read_errors)) | 
 | 			atomic_set(&conf->disks[i].rdev->read_errors, 0); | 
 | 	} else { | 
 | 		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b); | 
 | 		int retry = 0; | 
 | 		rdev = conf->disks[i].rdev; | 
 |  | 
 | 		clear_bit(R5_UPTODATE, &sh->dev[i].flags); | 
 | 		atomic_inc(&rdev->read_errors); | 
 | 		if (conf->mddev->degraded) | 
 | 			printk_rl(KERN_WARNING | 
 | 				  "raid5:%s: read error not correctable " | 
 | 				  "(sector %llu on %s).\n", | 
 | 				  mdname(conf->mddev), | 
 | 				  (unsigned long long)(sh->sector | 
 | 						       + rdev->data_offset), | 
 | 				  bdn); | 
 | 		else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) | 
 | 			/* Oh, no!!! */ | 
 | 			printk_rl(KERN_WARNING | 
 | 				  "raid5:%s: read error NOT corrected!! " | 
 | 				  "(sector %llu on %s).\n", | 
 | 				  mdname(conf->mddev), | 
 | 				  (unsigned long long)(sh->sector | 
 | 						       + rdev->data_offset), | 
 | 				  bdn); | 
 | 		else if (atomic_read(&rdev->read_errors) | 
 | 			 > conf->max_nr_stripes) | 
 | 			printk(KERN_WARNING | 
 | 			       "raid5:%s: Too many read errors, failing device %s.\n", | 
 | 			       mdname(conf->mddev), bdn); | 
 | 		else | 
 | 			retry = 1; | 
 | 		if (retry) | 
 | 			set_bit(R5_ReadError, &sh->dev[i].flags); | 
 | 		else { | 
 | 			clear_bit(R5_ReadError, &sh->dev[i].flags); | 
 | 			clear_bit(R5_ReWrite, &sh->dev[i].flags); | 
 | 			md_error(conf->mddev, rdev); | 
 | 		} | 
 | 	} | 
 | 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev); | 
 | 	clear_bit(R5_LOCKED, &sh->dev[i].flags); | 
 | 	set_bit(STRIPE_HANDLE, &sh->state); | 
 | 	release_stripe(sh); | 
 | } | 
 |  | 
 | static void raid5_end_write_request (struct bio *bi, int error) | 
 | { | 
 |  	struct stripe_head *sh = bi->bi_private; | 
 | 	raid5_conf_t *conf = sh->raid_conf; | 
 | 	int disks = sh->disks, i; | 
 | 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); | 
 |  | 
 | 	for (i=0 ; i<disks; i++) | 
 | 		if (bi == &sh->dev[i].req) | 
 | 			break; | 
 |  | 
 | 	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n", | 
 | 		(unsigned long long)sh->sector, i, atomic_read(&sh->count), | 
 | 		uptodate); | 
 | 	if (i == disks) { | 
 | 		BUG(); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (!uptodate) | 
 | 		md_error(conf->mddev, conf->disks[i].rdev); | 
 |  | 
 | 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev); | 
 | 	 | 
 | 	clear_bit(R5_LOCKED, &sh->dev[i].flags); | 
 | 	set_bit(STRIPE_HANDLE, &sh->state); | 
 | 	release_stripe(sh); | 
 | } | 
 |  | 
 |  | 
 | static sector_t compute_blocknr(struct stripe_head *sh, int i); | 
 | 	 | 
 | static void raid5_build_block (struct stripe_head *sh, int i) | 
 | { | 
 | 	struct r5dev *dev = &sh->dev[i]; | 
 |  | 
 | 	bio_init(&dev->req); | 
 | 	dev->req.bi_io_vec = &dev->vec; | 
 | 	dev->req.bi_vcnt++; | 
 | 	dev->req.bi_max_vecs++; | 
 | 	dev->vec.bv_page = dev->page; | 
 | 	dev->vec.bv_len = STRIPE_SIZE; | 
 | 	dev->vec.bv_offset = 0; | 
 |  | 
 | 	dev->req.bi_sector = sh->sector; | 
 | 	dev->req.bi_private = sh; | 
 |  | 
 | 	dev->flags = 0; | 
 | 	dev->sector = compute_blocknr(sh, i); | 
 | } | 
 |  | 
 | static void error(mddev_t *mddev, mdk_rdev_t *rdev) | 
 | { | 
 | 	char b[BDEVNAME_SIZE]; | 
 | 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private; | 
 | 	pr_debug("raid5: error called\n"); | 
 |  | 
 | 	if (!test_bit(Faulty, &rdev->flags)) { | 
 | 		set_bit(MD_CHANGE_DEVS, &mddev->flags); | 
 | 		if (test_and_clear_bit(In_sync, &rdev->flags)) { | 
 | 			unsigned long flags; | 
 | 			spin_lock_irqsave(&conf->device_lock, flags); | 
 | 			mddev->degraded++; | 
 | 			spin_unlock_irqrestore(&conf->device_lock, flags); | 
 | 			/* | 
 | 			 * if recovery was running, make sure it aborts. | 
 | 			 */ | 
 | 			set_bit(MD_RECOVERY_INTR, &mddev->recovery); | 
 | 		} | 
 | 		set_bit(Faulty, &rdev->flags); | 
 | 		printk (KERN_ALERT | 
 | 			"raid5: Disk failure on %s, disabling device.\n" | 
 | 			"raid5: Operation continuing on %d devices.\n", | 
 | 			bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Input: a 'big' sector number, | 
 |  * Output: index of the data and parity disk, and the sector # in them. | 
 |  */ | 
 | static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks, | 
 | 			unsigned int data_disks, unsigned int * dd_idx, | 
 | 			unsigned int * pd_idx, raid5_conf_t *conf) | 
 | { | 
 | 	long stripe; | 
 | 	unsigned long chunk_number; | 
 | 	unsigned int chunk_offset; | 
 | 	sector_t new_sector; | 
 | 	int sectors_per_chunk = conf->chunk_size >> 9; | 
 |  | 
 | 	/* First compute the information on this sector */ | 
 |  | 
 | 	/* | 
 | 	 * Compute the chunk number and the sector offset inside the chunk | 
 | 	 */ | 
 | 	chunk_offset = sector_div(r_sector, sectors_per_chunk); | 
 | 	chunk_number = r_sector; | 
 | 	BUG_ON(r_sector != chunk_number); | 
 |  | 
 | 	/* | 
 | 	 * Compute the stripe number | 
 | 	 */ | 
 | 	stripe = chunk_number / data_disks; | 
 |  | 
 | 	/* | 
 | 	 * Compute the data disk and parity disk indexes inside the stripe | 
 | 	 */ | 
 | 	*dd_idx = chunk_number % data_disks; | 
 |  | 
 | 	/* | 
 | 	 * Select the parity disk based on the user selected algorithm. | 
 | 	 */ | 
 | 	switch(conf->level) { | 
 | 	case 4: | 
 | 		*pd_idx = data_disks; | 
 | 		break; | 
 | 	case 5: | 
 | 		switch (conf->algorithm) { | 
 | 		case ALGORITHM_LEFT_ASYMMETRIC: | 
 | 			*pd_idx = data_disks - stripe % raid_disks; | 
 | 			if (*dd_idx >= *pd_idx) | 
 | 				(*dd_idx)++; | 
 | 			break; | 
 | 		case ALGORITHM_RIGHT_ASYMMETRIC: | 
 | 			*pd_idx = stripe % raid_disks; | 
 | 			if (*dd_idx >= *pd_idx) | 
 | 				(*dd_idx)++; | 
 | 			break; | 
 | 		case ALGORITHM_LEFT_SYMMETRIC: | 
 | 			*pd_idx = data_disks - stripe % raid_disks; | 
 | 			*dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks; | 
 | 			break; | 
 | 		case ALGORITHM_RIGHT_SYMMETRIC: | 
 | 			*pd_idx = stripe % raid_disks; | 
 | 			*dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks; | 
 | 			break; | 
 | 		default: | 
 | 			printk(KERN_ERR "raid5: unsupported algorithm %d\n", | 
 | 				conf->algorithm); | 
 | 		} | 
 | 		break; | 
 | 	case 6: | 
 |  | 
 | 		/**** FIX THIS ****/ | 
 | 		switch (conf->algorithm) { | 
 | 		case ALGORITHM_LEFT_ASYMMETRIC: | 
 | 			*pd_idx = raid_disks - 1 - (stripe % raid_disks); | 
 | 			if (*pd_idx == raid_disks-1) | 
 | 				(*dd_idx)++; 	/* Q D D D P */ | 
 | 			else if (*dd_idx >= *pd_idx) | 
 | 				(*dd_idx) += 2; /* D D P Q D */ | 
 | 			break; | 
 | 		case ALGORITHM_RIGHT_ASYMMETRIC: | 
 | 			*pd_idx = stripe % raid_disks; | 
 | 			if (*pd_idx == raid_disks-1) | 
 | 				(*dd_idx)++; 	/* Q D D D P */ | 
 | 			else if (*dd_idx >= *pd_idx) | 
 | 				(*dd_idx) += 2; /* D D P Q D */ | 
 | 			break; | 
 | 		case ALGORITHM_LEFT_SYMMETRIC: | 
 | 			*pd_idx = raid_disks - 1 - (stripe % raid_disks); | 
 | 			*dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks; | 
 | 			break; | 
 | 		case ALGORITHM_RIGHT_SYMMETRIC: | 
 | 			*pd_idx = stripe % raid_disks; | 
 | 			*dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks; | 
 | 			break; | 
 | 		default: | 
 | 			printk (KERN_CRIT "raid6: unsupported algorithm %d\n", | 
 | 				conf->algorithm); | 
 | 		} | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Finally, compute the new sector number | 
 | 	 */ | 
 | 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; | 
 | 	return new_sector; | 
 | } | 
 |  | 
 |  | 
 | static sector_t compute_blocknr(struct stripe_head *sh, int i) | 
 | { | 
 | 	raid5_conf_t *conf = sh->raid_conf; | 
 | 	int raid_disks = sh->disks; | 
 | 	int data_disks = raid_disks - conf->max_degraded; | 
 | 	sector_t new_sector = sh->sector, check; | 
 | 	int sectors_per_chunk = conf->chunk_size >> 9; | 
 | 	sector_t stripe; | 
 | 	int chunk_offset; | 
 | 	int chunk_number, dummy1, dummy2, dd_idx = i; | 
 | 	sector_t r_sector; | 
 |  | 
 |  | 
 | 	chunk_offset = sector_div(new_sector, sectors_per_chunk); | 
 | 	stripe = new_sector; | 
 | 	BUG_ON(new_sector != stripe); | 
 |  | 
 | 	if (i == sh->pd_idx) | 
 | 		return 0; | 
 | 	switch(conf->level) { | 
 | 	case 4: break; | 
 | 	case 5: | 
 | 		switch (conf->algorithm) { | 
 | 		case ALGORITHM_LEFT_ASYMMETRIC: | 
 | 		case ALGORITHM_RIGHT_ASYMMETRIC: | 
 | 			if (i > sh->pd_idx) | 
 | 				i--; | 
 | 			break; | 
 | 		case ALGORITHM_LEFT_SYMMETRIC: | 
 | 		case ALGORITHM_RIGHT_SYMMETRIC: | 
 | 			if (i < sh->pd_idx) | 
 | 				i += raid_disks; | 
 | 			i -= (sh->pd_idx + 1); | 
 | 			break; | 
 | 		default: | 
 | 			printk(KERN_ERR "raid5: unsupported algorithm %d\n", | 
 | 			       conf->algorithm); | 
 | 		} | 
 | 		break; | 
 | 	case 6: | 
 | 		if (i == raid6_next_disk(sh->pd_idx, raid_disks)) | 
 | 			return 0; /* It is the Q disk */ | 
 | 		switch (conf->algorithm) { | 
 | 		case ALGORITHM_LEFT_ASYMMETRIC: | 
 | 		case ALGORITHM_RIGHT_ASYMMETRIC: | 
 | 		  	if (sh->pd_idx == raid_disks-1) | 
 | 				i--; 	/* Q D D D P */ | 
 | 			else if (i > sh->pd_idx) | 
 | 				i -= 2; /* D D P Q D */ | 
 | 			break; | 
 | 		case ALGORITHM_LEFT_SYMMETRIC: | 
 | 		case ALGORITHM_RIGHT_SYMMETRIC: | 
 | 			if (sh->pd_idx == raid_disks-1) | 
 | 				i--; /* Q D D D P */ | 
 | 			else { | 
 | 				/* D D P Q D */ | 
 | 				if (i < sh->pd_idx) | 
 | 					i += raid_disks; | 
 | 				i -= (sh->pd_idx + 2); | 
 | 			} | 
 | 			break; | 
 | 		default: | 
 | 			printk (KERN_CRIT "raid6: unsupported algorithm %d\n", | 
 | 				conf->algorithm); | 
 | 		} | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	chunk_number = stripe * data_disks + i; | 
 | 	r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset; | 
 |  | 
 | 	check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf); | 
 | 	if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) { | 
 | 		printk(KERN_ERR "compute_blocknr: map not correct\n"); | 
 | 		return 0; | 
 | 	} | 
 | 	return r_sector; | 
 | } | 
 |  | 
 |  | 
 |  | 
 | /* | 
 |  * Copy data between a page in the stripe cache, and one or more bion | 
 |  * The page could align with the middle of the bio, or there could be | 
 |  * several bion, each with several bio_vecs, which cover part of the page | 
 |  * Multiple bion are linked together on bi_next.  There may be extras | 
 |  * at the end of this list.  We ignore them. | 
 |  */ | 
 | static void copy_data(int frombio, struct bio *bio, | 
 | 		     struct page *page, | 
 | 		     sector_t sector) | 
 | { | 
 | 	char *pa = page_address(page); | 
 | 	struct bio_vec *bvl; | 
 | 	int i; | 
 | 	int page_offset; | 
 |  | 
 | 	if (bio->bi_sector >= sector) | 
 | 		page_offset = (signed)(bio->bi_sector - sector) * 512; | 
 | 	else | 
 | 		page_offset = (signed)(sector - bio->bi_sector) * -512; | 
 | 	bio_for_each_segment(bvl, bio, i) { | 
 | 		int len = bio_iovec_idx(bio,i)->bv_len; | 
 | 		int clen; | 
 | 		int b_offset = 0; | 
 |  | 
 | 		if (page_offset < 0) { | 
 | 			b_offset = -page_offset; | 
 | 			page_offset += b_offset; | 
 | 			len -= b_offset; | 
 | 		} | 
 |  | 
 | 		if (len > 0 && page_offset + len > STRIPE_SIZE) | 
 | 			clen = STRIPE_SIZE - page_offset; | 
 | 		else clen = len; | 
 |  | 
 | 		if (clen > 0) { | 
 | 			char *ba = __bio_kmap_atomic(bio, i, KM_USER0); | 
 | 			if (frombio) | 
 | 				memcpy(pa+page_offset, ba+b_offset, clen); | 
 | 			else | 
 | 				memcpy(ba+b_offset, pa+page_offset, clen); | 
 | 			__bio_kunmap_atomic(ba, KM_USER0); | 
 | 		} | 
 | 		if (clen < len) /* hit end of page */ | 
 | 			break; | 
 | 		page_offset +=  len; | 
 | 	} | 
 | } | 
 |  | 
 | #define check_xor()	do {						  \ | 
 | 				if (count == MAX_XOR_BLOCKS) {		  \ | 
 | 				xor_blocks(count, STRIPE_SIZE, dest, ptr);\ | 
 | 				count = 0;				  \ | 
 | 			   }						  \ | 
 | 			} while(0) | 
 |  | 
 | static void compute_parity6(struct stripe_head *sh, int method) | 
 | { | 
 | 	raid6_conf_t *conf = sh->raid_conf; | 
 | 	int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count; | 
 | 	struct bio *chosen; | 
 | 	/**** FIX THIS: This could be very bad if disks is close to 256 ****/ | 
 | 	void *ptrs[disks]; | 
 |  | 
 | 	qd_idx = raid6_next_disk(pd_idx, disks); | 
 | 	d0_idx = raid6_next_disk(qd_idx, disks); | 
 |  | 
 | 	pr_debug("compute_parity, stripe %llu, method %d\n", | 
 | 		(unsigned long long)sh->sector, method); | 
 |  | 
 | 	switch(method) { | 
 | 	case READ_MODIFY_WRITE: | 
 | 		BUG();		/* READ_MODIFY_WRITE N/A for RAID-6 */ | 
 | 	case RECONSTRUCT_WRITE: | 
 | 		for (i= disks; i-- ;) | 
 | 			if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) { | 
 | 				chosen = sh->dev[i].towrite; | 
 | 				sh->dev[i].towrite = NULL; | 
 |  | 
 | 				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) | 
 | 					wake_up(&conf->wait_for_overlap); | 
 |  | 
 | 				BUG_ON(sh->dev[i].written); | 
 | 				sh->dev[i].written = chosen; | 
 | 			} | 
 | 		break; | 
 | 	case CHECK_PARITY: | 
 | 		BUG();		/* Not implemented yet */ | 
 | 	} | 
 |  | 
 | 	for (i = disks; i--;) | 
 | 		if (sh->dev[i].written) { | 
 | 			sector_t sector = sh->dev[i].sector; | 
 | 			struct bio *wbi = sh->dev[i].written; | 
 | 			while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) { | 
 | 				copy_data(1, wbi, sh->dev[i].page, sector); | 
 | 				wbi = r5_next_bio(wbi, sector); | 
 | 			} | 
 |  | 
 | 			set_bit(R5_LOCKED, &sh->dev[i].flags); | 
 | 			set_bit(R5_UPTODATE, &sh->dev[i].flags); | 
 | 		} | 
 |  | 
 | //	switch(method) { | 
 | //	case RECONSTRUCT_WRITE: | 
 | //	case CHECK_PARITY: | 
 | //	case UPDATE_PARITY: | 
 | 		/* Note that unlike RAID-5, the ordering of the disks matters greatly. */ | 
 | 		/* FIX: Is this ordering of drives even remotely optimal? */ | 
 | 		count = 0; | 
 | 		i = d0_idx; | 
 | 		do { | 
 | 			ptrs[count++] = page_address(sh->dev[i].page); | 
 | 			if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags)) | 
 | 				printk("block %d/%d not uptodate on parity calc\n", i,count); | 
 | 			i = raid6_next_disk(i, disks); | 
 | 		} while ( i != d0_idx ); | 
 | //		break; | 
 | //	} | 
 |  | 
 | 	raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs); | 
 |  | 
 | 	switch(method) { | 
 | 	case RECONSTRUCT_WRITE: | 
 | 		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); | 
 | 		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags); | 
 | 		set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags); | 
 | 		set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags); | 
 | 		break; | 
 | 	case UPDATE_PARITY: | 
 | 		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); | 
 | 		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | /* Compute one missing block */ | 
 | static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero) | 
 | { | 
 | 	int i, count, disks = sh->disks; | 
 | 	void *ptr[MAX_XOR_BLOCKS], *dest, *p; | 
 | 	int pd_idx = sh->pd_idx; | 
 | 	int qd_idx = raid6_next_disk(pd_idx, disks); | 
 |  | 
 | 	pr_debug("compute_block_1, stripe %llu, idx %d\n", | 
 | 		(unsigned long long)sh->sector, dd_idx); | 
 |  | 
 | 	if ( dd_idx == qd_idx ) { | 
 | 		/* We're actually computing the Q drive */ | 
 | 		compute_parity6(sh, UPDATE_PARITY); | 
 | 	} else { | 
 | 		dest = page_address(sh->dev[dd_idx].page); | 
 | 		if (!nozero) memset(dest, 0, STRIPE_SIZE); | 
 | 		count = 0; | 
 | 		for (i = disks ; i--; ) { | 
 | 			if (i == dd_idx || i == qd_idx) | 
 | 				continue; | 
 | 			p = page_address(sh->dev[i].page); | 
 | 			if (test_bit(R5_UPTODATE, &sh->dev[i].flags)) | 
 | 				ptr[count++] = p; | 
 | 			else | 
 | 				printk("compute_block() %d, stripe %llu, %d" | 
 | 				       " not present\n", dd_idx, | 
 | 				       (unsigned long long)sh->sector, i); | 
 |  | 
 | 			check_xor(); | 
 | 		} | 
 | 		if (count) | 
 | 			xor_blocks(count, STRIPE_SIZE, dest, ptr); | 
 | 		if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags); | 
 | 		else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags); | 
 | 	} | 
 | } | 
 |  | 
 | /* Compute two missing blocks */ | 
 | static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2) | 
 | { | 
 | 	int i, count, disks = sh->disks; | 
 | 	int pd_idx = sh->pd_idx; | 
 | 	int qd_idx = raid6_next_disk(pd_idx, disks); | 
 | 	int d0_idx = raid6_next_disk(qd_idx, disks); | 
 | 	int faila, failb; | 
 |  | 
 | 	/* faila and failb are disk numbers relative to d0_idx */ | 
 | 	/* pd_idx become disks-2 and qd_idx become disks-1 */ | 
 | 	faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx; | 
 | 	failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx; | 
 |  | 
 | 	BUG_ON(faila == failb); | 
 | 	if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; } | 
 |  | 
 | 	pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n", | 
 | 	       (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb); | 
 |  | 
 | 	if ( failb == disks-1 ) { | 
 | 		/* Q disk is one of the missing disks */ | 
 | 		if ( faila == disks-2 ) { | 
 | 			/* Missing P+Q, just recompute */ | 
 | 			compute_parity6(sh, UPDATE_PARITY); | 
 | 			return; | 
 | 		} else { | 
 | 			/* We're missing D+Q; recompute D from P */ | 
 | 			compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0); | 
 | 			compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */ | 
 | 			return; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* We're missing D+P or D+D; build pointer table */ | 
 | 	{ | 
 | 		/**** FIX THIS: This could be very bad if disks is close to 256 ****/ | 
 | 		void *ptrs[disks]; | 
 |  | 
 | 		count = 0; | 
 | 		i = d0_idx; | 
 | 		do { | 
 | 			ptrs[count++] = page_address(sh->dev[i].page); | 
 | 			i = raid6_next_disk(i, disks); | 
 | 			if (i != dd_idx1 && i != dd_idx2 && | 
 | 			    !test_bit(R5_UPTODATE, &sh->dev[i].flags)) | 
 | 				printk("compute_2 with missing block %d/%d\n", count, i); | 
 | 		} while ( i != d0_idx ); | 
 |  | 
 | 		if ( failb == disks-2 ) { | 
 | 			/* We're missing D+P. */ | 
 | 			raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs); | 
 | 		} else { | 
 | 			/* We're missing D+D. */ | 
 | 			raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs); | 
 | 		} | 
 |  | 
 | 		/* Both the above update both missing blocks */ | 
 | 		set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags); | 
 | 		set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags); | 
 | 	} | 
 | } | 
 |  | 
 | static void | 
 | schedule_reconstruction5(struct stripe_head *sh, struct stripe_head_state *s, | 
 | 			 int rcw, int expand) | 
 | { | 
 | 	int i, pd_idx = sh->pd_idx, disks = sh->disks; | 
 |  | 
 | 	if (rcw) { | 
 | 		/* if we are not expanding this is a proper write request, and | 
 | 		 * there will be bios with new data to be drained into the | 
 | 		 * stripe cache | 
 | 		 */ | 
 | 		if (!expand) { | 
 | 			sh->reconstruct_state = reconstruct_state_drain_run; | 
 | 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); | 
 | 		} else | 
 | 			sh->reconstruct_state = reconstruct_state_run; | 
 |  | 
 | 		set_bit(STRIPE_OP_POSTXOR, &s->ops_request); | 
 |  | 
 | 		for (i = disks; i--; ) { | 
 | 			struct r5dev *dev = &sh->dev[i]; | 
 |  | 
 | 			if (dev->towrite) { | 
 | 				set_bit(R5_LOCKED, &dev->flags); | 
 | 				set_bit(R5_Wantdrain, &dev->flags); | 
 | 				if (!expand) | 
 | 					clear_bit(R5_UPTODATE, &dev->flags); | 
 | 				s->locked++; | 
 | 			} | 
 | 		} | 
 | 		if (s->locked + 1 == disks) | 
 | 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) | 
 | 				atomic_inc(&sh->raid_conf->pending_full_writes); | 
 | 	} else { | 
 | 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || | 
 | 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); | 
 |  | 
 | 		sh->reconstruct_state = reconstruct_state_prexor_drain_run; | 
 | 		set_bit(STRIPE_OP_PREXOR, &s->ops_request); | 
 | 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); | 
 | 		set_bit(STRIPE_OP_POSTXOR, &s->ops_request); | 
 |  | 
 | 		for (i = disks; i--; ) { | 
 | 			struct r5dev *dev = &sh->dev[i]; | 
 | 			if (i == pd_idx) | 
 | 				continue; | 
 |  | 
 | 			if (dev->towrite && | 
 | 			    (test_bit(R5_UPTODATE, &dev->flags) || | 
 | 			     test_bit(R5_Wantcompute, &dev->flags))) { | 
 | 				set_bit(R5_Wantdrain, &dev->flags); | 
 | 				set_bit(R5_LOCKED, &dev->flags); | 
 | 				clear_bit(R5_UPTODATE, &dev->flags); | 
 | 				s->locked++; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* keep the parity disk locked while asynchronous operations | 
 | 	 * are in flight | 
 | 	 */ | 
 | 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); | 
 | 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); | 
 | 	s->locked++; | 
 |  | 
 | 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", | 
 | 		__func__, (unsigned long long)sh->sector, | 
 | 		s->locked, s->ops_request); | 
 | } | 
 |  | 
 | /* | 
 |  * Each stripe/dev can have one or more bion attached. | 
 |  * toread/towrite point to the first in a chain. | 
 |  * The bi_next chain must be in order. | 
 |  */ | 
 | static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite) | 
 | { | 
 | 	struct bio **bip; | 
 | 	raid5_conf_t *conf = sh->raid_conf; | 
 | 	int firstwrite=0; | 
 |  | 
 | 	pr_debug("adding bh b#%llu to stripe s#%llu\n", | 
 | 		(unsigned long long)bi->bi_sector, | 
 | 		(unsigned long long)sh->sector); | 
 |  | 
 |  | 
 | 	spin_lock(&sh->lock); | 
 | 	spin_lock_irq(&conf->device_lock); | 
 | 	if (forwrite) { | 
 | 		bip = &sh->dev[dd_idx].towrite; | 
 | 		if (*bip == NULL && sh->dev[dd_idx].written == NULL) | 
 | 			firstwrite = 1; | 
 | 	} else | 
 | 		bip = &sh->dev[dd_idx].toread; | 
 | 	while (*bip && (*bip)->bi_sector < bi->bi_sector) { | 
 | 		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector) | 
 | 			goto overlap; | 
 | 		bip = & (*bip)->bi_next; | 
 | 	} | 
 | 	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9)) | 
 | 		goto overlap; | 
 |  | 
 | 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); | 
 | 	if (*bip) | 
 | 		bi->bi_next = *bip; | 
 | 	*bip = bi; | 
 | 	bi->bi_phys_segments ++; | 
 | 	spin_unlock_irq(&conf->device_lock); | 
 | 	spin_unlock(&sh->lock); | 
 |  | 
 | 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n", | 
 | 		(unsigned long long)bi->bi_sector, | 
 | 		(unsigned long long)sh->sector, dd_idx); | 
 |  | 
 | 	if (conf->mddev->bitmap && firstwrite) { | 
 | 		bitmap_startwrite(conf->mddev->bitmap, sh->sector, | 
 | 				  STRIPE_SECTORS, 0); | 
 | 		sh->bm_seq = conf->seq_flush+1; | 
 | 		set_bit(STRIPE_BIT_DELAY, &sh->state); | 
 | 	} | 
 |  | 
 | 	if (forwrite) { | 
 | 		/* check if page is covered */ | 
 | 		sector_t sector = sh->dev[dd_idx].sector; | 
 | 		for (bi=sh->dev[dd_idx].towrite; | 
 | 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && | 
 | 			     bi && bi->bi_sector <= sector; | 
 | 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { | 
 | 			if (bi->bi_sector + (bi->bi_size>>9) >= sector) | 
 | 				sector = bi->bi_sector + (bi->bi_size>>9); | 
 | 		} | 
 | 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) | 
 | 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags); | 
 | 	} | 
 | 	return 1; | 
 |  | 
 |  overlap: | 
 | 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags); | 
 | 	spin_unlock_irq(&conf->device_lock); | 
 | 	spin_unlock(&sh->lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void end_reshape(raid5_conf_t *conf); | 
 |  | 
 | static int page_is_zero(struct page *p) | 
 | { | 
 | 	char *a = page_address(p); | 
 | 	return ((*(u32*)a) == 0 && | 
 | 		memcmp(a, a+4, STRIPE_SIZE-4)==0); | 
 | } | 
 |  | 
 | static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks) | 
 | { | 
 | 	int sectors_per_chunk = conf->chunk_size >> 9; | 
 | 	int pd_idx, dd_idx; | 
 | 	int chunk_offset = sector_div(stripe, sectors_per_chunk); | 
 |  | 
 | 	raid5_compute_sector(stripe * (disks - conf->max_degraded) | 
 | 			     *sectors_per_chunk + chunk_offset, | 
 | 			     disks, disks - conf->max_degraded, | 
 | 			     &dd_idx, &pd_idx, conf); | 
 | 	return pd_idx; | 
 | } | 
 |  | 
 | static void | 
 | handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh, | 
 | 				struct stripe_head_state *s, int disks, | 
 | 				struct bio **return_bi) | 
 | { | 
 | 	int i; | 
 | 	for (i = disks; i--; ) { | 
 | 		struct bio *bi; | 
 | 		int bitmap_end = 0; | 
 |  | 
 | 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) { | 
 | 			mdk_rdev_t *rdev; | 
 | 			rcu_read_lock(); | 
 | 			rdev = rcu_dereference(conf->disks[i].rdev); | 
 | 			if (rdev && test_bit(In_sync, &rdev->flags)) | 
 | 				/* multiple read failures in one stripe */ | 
 | 				md_error(conf->mddev, rdev); | 
 | 			rcu_read_unlock(); | 
 | 		} | 
 | 		spin_lock_irq(&conf->device_lock); | 
 | 		/* fail all writes first */ | 
 | 		bi = sh->dev[i].towrite; | 
 | 		sh->dev[i].towrite = NULL; | 
 | 		if (bi) { | 
 | 			s->to_write--; | 
 | 			bitmap_end = 1; | 
 | 		} | 
 |  | 
 | 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) | 
 | 			wake_up(&conf->wait_for_overlap); | 
 |  | 
 | 		while (bi && bi->bi_sector < | 
 | 			sh->dev[i].sector + STRIPE_SECTORS) { | 
 | 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); | 
 | 			clear_bit(BIO_UPTODATE, &bi->bi_flags); | 
 | 			if (--bi->bi_phys_segments == 0) { | 
 | 				md_write_end(conf->mddev); | 
 | 				bi->bi_next = *return_bi; | 
 | 				*return_bi = bi; | 
 | 			} | 
 | 			bi = nextbi; | 
 | 		} | 
 | 		/* and fail all 'written' */ | 
 | 		bi = sh->dev[i].written; | 
 | 		sh->dev[i].written = NULL; | 
 | 		if (bi) bitmap_end = 1; | 
 | 		while (bi && bi->bi_sector < | 
 | 		       sh->dev[i].sector + STRIPE_SECTORS) { | 
 | 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); | 
 | 			clear_bit(BIO_UPTODATE, &bi->bi_flags); | 
 | 			if (--bi->bi_phys_segments == 0) { | 
 | 				md_write_end(conf->mddev); | 
 | 				bi->bi_next = *return_bi; | 
 | 				*return_bi = bi; | 
 | 			} | 
 | 			bi = bi2; | 
 | 		} | 
 |  | 
 | 		/* fail any reads if this device is non-operational and | 
 | 		 * the data has not reached the cache yet. | 
 | 		 */ | 
 | 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && | 
 | 		    (!test_bit(R5_Insync, &sh->dev[i].flags) || | 
 | 		      test_bit(R5_ReadError, &sh->dev[i].flags))) { | 
 | 			bi = sh->dev[i].toread; | 
 | 			sh->dev[i].toread = NULL; | 
 | 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) | 
 | 				wake_up(&conf->wait_for_overlap); | 
 | 			if (bi) s->to_read--; | 
 | 			while (bi && bi->bi_sector < | 
 | 			       sh->dev[i].sector + STRIPE_SECTORS) { | 
 | 				struct bio *nextbi = | 
 | 					r5_next_bio(bi, sh->dev[i].sector); | 
 | 				clear_bit(BIO_UPTODATE, &bi->bi_flags); | 
 | 				if (--bi->bi_phys_segments == 0) { | 
 | 					bi->bi_next = *return_bi; | 
 | 					*return_bi = bi; | 
 | 				} | 
 | 				bi = nextbi; | 
 | 			} | 
 | 		} | 
 | 		spin_unlock_irq(&conf->device_lock); | 
 | 		if (bitmap_end) | 
 | 			bitmap_endwrite(conf->mddev->bitmap, sh->sector, | 
 | 					STRIPE_SECTORS, 0, 0); | 
 | 	} | 
 |  | 
 | 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) | 
 | 		if (atomic_dec_and_test(&conf->pending_full_writes)) | 
 | 			md_wakeup_thread(conf->mddev->thread); | 
 | } | 
 |  | 
 | /* fetch_block5 - checks the given member device to see if its data needs | 
 |  * to be read or computed to satisfy a request. | 
 |  * | 
 |  * Returns 1 when no more member devices need to be checked, otherwise returns | 
 |  * 0 to tell the loop in handle_stripe_fill5 to continue | 
 |  */ | 
 | static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s, | 
 | 			int disk_idx, int disks) | 
 | { | 
 | 	struct r5dev *dev = &sh->dev[disk_idx]; | 
 | 	struct r5dev *failed_dev = &sh->dev[s->failed_num]; | 
 |  | 
 | 	/* is the data in this block needed, and can we get it? */ | 
 | 	if (!test_bit(R5_LOCKED, &dev->flags) && | 
 | 	    !test_bit(R5_UPTODATE, &dev->flags) && | 
 | 	    (dev->toread || | 
 | 	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) || | 
 | 	     s->syncing || s->expanding || | 
 | 	     (s->failed && | 
 | 	      (failed_dev->toread || | 
 | 	       (failed_dev->towrite && | 
 | 		!test_bit(R5_OVERWRITE, &failed_dev->flags)))))) { | 
 | 		/* We would like to get this block, possibly by computing it, | 
 | 		 * otherwise read it if the backing disk is insync | 
 | 		 */ | 
 | 		if ((s->uptodate == disks - 1) && | 
 | 		    (s->failed && disk_idx == s->failed_num)) { | 
 | 			set_bit(STRIPE_COMPUTE_RUN, &sh->state); | 
 | 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); | 
 | 			set_bit(R5_Wantcompute, &dev->flags); | 
 | 			sh->ops.target = disk_idx; | 
 | 			s->req_compute = 1; | 
 | 			/* Careful: from this point on 'uptodate' is in the eye | 
 | 			 * of raid5_run_ops which services 'compute' operations | 
 | 			 * before writes. R5_Wantcompute flags a block that will | 
 | 			 * be R5_UPTODATE by the time it is needed for a | 
 | 			 * subsequent operation. | 
 | 			 */ | 
 | 			s->uptodate++; | 
 | 			return 1; /* uptodate + compute == disks */ | 
 | 		} else if (test_bit(R5_Insync, &dev->flags)) { | 
 | 			set_bit(R5_LOCKED, &dev->flags); | 
 | 			set_bit(R5_Wantread, &dev->flags); | 
 | 			s->locked++; | 
 | 			pr_debug("Reading block %d (sync=%d)\n", disk_idx, | 
 | 				s->syncing); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * handle_stripe_fill5 - read or compute data to satisfy pending requests. | 
 |  */ | 
 | static void handle_stripe_fill5(struct stripe_head *sh, | 
 | 			struct stripe_head_state *s, int disks) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	/* look for blocks to read/compute, skip this if a compute | 
 | 	 * is already in flight, or if the stripe contents are in the | 
 | 	 * midst of changing due to a write | 
 | 	 */ | 
 | 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && | 
 | 	    !sh->reconstruct_state) | 
 | 		for (i = disks; i--; ) | 
 | 			if (fetch_block5(sh, s, i, disks)) | 
 | 				break; | 
 | 	set_bit(STRIPE_HANDLE, &sh->state); | 
 | } | 
 |  | 
 | static void handle_stripe_fill6(struct stripe_head *sh, | 
 | 			struct stripe_head_state *s, struct r6_state *r6s, | 
 | 			int disks) | 
 | { | 
 | 	int i; | 
 | 	for (i = disks; i--; ) { | 
 | 		struct r5dev *dev = &sh->dev[i]; | 
 | 		if (!test_bit(R5_LOCKED, &dev->flags) && | 
 | 		    !test_bit(R5_UPTODATE, &dev->flags) && | 
 | 		    (dev->toread || (dev->towrite && | 
 | 		     !test_bit(R5_OVERWRITE, &dev->flags)) || | 
 | 		     s->syncing || s->expanding || | 
 | 		     (s->failed >= 1 && | 
 | 		      (sh->dev[r6s->failed_num[0]].toread || | 
 | 		       s->to_write)) || | 
 | 		     (s->failed >= 2 && | 
 | 		      (sh->dev[r6s->failed_num[1]].toread || | 
 | 		       s->to_write)))) { | 
 | 			/* we would like to get this block, possibly | 
 | 			 * by computing it, but we might not be able to | 
 | 			 */ | 
 | 			if ((s->uptodate == disks - 1) && | 
 | 			    (s->failed && (i == r6s->failed_num[0] || | 
 | 					   i == r6s->failed_num[1]))) { | 
 | 				pr_debug("Computing stripe %llu block %d\n", | 
 | 				       (unsigned long long)sh->sector, i); | 
 | 				compute_block_1(sh, i, 0); | 
 | 				s->uptodate++; | 
 | 			} else if ( s->uptodate == disks-2 && s->failed >= 2 ) { | 
 | 				/* Computing 2-failure is *very* expensive; only | 
 | 				 * do it if failed >= 2 | 
 | 				 */ | 
 | 				int other; | 
 | 				for (other = disks; other--; ) { | 
 | 					if (other == i) | 
 | 						continue; | 
 | 					if (!test_bit(R5_UPTODATE, | 
 | 					      &sh->dev[other].flags)) | 
 | 						break; | 
 | 				} | 
 | 				BUG_ON(other < 0); | 
 | 				pr_debug("Computing stripe %llu blocks %d,%d\n", | 
 | 				       (unsigned long long)sh->sector, | 
 | 				       i, other); | 
 | 				compute_block_2(sh, i, other); | 
 | 				s->uptodate += 2; | 
 | 			} else if (test_bit(R5_Insync, &dev->flags)) { | 
 | 				set_bit(R5_LOCKED, &dev->flags); | 
 | 				set_bit(R5_Wantread, &dev->flags); | 
 | 				s->locked++; | 
 | 				pr_debug("Reading block %d (sync=%d)\n", | 
 | 					i, s->syncing); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	set_bit(STRIPE_HANDLE, &sh->state); | 
 | } | 
 |  | 
 |  | 
 | /* handle_stripe_clean_event | 
 |  * any written block on an uptodate or failed drive can be returned. | 
 |  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but | 
 |  * never LOCKED, so we don't need to test 'failed' directly. | 
 |  */ | 
 | static void handle_stripe_clean_event(raid5_conf_t *conf, | 
 | 	struct stripe_head *sh, int disks, struct bio **return_bi) | 
 | { | 
 | 	int i; | 
 | 	struct r5dev *dev; | 
 |  | 
 | 	for (i = disks; i--; ) | 
 | 		if (sh->dev[i].written) { | 
 | 			dev = &sh->dev[i]; | 
 | 			if (!test_bit(R5_LOCKED, &dev->flags) && | 
 | 				test_bit(R5_UPTODATE, &dev->flags)) { | 
 | 				/* We can return any write requests */ | 
 | 				struct bio *wbi, *wbi2; | 
 | 				int bitmap_end = 0; | 
 | 				pr_debug("Return write for disc %d\n", i); | 
 | 				spin_lock_irq(&conf->device_lock); | 
 | 				wbi = dev->written; | 
 | 				dev->written = NULL; | 
 | 				while (wbi && wbi->bi_sector < | 
 | 					dev->sector + STRIPE_SECTORS) { | 
 | 					wbi2 = r5_next_bio(wbi, dev->sector); | 
 | 					if (--wbi->bi_phys_segments == 0) { | 
 | 						md_write_end(conf->mddev); | 
 | 						wbi->bi_next = *return_bi; | 
 | 						*return_bi = wbi; | 
 | 					} | 
 | 					wbi = wbi2; | 
 | 				} | 
 | 				if (dev->towrite == NULL) | 
 | 					bitmap_end = 1; | 
 | 				spin_unlock_irq(&conf->device_lock); | 
 | 				if (bitmap_end) | 
 | 					bitmap_endwrite(conf->mddev->bitmap, | 
 | 							sh->sector, | 
 | 							STRIPE_SECTORS, | 
 | 					 !test_bit(STRIPE_DEGRADED, &sh->state), | 
 | 							0); | 
 | 			} | 
 | 		} | 
 |  | 
 | 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) | 
 | 		if (atomic_dec_and_test(&conf->pending_full_writes)) | 
 | 			md_wakeup_thread(conf->mddev->thread); | 
 | } | 
 |  | 
 | static void handle_stripe_dirtying5(raid5_conf_t *conf, | 
 | 		struct stripe_head *sh,	struct stripe_head_state *s, int disks) | 
 | { | 
 | 	int rmw = 0, rcw = 0, i; | 
 | 	for (i = disks; i--; ) { | 
 | 		/* would I have to read this buffer for read_modify_write */ | 
 | 		struct r5dev *dev = &sh->dev[i]; | 
 | 		if ((dev->towrite || i == sh->pd_idx) && | 
 | 		    !test_bit(R5_LOCKED, &dev->flags) && | 
 | 		    !(test_bit(R5_UPTODATE, &dev->flags) || | 
 | 		      test_bit(R5_Wantcompute, &dev->flags))) { | 
 | 			if (test_bit(R5_Insync, &dev->flags)) | 
 | 				rmw++; | 
 | 			else | 
 | 				rmw += 2*disks;  /* cannot read it */ | 
 | 		} | 
 | 		/* Would I have to read this buffer for reconstruct_write */ | 
 | 		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx && | 
 | 		    !test_bit(R5_LOCKED, &dev->flags) && | 
 | 		    !(test_bit(R5_UPTODATE, &dev->flags) || | 
 | 		    test_bit(R5_Wantcompute, &dev->flags))) { | 
 | 			if (test_bit(R5_Insync, &dev->flags)) rcw++; | 
 | 			else | 
 | 				rcw += 2*disks; | 
 | 		} | 
 | 	} | 
 | 	pr_debug("for sector %llu, rmw=%d rcw=%d\n", | 
 | 		(unsigned long long)sh->sector, rmw, rcw); | 
 | 	set_bit(STRIPE_HANDLE, &sh->state); | 
 | 	if (rmw < rcw && rmw > 0) | 
 | 		/* prefer read-modify-write, but need to get some data */ | 
 | 		for (i = disks; i--; ) { | 
 | 			struct r5dev *dev = &sh->dev[i]; | 
 | 			if ((dev->towrite || i == sh->pd_idx) && | 
 | 			    !test_bit(R5_LOCKED, &dev->flags) && | 
 | 			    !(test_bit(R5_UPTODATE, &dev->flags) || | 
 | 			    test_bit(R5_Wantcompute, &dev->flags)) && | 
 | 			    test_bit(R5_Insync, &dev->flags)) { | 
 | 				if ( | 
 | 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { | 
 | 					pr_debug("Read_old block " | 
 | 						"%d for r-m-w\n", i); | 
 | 					set_bit(R5_LOCKED, &dev->flags); | 
 | 					set_bit(R5_Wantread, &dev->flags); | 
 | 					s->locked++; | 
 | 				} else { | 
 | 					set_bit(STRIPE_DELAYED, &sh->state); | 
 | 					set_bit(STRIPE_HANDLE, &sh->state); | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 	if (rcw <= rmw && rcw > 0) | 
 | 		/* want reconstruct write, but need to get some data */ | 
 | 		for (i = disks; i--; ) { | 
 | 			struct r5dev *dev = &sh->dev[i]; | 
 | 			if (!test_bit(R5_OVERWRITE, &dev->flags) && | 
 | 			    i != sh->pd_idx && | 
 | 			    !test_bit(R5_LOCKED, &dev->flags) && | 
 | 			    !(test_bit(R5_UPTODATE, &dev->flags) || | 
 | 			    test_bit(R5_Wantcompute, &dev->flags)) && | 
 | 			    test_bit(R5_Insync, &dev->flags)) { | 
 | 				if ( | 
 | 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { | 
 | 					pr_debug("Read_old block " | 
 | 						"%d for Reconstruct\n", i); | 
 | 					set_bit(R5_LOCKED, &dev->flags); | 
 | 					set_bit(R5_Wantread, &dev->flags); | 
 | 					s->locked++; | 
 | 				} else { | 
 | 					set_bit(STRIPE_DELAYED, &sh->state); | 
 | 					set_bit(STRIPE_HANDLE, &sh->state); | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 	/* now if nothing is locked, and if we have enough data, | 
 | 	 * we can start a write request | 
 | 	 */ | 
 | 	/* since handle_stripe can be called at any time we need to handle the | 
 | 	 * case where a compute block operation has been submitted and then a | 
 | 	 * subsequent call wants to start a write request.  raid5_run_ops only | 
 | 	 * handles the case where compute block and postxor are requested | 
 | 	 * simultaneously.  If this is not the case then new writes need to be | 
 | 	 * held off until the compute completes. | 
 | 	 */ | 
 | 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && | 
 | 	    (s->locked == 0 && (rcw == 0 || rmw == 0) && | 
 | 	    !test_bit(STRIPE_BIT_DELAY, &sh->state))) | 
 | 		schedule_reconstruction5(sh, s, rcw == 0, 0); | 
 | } | 
 |  | 
 | static void handle_stripe_dirtying6(raid5_conf_t *conf, | 
 | 		struct stripe_head *sh,	struct stripe_head_state *s, | 
 | 		struct r6_state *r6s, int disks) | 
 | { | 
 | 	int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i; | 
 | 	int qd_idx = r6s->qd_idx; | 
 | 	for (i = disks; i--; ) { | 
 | 		struct r5dev *dev = &sh->dev[i]; | 
 | 		/* Would I have to read this buffer for reconstruct_write */ | 
 | 		if (!test_bit(R5_OVERWRITE, &dev->flags) | 
 | 		    && i != pd_idx && i != qd_idx | 
 | 		    && (!test_bit(R5_LOCKED, &dev->flags) | 
 | 			    ) && | 
 | 		    !test_bit(R5_UPTODATE, &dev->flags)) { | 
 | 			if (test_bit(R5_Insync, &dev->flags)) rcw++; | 
 | 			else { | 
 | 				pr_debug("raid6: must_compute: " | 
 | 					"disk %d flags=%#lx\n", i, dev->flags); | 
 | 				must_compute++; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	pr_debug("for sector %llu, rcw=%d, must_compute=%d\n", | 
 | 	       (unsigned long long)sh->sector, rcw, must_compute); | 
 | 	set_bit(STRIPE_HANDLE, &sh->state); | 
 |  | 
 | 	if (rcw > 0) | 
 | 		/* want reconstruct write, but need to get some data */ | 
 | 		for (i = disks; i--; ) { | 
 | 			struct r5dev *dev = &sh->dev[i]; | 
 | 			if (!test_bit(R5_OVERWRITE, &dev->flags) | 
 | 			    && !(s->failed == 0 && (i == pd_idx || i == qd_idx)) | 
 | 			    && !test_bit(R5_LOCKED, &dev->flags) && | 
 | 			    !test_bit(R5_UPTODATE, &dev->flags) && | 
 | 			    test_bit(R5_Insync, &dev->flags)) { | 
 | 				if ( | 
 | 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { | 
 | 					pr_debug("Read_old stripe %llu " | 
 | 						"block %d for Reconstruct\n", | 
 | 					     (unsigned long long)sh->sector, i); | 
 | 					set_bit(R5_LOCKED, &dev->flags); | 
 | 					set_bit(R5_Wantread, &dev->flags); | 
 | 					s->locked++; | 
 | 				} else { | 
 | 					pr_debug("Request delayed stripe %llu " | 
 | 						"block %d for Reconstruct\n", | 
 | 					     (unsigned long long)sh->sector, i); | 
 | 					set_bit(STRIPE_DELAYED, &sh->state); | 
 | 					set_bit(STRIPE_HANDLE, &sh->state); | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 	/* now if nothing is locked, and if we have enough data, we can start a | 
 | 	 * write request | 
 | 	 */ | 
 | 	if (s->locked == 0 && rcw == 0 && | 
 | 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) { | 
 | 		if (must_compute > 0) { | 
 | 			/* We have failed blocks and need to compute them */ | 
 | 			switch (s->failed) { | 
 | 			case 0: | 
 | 				BUG(); | 
 | 			case 1: | 
 | 				compute_block_1(sh, r6s->failed_num[0], 0); | 
 | 				break; | 
 | 			case 2: | 
 | 				compute_block_2(sh, r6s->failed_num[0], | 
 | 						r6s->failed_num[1]); | 
 | 				break; | 
 | 			default: /* This request should have been failed? */ | 
 | 				BUG(); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		pr_debug("Computing parity for stripe %llu\n", | 
 | 			(unsigned long long)sh->sector); | 
 | 		compute_parity6(sh, RECONSTRUCT_WRITE); | 
 | 		/* now every locked buffer is ready to be written */ | 
 | 		for (i = disks; i--; ) | 
 | 			if (test_bit(R5_LOCKED, &sh->dev[i].flags)) { | 
 | 				pr_debug("Writing stripe %llu block %d\n", | 
 | 				       (unsigned long long)sh->sector, i); | 
 | 				s->locked++; | 
 | 				set_bit(R5_Wantwrite, &sh->dev[i].flags); | 
 | 			} | 
 | 		if (s->locked == disks) | 
 | 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) | 
 | 				atomic_inc(&conf->pending_full_writes); | 
 | 		/* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */ | 
 | 		set_bit(STRIPE_INSYNC, &sh->state); | 
 |  | 
 | 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { | 
 | 			atomic_dec(&conf->preread_active_stripes); | 
 | 			if (atomic_read(&conf->preread_active_stripes) < | 
 | 			    IO_THRESHOLD) | 
 | 				md_wakeup_thread(conf->mddev->thread); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh, | 
 | 				struct stripe_head_state *s, int disks) | 
 | { | 
 | 	struct r5dev *dev = NULL; | 
 |  | 
 | 	set_bit(STRIPE_HANDLE, &sh->state); | 
 |  | 
 | 	switch (sh->check_state) { | 
 | 	case check_state_idle: | 
 | 		/* start a new check operation if there are no failures */ | 
 | 		if (s->failed == 0) { | 
 | 			BUG_ON(s->uptodate != disks); | 
 | 			sh->check_state = check_state_run; | 
 | 			set_bit(STRIPE_OP_CHECK, &s->ops_request); | 
 | 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); | 
 | 			s->uptodate--; | 
 | 			break; | 
 | 		} | 
 | 		dev = &sh->dev[s->failed_num]; | 
 | 		/* fall through */ | 
 | 	case check_state_compute_result: | 
 | 		sh->check_state = check_state_idle; | 
 | 		if (!dev) | 
 | 			dev = &sh->dev[sh->pd_idx]; | 
 |  | 
 | 		/* check that a write has not made the stripe insync */ | 
 | 		if (test_bit(STRIPE_INSYNC, &sh->state)) | 
 | 			break; | 
 |  | 
 | 		/* either failed parity check, or recovery is happening */ | 
 | 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); | 
 | 		BUG_ON(s->uptodate != disks); | 
 |  | 
 | 		set_bit(R5_LOCKED, &dev->flags); | 
 | 		s->locked++; | 
 | 		set_bit(R5_Wantwrite, &dev->flags); | 
 |  | 
 | 		clear_bit(STRIPE_DEGRADED, &sh->state); | 
 | 		set_bit(STRIPE_INSYNC, &sh->state); | 
 | 		break; | 
 | 	case check_state_run: | 
 | 		break; /* we will be called again upon completion */ | 
 | 	case check_state_check_result: | 
 | 		sh->check_state = check_state_idle; | 
 |  | 
 | 		/* if a failure occurred during the check operation, leave | 
 | 		 * STRIPE_INSYNC not set and let the stripe be handled again | 
 | 		 */ | 
 | 		if (s->failed) | 
 | 			break; | 
 |  | 
 | 		/* handle a successful check operation, if parity is correct | 
 | 		 * we are done.  Otherwise update the mismatch count and repair | 
 | 		 * parity if !MD_RECOVERY_CHECK | 
 | 		 */ | 
 | 		if (sh->ops.zero_sum_result == 0) | 
 | 			/* parity is correct (on disc, | 
 | 			 * not in buffer any more) | 
 | 			 */ | 
 | 			set_bit(STRIPE_INSYNC, &sh->state); | 
 | 		else { | 
 | 			conf->mddev->resync_mismatches += STRIPE_SECTORS; | 
 | 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) | 
 | 				/* don't try to repair!! */ | 
 | 				set_bit(STRIPE_INSYNC, &sh->state); | 
 | 			else { | 
 | 				sh->check_state = check_state_compute_run; | 
 | 				set_bit(STRIPE_COMPUTE_RUN, &sh->state); | 
 | 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); | 
 | 				set_bit(R5_Wantcompute, | 
 | 					&sh->dev[sh->pd_idx].flags); | 
 | 				sh->ops.target = sh->pd_idx; | 
 | 				s->uptodate++; | 
 | 			} | 
 | 		} | 
 | 		break; | 
 | 	case check_state_compute_run: | 
 | 		break; | 
 | 	default: | 
 | 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", | 
 | 		       __func__, sh->check_state, | 
 | 		       (unsigned long long) sh->sector); | 
 | 		BUG(); | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh, | 
 | 				struct stripe_head_state *s, | 
 | 				struct r6_state *r6s, struct page *tmp_page, | 
 | 				int disks) | 
 | { | 
 | 	int update_p = 0, update_q = 0; | 
 | 	struct r5dev *dev; | 
 | 	int pd_idx = sh->pd_idx; | 
 | 	int qd_idx = r6s->qd_idx; | 
 |  | 
 | 	set_bit(STRIPE_HANDLE, &sh->state); | 
 |  | 
 | 	BUG_ON(s->failed > 2); | 
 | 	BUG_ON(s->uptodate < disks); | 
 | 	/* Want to check and possibly repair P and Q. | 
 | 	 * However there could be one 'failed' device, in which | 
 | 	 * case we can only check one of them, possibly using the | 
 | 	 * other to generate missing data | 
 | 	 */ | 
 |  | 
 | 	/* If !tmp_page, we cannot do the calculations, | 
 | 	 * but as we have set STRIPE_HANDLE, we will soon be called | 
 | 	 * by stripe_handle with a tmp_page - just wait until then. | 
 | 	 */ | 
 | 	if (tmp_page) { | 
 | 		if (s->failed == r6s->q_failed) { | 
 | 			/* The only possible failed device holds 'Q', so it | 
 | 			 * makes sense to check P (If anything else were failed, | 
 | 			 * we would have used P to recreate it). | 
 | 			 */ | 
 | 			compute_block_1(sh, pd_idx, 1); | 
 | 			if (!page_is_zero(sh->dev[pd_idx].page)) { | 
 | 				compute_block_1(sh, pd_idx, 0); | 
 | 				update_p = 1; | 
 | 			} | 
 | 		} | 
 | 		if (!r6s->q_failed && s->failed < 2) { | 
 | 			/* q is not failed, and we didn't use it to generate | 
 | 			 * anything, so it makes sense to check it | 
 | 			 */ | 
 | 			memcpy(page_address(tmp_page), | 
 | 			       page_address(sh->dev[qd_idx].page), | 
 | 			       STRIPE_SIZE); | 
 | 			compute_parity6(sh, UPDATE_PARITY); | 
 | 			if (memcmp(page_address(tmp_page), | 
 | 				   page_address(sh->dev[qd_idx].page), | 
 | 				   STRIPE_SIZE) != 0) { | 
 | 				clear_bit(STRIPE_INSYNC, &sh->state); | 
 | 				update_q = 1; | 
 | 			} | 
 | 		} | 
 | 		if (update_p || update_q) { | 
 | 			conf->mddev->resync_mismatches += STRIPE_SECTORS; | 
 | 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) | 
 | 				/* don't try to repair!! */ | 
 | 				update_p = update_q = 0; | 
 | 		} | 
 |  | 
 | 		/* now write out any block on a failed drive, | 
 | 		 * or P or Q if they need it | 
 | 		 */ | 
 |  | 
 | 		if (s->failed == 2) { | 
 | 			dev = &sh->dev[r6s->failed_num[1]]; | 
 | 			s->locked++; | 
 | 			set_bit(R5_LOCKED, &dev->flags); | 
 | 			set_bit(R5_Wantwrite, &dev->flags); | 
 | 		} | 
 | 		if (s->failed >= 1) { | 
 | 			dev = &sh->dev[r6s->failed_num[0]]; | 
 | 			s->locked++; | 
 | 			set_bit(R5_LOCKED, &dev->flags); | 
 | 			set_bit(R5_Wantwrite, &dev->flags); | 
 | 		} | 
 |  | 
 | 		if (update_p) { | 
 | 			dev = &sh->dev[pd_idx]; | 
 | 			s->locked++; | 
 | 			set_bit(R5_LOCKED, &dev->flags); | 
 | 			set_bit(R5_Wantwrite, &dev->flags); | 
 | 		} | 
 | 		if (update_q) { | 
 | 			dev = &sh->dev[qd_idx]; | 
 | 			s->locked++; | 
 | 			set_bit(R5_LOCKED, &dev->flags); | 
 | 			set_bit(R5_Wantwrite, &dev->flags); | 
 | 		} | 
 | 		clear_bit(STRIPE_DEGRADED, &sh->state); | 
 |  | 
 | 		set_bit(STRIPE_INSYNC, &sh->state); | 
 | 	} | 
 | } | 
 |  | 
 | static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh, | 
 | 				struct r6_state *r6s) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	/* We have read all the blocks in this stripe and now we need to | 
 | 	 * copy some of them into a target stripe for expand. | 
 | 	 */ | 
 | 	struct dma_async_tx_descriptor *tx = NULL; | 
 | 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); | 
 | 	for (i = 0; i < sh->disks; i++) | 
 | 		if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) { | 
 | 			int dd_idx, pd_idx, j; | 
 | 			struct stripe_head *sh2; | 
 |  | 
 | 			sector_t bn = compute_blocknr(sh, i); | 
 | 			sector_t s = raid5_compute_sector(bn, conf->raid_disks, | 
 | 						conf->raid_disks - | 
 | 						conf->max_degraded, &dd_idx, | 
 | 						&pd_idx, conf); | 
 | 			sh2 = get_active_stripe(conf, s, conf->raid_disks, | 
 | 						pd_idx, 1); | 
 | 			if (sh2 == NULL) | 
 | 				/* so far only the early blocks of this stripe | 
 | 				 * have been requested.  When later blocks | 
 | 				 * get requested, we will try again | 
 | 				 */ | 
 | 				continue; | 
 | 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) || | 
 | 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { | 
 | 				/* must have already done this block */ | 
 | 				release_stripe(sh2); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			/* place all the copies on one channel */ | 
 | 			tx = async_memcpy(sh2->dev[dd_idx].page, | 
 | 				sh->dev[i].page, 0, 0, STRIPE_SIZE, | 
 | 				ASYNC_TX_DEP_ACK, tx, NULL, NULL); | 
 |  | 
 | 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); | 
 | 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); | 
 | 			for (j = 0; j < conf->raid_disks; j++) | 
 | 				if (j != sh2->pd_idx && | 
 | 				    (!r6s || j != raid6_next_disk(sh2->pd_idx, | 
 | 								 sh2->disks)) && | 
 | 				    !test_bit(R5_Expanded, &sh2->dev[j].flags)) | 
 | 					break; | 
 | 			if (j == conf->raid_disks) { | 
 | 				set_bit(STRIPE_EXPAND_READY, &sh2->state); | 
 | 				set_bit(STRIPE_HANDLE, &sh2->state); | 
 | 			} | 
 | 			release_stripe(sh2); | 
 |  | 
 | 		} | 
 | 	/* done submitting copies, wait for them to complete */ | 
 | 	if (tx) { | 
 | 		async_tx_ack(tx); | 
 | 		dma_wait_for_async_tx(tx); | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * handle_stripe - do things to a stripe. | 
 |  * | 
 |  * We lock the stripe and then examine the state of various bits | 
 |  * to see what needs to be done. | 
 |  * Possible results: | 
 |  *    return some read request which now have data | 
 |  *    return some write requests which are safely on disc | 
 |  *    schedule a read on some buffers | 
 |  *    schedule a write of some buffers | 
 |  *    return confirmation of parity correctness | 
 |  * | 
 |  * buffers are taken off read_list or write_list, and bh_cache buffers | 
 |  * get BH_Lock set before the stripe lock is released. | 
 |  * | 
 |  */ | 
 |  | 
 | static bool handle_stripe5(struct stripe_head *sh) | 
 | { | 
 | 	raid5_conf_t *conf = sh->raid_conf; | 
 | 	int disks = sh->disks, i; | 
 | 	struct bio *return_bi = NULL; | 
 | 	struct stripe_head_state s; | 
 | 	struct r5dev *dev; | 
 | 	mdk_rdev_t *blocked_rdev = NULL; | 
 | 	int prexor; | 
 |  | 
 | 	memset(&s, 0, sizeof(s)); | 
 | 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d " | 
 | 		 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state, | 
 | 		 atomic_read(&sh->count), sh->pd_idx, sh->check_state, | 
 | 		 sh->reconstruct_state); | 
 |  | 
 | 	spin_lock(&sh->lock); | 
 | 	clear_bit(STRIPE_HANDLE, &sh->state); | 
 | 	clear_bit(STRIPE_DELAYED, &sh->state); | 
 |  | 
 | 	s.syncing = test_bit(STRIPE_SYNCING, &sh->state); | 
 | 	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state); | 
 | 	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state); | 
 |  | 
 | 	/* Now to look around and see what can be done */ | 
 | 	rcu_read_lock(); | 
 | 	for (i=disks; i--; ) { | 
 | 		mdk_rdev_t *rdev; | 
 | 		struct r5dev *dev = &sh->dev[i]; | 
 | 		clear_bit(R5_Insync, &dev->flags); | 
 |  | 
 | 		pr_debug("check %d: state 0x%lx toread %p read %p write %p " | 
 | 			"written %p\n",	i, dev->flags, dev->toread, dev->read, | 
 | 			dev->towrite, dev->written); | 
 |  | 
 | 		/* maybe we can request a biofill operation | 
 | 		 * | 
 | 		 * new wantfill requests are only permitted while | 
 | 		 * ops_complete_biofill is guaranteed to be inactive | 
 | 		 */ | 
 | 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && | 
 | 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) | 
 | 			set_bit(R5_Wantfill, &dev->flags); | 
 |  | 
 | 		/* now count some things */ | 
 | 		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++; | 
 | 		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++; | 
 | 		if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++; | 
 |  | 
 | 		if (test_bit(R5_Wantfill, &dev->flags)) | 
 | 			s.to_fill++; | 
 | 		else if (dev->toread) | 
 | 			s.to_read++; | 
 | 		if (dev->towrite) { | 
 | 			s.to_write++; | 
 | 			if (!test_bit(R5_OVERWRITE, &dev->flags)) | 
 | 				s.non_overwrite++; | 
 | 		} | 
 | 		if (dev->written) | 
 | 			s.written++; | 
 | 		rdev = rcu_dereference(conf->disks[i].rdev); | 
 | 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { | 
 | 			blocked_rdev = rdev; | 
 | 			atomic_inc(&rdev->nr_pending); | 
 | 			break; | 
 | 		} | 
 | 		if (!rdev || !test_bit(In_sync, &rdev->flags)) { | 
 | 			/* The ReadError flag will just be confusing now */ | 
 | 			clear_bit(R5_ReadError, &dev->flags); | 
 | 			clear_bit(R5_ReWrite, &dev->flags); | 
 | 		} | 
 | 		if (!rdev || !test_bit(In_sync, &rdev->flags) | 
 | 		    || test_bit(R5_ReadError, &dev->flags)) { | 
 | 			s.failed++; | 
 | 			s.failed_num = i; | 
 | 		} else | 
 | 			set_bit(R5_Insync, &dev->flags); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	if (unlikely(blocked_rdev)) { | 
 | 		set_bit(STRIPE_HANDLE, &sh->state); | 
 | 		goto unlock; | 
 | 	} | 
 |  | 
 | 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { | 
 | 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request); | 
 | 		set_bit(STRIPE_BIOFILL_RUN, &sh->state); | 
 | 	} | 
 |  | 
 | 	pr_debug("locked=%d uptodate=%d to_read=%d" | 
 | 		" to_write=%d failed=%d failed_num=%d\n", | 
 | 		s.locked, s.uptodate, s.to_read, s.to_write, | 
 | 		s.failed, s.failed_num); | 
 | 	/* check if the array has lost two devices and, if so, some requests might | 
 | 	 * need to be failed | 
 | 	 */ | 
 | 	if (s.failed > 1 && s.to_read+s.to_write+s.written) | 
 | 		handle_failed_stripe(conf, sh, &s, disks, &return_bi); | 
 | 	if (s.failed > 1 && s.syncing) { | 
 | 		md_done_sync(conf->mddev, STRIPE_SECTORS,0); | 
 | 		clear_bit(STRIPE_SYNCING, &sh->state); | 
 | 		s.syncing = 0; | 
 | 	} | 
 |  | 
 | 	/* might be able to return some write requests if the parity block | 
 | 	 * is safe, or on a failed drive | 
 | 	 */ | 
 | 	dev = &sh->dev[sh->pd_idx]; | 
 | 	if ( s.written && | 
 | 	     ((test_bit(R5_Insync, &dev->flags) && | 
 | 	       !test_bit(R5_LOCKED, &dev->flags) && | 
 | 	       test_bit(R5_UPTODATE, &dev->flags)) || | 
 | 	       (s.failed == 1 && s.failed_num == sh->pd_idx))) | 
 | 		handle_stripe_clean_event(conf, sh, disks, &return_bi); | 
 |  | 
 | 	/* Now we might consider reading some blocks, either to check/generate | 
 | 	 * parity, or to satisfy requests | 
 | 	 * or to load a block that is being partially written. | 
 | 	 */ | 
 | 	if (s.to_read || s.non_overwrite || | 
 | 	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding) | 
 | 		handle_stripe_fill5(sh, &s, disks); | 
 |  | 
 | 	/* Now we check to see if any write operations have recently | 
 | 	 * completed | 
 | 	 */ | 
 | 	prexor = 0; | 
 | 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) | 
 | 		prexor = 1; | 
 | 	if (sh->reconstruct_state == reconstruct_state_drain_result || | 
 | 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) { | 
 | 		sh->reconstruct_state = reconstruct_state_idle; | 
 |  | 
 | 		/* All the 'written' buffers and the parity block are ready to | 
 | 		 * be written back to disk | 
 | 		 */ | 
 | 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags)); | 
 | 		for (i = disks; i--; ) { | 
 | 			dev = &sh->dev[i]; | 
 | 			if (test_bit(R5_LOCKED, &dev->flags) && | 
 | 				(i == sh->pd_idx || dev->written)) { | 
 | 				pr_debug("Writing block %d\n", i); | 
 | 				set_bit(R5_Wantwrite, &dev->flags); | 
 | 				if (prexor) | 
 | 					continue; | 
 | 				if (!test_bit(R5_Insync, &dev->flags) || | 
 | 				    (i == sh->pd_idx && s.failed == 0)) | 
 | 					set_bit(STRIPE_INSYNC, &sh->state); | 
 | 			} | 
 | 		} | 
 | 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { | 
 | 			atomic_dec(&conf->preread_active_stripes); | 
 | 			if (atomic_read(&conf->preread_active_stripes) < | 
 | 				IO_THRESHOLD) | 
 | 				md_wakeup_thread(conf->mddev->thread); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Now to consider new write requests and what else, if anything | 
 | 	 * should be read.  We do not handle new writes when: | 
 | 	 * 1/ A 'write' operation (copy+xor) is already in flight. | 
 | 	 * 2/ A 'check' operation is in flight, as it may clobber the parity | 
 | 	 *    block. | 
 | 	 */ | 
 | 	if (s.to_write && !sh->reconstruct_state && !sh->check_state) | 
 | 		handle_stripe_dirtying5(conf, sh, &s, disks); | 
 |  | 
 | 	/* maybe we need to check and possibly fix the parity for this stripe | 
 | 	 * Any reads will already have been scheduled, so we just see if enough | 
 | 	 * data is available.  The parity check is held off while parity | 
 | 	 * dependent operations are in flight. | 
 | 	 */ | 
 | 	if (sh->check_state || | 
 | 	    (s.syncing && s.locked == 0 && | 
 | 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && | 
 | 	     !test_bit(STRIPE_INSYNC, &sh->state))) | 
 | 		handle_parity_checks5(conf, sh, &s, disks); | 
 |  | 
 | 	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) { | 
 | 		md_done_sync(conf->mddev, STRIPE_SECTORS,1); | 
 | 		clear_bit(STRIPE_SYNCING, &sh->state); | 
 | 	} | 
 |  | 
 | 	/* If the failed drive is just a ReadError, then we might need to progress | 
 | 	 * the repair/check process | 
 | 	 */ | 
 | 	if (s.failed == 1 && !conf->mddev->ro && | 
 | 	    test_bit(R5_ReadError, &sh->dev[s.failed_num].flags) | 
 | 	    && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags) | 
 | 	    && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags) | 
 | 		) { | 
 | 		dev = &sh->dev[s.failed_num]; | 
 | 		if (!test_bit(R5_ReWrite, &dev->flags)) { | 
 | 			set_bit(R5_Wantwrite, &dev->flags); | 
 | 			set_bit(R5_ReWrite, &dev->flags); | 
 | 			set_bit(R5_LOCKED, &dev->flags); | 
 | 			s.locked++; | 
 | 		} else { | 
 | 			/* let's read it back */ | 
 | 			set_bit(R5_Wantread, &dev->flags); | 
 | 			set_bit(R5_LOCKED, &dev->flags); | 
 | 			s.locked++; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Finish reconstruct operations initiated by the expansion process */ | 
 | 	if (sh->reconstruct_state == reconstruct_state_result) { | 
 | 		sh->reconstruct_state = reconstruct_state_idle; | 
 | 		clear_bit(STRIPE_EXPANDING, &sh->state); | 
 | 		for (i = conf->raid_disks; i--; ) { | 
 | 			set_bit(R5_Wantwrite, &sh->dev[i].flags); | 
 | 			set_bit(R5_LOCKED, &sh->dev[i].flags); | 
 | 			s.locked++; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && | 
 | 	    !sh->reconstruct_state) { | 
 | 		/* Need to write out all blocks after computing parity */ | 
 | 		sh->disks = conf->raid_disks; | 
 | 		sh->pd_idx = stripe_to_pdidx(sh->sector, conf, | 
 | 			conf->raid_disks); | 
 | 		schedule_reconstruction5(sh, &s, 1, 1); | 
 | 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { | 
 | 		clear_bit(STRIPE_EXPAND_READY, &sh->state); | 
 | 		atomic_dec(&conf->reshape_stripes); | 
 | 		wake_up(&conf->wait_for_overlap); | 
 | 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1); | 
 | 	} | 
 |  | 
 | 	if (s.expanding && s.locked == 0 && | 
 | 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) | 
 | 		handle_stripe_expansion(conf, sh, NULL); | 
 |  | 
 |  unlock: | 
 | 	spin_unlock(&sh->lock); | 
 |  | 
 | 	/* wait for this device to become unblocked */ | 
 | 	if (unlikely(blocked_rdev)) | 
 | 		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev); | 
 |  | 
 | 	if (s.ops_request) | 
 | 		raid5_run_ops(sh, s.ops_request); | 
 |  | 
 | 	ops_run_io(sh, &s); | 
 |  | 
 | 	return_io(return_bi); | 
 |  | 
 | 	return blocked_rdev == NULL; | 
 | } | 
 |  | 
 | static bool handle_stripe6(struct stripe_head *sh, struct page *tmp_page) | 
 | { | 
 | 	raid6_conf_t *conf = sh->raid_conf; | 
 | 	int disks = sh->disks; | 
 | 	struct bio *return_bi = NULL; | 
 | 	int i, pd_idx = sh->pd_idx; | 
 | 	struct stripe_head_state s; | 
 | 	struct r6_state r6s; | 
 | 	struct r5dev *dev, *pdev, *qdev; | 
 | 	mdk_rdev_t *blocked_rdev = NULL; | 
 |  | 
 | 	r6s.qd_idx = raid6_next_disk(pd_idx, disks); | 
 | 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, " | 
 | 		"pd_idx=%d, qd_idx=%d\n", | 
 | 	       (unsigned long long)sh->sector, sh->state, | 
 | 	       atomic_read(&sh->count), pd_idx, r6s.qd_idx); | 
 | 	memset(&s, 0, sizeof(s)); | 
 |  | 
 | 	spin_lock(&sh->lock); | 
 | 	clear_bit(STRIPE_HANDLE, &sh->state); | 
 | 	clear_bit(STRIPE_DELAYED, &sh->state); | 
 |  | 
 | 	s.syncing = test_bit(STRIPE_SYNCING, &sh->state); | 
 | 	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state); | 
 | 	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state); | 
 | 	/* Now to look around and see what can be done */ | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	for (i=disks; i--; ) { | 
 | 		mdk_rdev_t *rdev; | 
 | 		dev = &sh->dev[i]; | 
 | 		clear_bit(R5_Insync, &dev->flags); | 
 |  | 
 | 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n", | 
 | 			i, dev->flags, dev->toread, dev->towrite, dev->written); | 
 | 		/* maybe we can reply to a read */ | 
 | 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) { | 
 | 			struct bio *rbi, *rbi2; | 
 | 			pr_debug("Return read for disc %d\n", i); | 
 | 			spin_lock_irq(&conf->device_lock); | 
 | 			rbi = dev->toread; | 
 | 			dev->toread = NULL; | 
 | 			if (test_and_clear_bit(R5_Overlap, &dev->flags)) | 
 | 				wake_up(&conf->wait_for_overlap); | 
 | 			spin_unlock_irq(&conf->device_lock); | 
 | 			while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) { | 
 | 				copy_data(0, rbi, dev->page, dev->sector); | 
 | 				rbi2 = r5_next_bio(rbi, dev->sector); | 
 | 				spin_lock_irq(&conf->device_lock); | 
 | 				if (--rbi->bi_phys_segments == 0) { | 
 | 					rbi->bi_next = return_bi; | 
 | 					return_bi = rbi; | 
 | 				} | 
 | 				spin_unlock_irq(&conf->device_lock); | 
 | 				rbi = rbi2; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* now count some things */ | 
 | 		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++; | 
 | 		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++; | 
 |  | 
 |  | 
 | 		if (dev->toread) | 
 | 			s.to_read++; | 
 | 		if (dev->towrite) { | 
 | 			s.to_write++; | 
 | 			if (!test_bit(R5_OVERWRITE, &dev->flags)) | 
 | 				s.non_overwrite++; | 
 | 		} | 
 | 		if (dev->written) | 
 | 			s.written++; | 
 | 		rdev = rcu_dereference(conf->disks[i].rdev); | 
 | 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { | 
 | 			blocked_rdev = rdev; | 
 | 			atomic_inc(&rdev->nr_pending); | 
 | 			break; | 
 | 		} | 
 | 		if (!rdev || !test_bit(In_sync, &rdev->flags)) { | 
 | 			/* The ReadError flag will just be confusing now */ | 
 | 			clear_bit(R5_ReadError, &dev->flags); | 
 | 			clear_bit(R5_ReWrite, &dev->flags); | 
 | 		} | 
 | 		if (!rdev || !test_bit(In_sync, &rdev->flags) | 
 | 		    || test_bit(R5_ReadError, &dev->flags)) { | 
 | 			if (s.failed < 2) | 
 | 				r6s.failed_num[s.failed] = i; | 
 | 			s.failed++; | 
 | 		} else | 
 | 			set_bit(R5_Insync, &dev->flags); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	if (unlikely(blocked_rdev)) { | 
 | 		set_bit(STRIPE_HANDLE, &sh->state); | 
 | 		goto unlock; | 
 | 	} | 
 | 	pr_debug("locked=%d uptodate=%d to_read=%d" | 
 | 	       " to_write=%d failed=%d failed_num=%d,%d\n", | 
 | 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed, | 
 | 	       r6s.failed_num[0], r6s.failed_num[1]); | 
 | 	/* check if the array has lost >2 devices and, if so, some requests | 
 | 	 * might need to be failed | 
 | 	 */ | 
 | 	if (s.failed > 2 && s.to_read+s.to_write+s.written) | 
 | 		handle_failed_stripe(conf, sh, &s, disks, &return_bi); | 
 | 	if (s.failed > 2 && s.syncing) { | 
 | 		md_done_sync(conf->mddev, STRIPE_SECTORS,0); | 
 | 		clear_bit(STRIPE_SYNCING, &sh->state); | 
 | 		s.syncing = 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * might be able to return some write requests if the parity blocks | 
 | 	 * are safe, or on a failed drive | 
 | 	 */ | 
 | 	pdev = &sh->dev[pd_idx]; | 
 | 	r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx) | 
 | 		|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx); | 
 | 	qdev = &sh->dev[r6s.qd_idx]; | 
 | 	r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx) | 
 | 		|| (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx); | 
 |  | 
 | 	if ( s.written && | 
 | 	     ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags) | 
 | 			     && !test_bit(R5_LOCKED, &pdev->flags) | 
 | 			     && test_bit(R5_UPTODATE, &pdev->flags)))) && | 
 | 	     ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags) | 
 | 			     && !test_bit(R5_LOCKED, &qdev->flags) | 
 | 			     && test_bit(R5_UPTODATE, &qdev->flags))))) | 
 | 		handle_stripe_clean_event(conf, sh, disks, &return_bi); | 
 |  | 
 | 	/* Now we might consider reading some blocks, either to check/generate | 
 | 	 * parity, or to satisfy requests | 
 | 	 * or to load a block that is being partially written. | 
 | 	 */ | 
 | 	if (s.to_read || s.non_overwrite || (s.to_write && s.failed) || | 
 | 	    (s.syncing && (s.uptodate < disks)) || s.expanding) | 
 | 		handle_stripe_fill6(sh, &s, &r6s, disks); | 
 |  | 
 | 	/* now to consider writing and what else, if anything should be read */ | 
 | 	if (s.to_write) | 
 | 		handle_stripe_dirtying6(conf, sh, &s, &r6s, disks); | 
 |  | 
 | 	/* maybe we need to check and possibly fix the parity for this stripe | 
 | 	 * Any reads will already have been scheduled, so we just see if enough | 
 | 	 * data is available | 
 | 	 */ | 
 | 	if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state)) | 
 | 		handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks); | 
 |  | 
 | 	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) { | 
 | 		md_done_sync(conf->mddev, STRIPE_SECTORS,1); | 
 | 		clear_bit(STRIPE_SYNCING, &sh->state); | 
 | 	} | 
 |  | 
 | 	/* If the failed drives are just a ReadError, then we might need | 
 | 	 * to progress the repair/check process | 
 | 	 */ | 
 | 	if (s.failed <= 2 && !conf->mddev->ro) | 
 | 		for (i = 0; i < s.failed; i++) { | 
 | 			dev = &sh->dev[r6s.failed_num[i]]; | 
 | 			if (test_bit(R5_ReadError, &dev->flags) | 
 | 			    && !test_bit(R5_LOCKED, &dev->flags) | 
 | 			    && test_bit(R5_UPTODATE, &dev->flags) | 
 | 				) { | 
 | 				if (!test_bit(R5_ReWrite, &dev->flags)) { | 
 | 					set_bit(R5_Wantwrite, &dev->flags); | 
 | 					set_bit(R5_ReWrite, &dev->flags); | 
 | 					set_bit(R5_LOCKED, &dev->flags); | 
 | 				} else { | 
 | 					/* let's read it back */ | 
 | 					set_bit(R5_Wantread, &dev->flags); | 
 | 					set_bit(R5_LOCKED, &dev->flags); | 
 | 				} | 
 | 			} | 
 | 		} | 
 |  | 
 | 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) { | 
 | 		/* Need to write out all blocks after computing P&Q */ | 
 | 		sh->disks = conf->raid_disks; | 
 | 		sh->pd_idx = stripe_to_pdidx(sh->sector, conf, | 
 | 					     conf->raid_disks); | 
 | 		compute_parity6(sh, RECONSTRUCT_WRITE); | 
 | 		for (i = conf->raid_disks ; i-- ;  ) { | 
 | 			set_bit(R5_LOCKED, &sh->dev[i].flags); | 
 | 			s.locked++; | 
 | 			set_bit(R5_Wantwrite, &sh->dev[i].flags); | 
 | 		} | 
 | 		clear_bit(STRIPE_EXPANDING, &sh->state); | 
 | 	} else if (s.expanded) { | 
 | 		clear_bit(STRIPE_EXPAND_READY, &sh->state); | 
 | 		atomic_dec(&conf->reshape_stripes); | 
 | 		wake_up(&conf->wait_for_overlap); | 
 | 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1); | 
 | 	} | 
 |  | 
 | 	if (s.expanding && s.locked == 0 && | 
 | 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) | 
 | 		handle_stripe_expansion(conf, sh, &r6s); | 
 |  | 
 |  unlock: | 
 | 	spin_unlock(&sh->lock); | 
 |  | 
 | 	/* wait for this device to become unblocked */ | 
 | 	if (unlikely(blocked_rdev)) | 
 | 		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev); | 
 |  | 
 | 	ops_run_io(sh, &s); | 
 |  | 
 | 	return_io(return_bi); | 
 |  | 
 | 	return blocked_rdev == NULL; | 
 | } | 
 |  | 
 | /* returns true if the stripe was handled */ | 
 | static bool handle_stripe(struct stripe_head *sh, struct page *tmp_page) | 
 | { | 
 | 	if (sh->raid_conf->level == 6) | 
 | 		return handle_stripe6(sh, tmp_page); | 
 | 	else | 
 | 		return handle_stripe5(sh); | 
 | } | 
 |  | 
 |  | 
 |  | 
 | static void raid5_activate_delayed(raid5_conf_t *conf) | 
 | { | 
 | 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { | 
 | 		while (!list_empty(&conf->delayed_list)) { | 
 | 			struct list_head *l = conf->delayed_list.next; | 
 | 			struct stripe_head *sh; | 
 | 			sh = list_entry(l, struct stripe_head, lru); | 
 | 			list_del_init(l); | 
 | 			clear_bit(STRIPE_DELAYED, &sh->state); | 
 | 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) | 
 | 				atomic_inc(&conf->preread_active_stripes); | 
 | 			list_add_tail(&sh->lru, &conf->hold_list); | 
 | 		} | 
 | 	} else | 
 | 		blk_plug_device(conf->mddev->queue); | 
 | } | 
 |  | 
 | static void activate_bit_delay(raid5_conf_t *conf) | 
 | { | 
 | 	/* device_lock is held */ | 
 | 	struct list_head head; | 
 | 	list_add(&head, &conf->bitmap_list); | 
 | 	list_del_init(&conf->bitmap_list); | 
 | 	while (!list_empty(&head)) { | 
 | 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); | 
 | 		list_del_init(&sh->lru); | 
 | 		atomic_inc(&sh->count); | 
 | 		__release_stripe(conf, sh); | 
 | 	} | 
 | } | 
 |  | 
 | static void unplug_slaves(mddev_t *mddev) | 
 | { | 
 | 	raid5_conf_t *conf = mddev_to_conf(mddev); | 
 | 	int i; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	for (i=0; i<mddev->raid_disks; i++) { | 
 | 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev); | 
 | 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { | 
 | 			struct request_queue *r_queue = bdev_get_queue(rdev->bdev); | 
 |  | 
 | 			atomic_inc(&rdev->nr_pending); | 
 | 			rcu_read_unlock(); | 
 |  | 
 | 			blk_unplug(r_queue); | 
 |  | 
 | 			rdev_dec_pending(rdev, mddev); | 
 | 			rcu_read_lock(); | 
 | 		} | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | static void raid5_unplug_device(struct request_queue *q) | 
 | { | 
 | 	mddev_t *mddev = q->queuedata; | 
 | 	raid5_conf_t *conf = mddev_to_conf(mddev); | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&conf->device_lock, flags); | 
 |  | 
 | 	if (blk_remove_plug(q)) { | 
 | 		conf->seq_flush++; | 
 | 		raid5_activate_delayed(conf); | 
 | 	} | 
 | 	md_wakeup_thread(mddev->thread); | 
 |  | 
 | 	spin_unlock_irqrestore(&conf->device_lock, flags); | 
 |  | 
 | 	unplug_slaves(mddev); | 
 | } | 
 |  | 
 | static int raid5_congested(void *data, int bits) | 
 | { | 
 | 	mddev_t *mddev = data; | 
 | 	raid5_conf_t *conf = mddev_to_conf(mddev); | 
 |  | 
 | 	/* No difference between reads and writes.  Just check | 
 | 	 * how busy the stripe_cache is | 
 | 	 */ | 
 | 	if (conf->inactive_blocked) | 
 | 		return 1; | 
 | 	if (conf->quiesce) | 
 | 		return 1; | 
 | 	if (list_empty_careful(&conf->inactive_list)) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* We want read requests to align with chunks where possible, | 
 |  * but write requests don't need to. | 
 |  */ | 
 | static int raid5_mergeable_bvec(struct request_queue *q, | 
 | 				struct bvec_merge_data *bvm, | 
 | 				struct bio_vec *biovec) | 
 | { | 
 | 	mddev_t *mddev = q->queuedata; | 
 | 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); | 
 | 	int max; | 
 | 	unsigned int chunk_sectors = mddev->chunk_size >> 9; | 
 | 	unsigned int bio_sectors = bvm->bi_size >> 9; | 
 |  | 
 | 	if ((bvm->bi_rw & 1) == WRITE) | 
 | 		return biovec->bv_len; /* always allow writes to be mergeable */ | 
 |  | 
 | 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; | 
 | 	if (max < 0) max = 0; | 
 | 	if (max <= biovec->bv_len && bio_sectors == 0) | 
 | 		return biovec->bv_len; | 
 | 	else | 
 | 		return max; | 
 | } | 
 |  | 
 |  | 
 | static int in_chunk_boundary(mddev_t *mddev, struct bio *bio) | 
 | { | 
 | 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev); | 
 | 	unsigned int chunk_sectors = mddev->chunk_size >> 9; | 
 | 	unsigned int bio_sectors = bio->bi_size >> 9; | 
 |  | 
 | 	return  chunk_sectors >= | 
 | 		((sector & (chunk_sectors - 1)) + bio_sectors); | 
 | } | 
 |  | 
 | /* | 
 |  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt ) | 
 |  *  later sampled by raid5d. | 
 |  */ | 
 | static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&conf->device_lock, flags); | 
 |  | 
 | 	bi->bi_next = conf->retry_read_aligned_list; | 
 | 	conf->retry_read_aligned_list = bi; | 
 |  | 
 | 	spin_unlock_irqrestore(&conf->device_lock, flags); | 
 | 	md_wakeup_thread(conf->mddev->thread); | 
 | } | 
 |  | 
 |  | 
 | static struct bio *remove_bio_from_retry(raid5_conf_t *conf) | 
 | { | 
 | 	struct bio *bi; | 
 |  | 
 | 	bi = conf->retry_read_aligned; | 
 | 	if (bi) { | 
 | 		conf->retry_read_aligned = NULL; | 
 | 		return bi; | 
 | 	} | 
 | 	bi = conf->retry_read_aligned_list; | 
 | 	if(bi) { | 
 | 		conf->retry_read_aligned_list = bi->bi_next; | 
 | 		bi->bi_next = NULL; | 
 | 		bi->bi_phys_segments = 1; /* biased count of active stripes */ | 
 | 		bi->bi_hw_segments = 0; /* count of processed stripes */ | 
 | 	} | 
 |  | 
 | 	return bi; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  *  The "raid5_align_endio" should check if the read succeeded and if it | 
 |  *  did, call bio_endio on the original bio (having bio_put the new bio | 
 |  *  first). | 
 |  *  If the read failed.. | 
 |  */ | 
 | static void raid5_align_endio(struct bio *bi, int error) | 
 | { | 
 | 	struct bio* raid_bi  = bi->bi_private; | 
 | 	mddev_t *mddev; | 
 | 	raid5_conf_t *conf; | 
 | 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); | 
 | 	mdk_rdev_t *rdev; | 
 |  | 
 | 	bio_put(bi); | 
 |  | 
 | 	mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata; | 
 | 	conf = mddev_to_conf(mddev); | 
 | 	rdev = (void*)raid_bi->bi_next; | 
 | 	raid_bi->bi_next = NULL; | 
 |  | 
 | 	rdev_dec_pending(rdev, conf->mddev); | 
 |  | 
 | 	if (!error && uptodate) { | 
 | 		bio_endio(raid_bi, 0); | 
 | 		if (atomic_dec_and_test(&conf->active_aligned_reads)) | 
 | 			wake_up(&conf->wait_for_stripe); | 
 | 		return; | 
 | 	} | 
 |  | 
 |  | 
 | 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); | 
 |  | 
 | 	add_bio_to_retry(raid_bi, conf); | 
 | } | 
 |  | 
 | static int bio_fits_rdev(struct bio *bi) | 
 | { | 
 | 	struct request_queue *q = bdev_get_queue(bi->bi_bdev); | 
 |  | 
 | 	if ((bi->bi_size>>9) > q->max_sectors) | 
 | 		return 0; | 
 | 	blk_recount_segments(q, bi); | 
 | 	if (bi->bi_phys_segments > q->max_phys_segments || | 
 | 	    bi->bi_hw_segments > q->max_hw_segments) | 
 | 		return 0; | 
 |  | 
 | 	if (q->merge_bvec_fn) | 
 | 		/* it's too hard to apply the merge_bvec_fn at this stage, | 
 | 		 * just just give up | 
 | 		 */ | 
 | 		return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 |  | 
 | static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio) | 
 | { | 
 | 	mddev_t *mddev = q->queuedata; | 
 | 	raid5_conf_t *conf = mddev_to_conf(mddev); | 
 | 	const unsigned int raid_disks = conf->raid_disks; | 
 | 	const unsigned int data_disks = raid_disks - conf->max_degraded; | 
 | 	unsigned int dd_idx, pd_idx; | 
 | 	struct bio* align_bi; | 
 | 	mdk_rdev_t *rdev; | 
 |  | 
 | 	if (!in_chunk_boundary(mddev, raid_bio)) { | 
 | 		pr_debug("chunk_aligned_read : non aligned\n"); | 
 | 		return 0; | 
 | 	} | 
 | 	/* | 
 |  	 * use bio_clone to make a copy of the bio | 
 | 	 */ | 
 | 	align_bi = bio_clone(raid_bio, GFP_NOIO); | 
 | 	if (!align_bi) | 
 | 		return 0; | 
 | 	/* | 
 | 	 *   set bi_end_io to a new function, and set bi_private to the | 
 | 	 *     original bio. | 
 | 	 */ | 
 | 	align_bi->bi_end_io  = raid5_align_endio; | 
 | 	align_bi->bi_private = raid_bio; | 
 | 	/* | 
 | 	 *	compute position | 
 | 	 */ | 
 | 	align_bi->bi_sector =  raid5_compute_sector(raid_bio->bi_sector, | 
 | 					raid_disks, | 
 | 					data_disks, | 
 | 					&dd_idx, | 
 | 					&pd_idx, | 
 | 					conf); | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	rdev = rcu_dereference(conf->disks[dd_idx].rdev); | 
 | 	if (rdev && test_bit(In_sync, &rdev->flags)) { | 
 | 		atomic_inc(&rdev->nr_pending); | 
 | 		rcu_read_unlock(); | 
 | 		raid_bio->bi_next = (void*)rdev; | 
 | 		align_bi->bi_bdev =  rdev->bdev; | 
 | 		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID); | 
 | 		align_bi->bi_sector += rdev->data_offset; | 
 |  | 
 | 		if (!bio_fits_rdev(align_bi)) { | 
 | 			/* too big in some way */ | 
 | 			bio_put(align_bi); | 
 | 			rdev_dec_pending(rdev, mddev); | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		spin_lock_irq(&conf->device_lock); | 
 | 		wait_event_lock_irq(conf->wait_for_stripe, | 
 | 				    conf->quiesce == 0, | 
 | 				    conf->device_lock, /* nothing */); | 
 | 		atomic_inc(&conf->active_aligned_reads); | 
 | 		spin_unlock_irq(&conf->device_lock); | 
 |  | 
 | 		generic_make_request(align_bi); | 
 | 		return 1; | 
 | 	} else { | 
 | 		rcu_read_unlock(); | 
 | 		bio_put(align_bi); | 
 | 		return 0; | 
 | 	} | 
 | } | 
 |  | 
 | /* __get_priority_stripe - get the next stripe to process | 
 |  * | 
 |  * Full stripe writes are allowed to pass preread active stripes up until | 
 |  * the bypass_threshold is exceeded.  In general the bypass_count | 
 |  * increments when the handle_list is handled before the hold_list; however, it | 
 |  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a | 
 |  * stripe with in flight i/o.  The bypass_count will be reset when the | 
 |  * head of the hold_list has changed, i.e. the head was promoted to the | 
 |  * handle_list. | 
 |  */ | 
 | static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf) | 
 | { | 
 | 	struct stripe_head *sh; | 
 |  | 
 | 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", | 
 | 		  __func__, | 
 | 		  list_empty(&conf->handle_list) ? "empty" : "busy", | 
 | 		  list_empty(&conf->hold_list) ? "empty" : "busy", | 
 | 		  atomic_read(&conf->pending_full_writes), conf->bypass_count); | 
 |  | 
 | 	if (!list_empty(&conf->handle_list)) { | 
 | 		sh = list_entry(conf->handle_list.next, typeof(*sh), lru); | 
 |  | 
 | 		if (list_empty(&conf->hold_list)) | 
 | 			conf->bypass_count = 0; | 
 | 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { | 
 | 			if (conf->hold_list.next == conf->last_hold) | 
 | 				conf->bypass_count++; | 
 | 			else { | 
 | 				conf->last_hold = conf->hold_list.next; | 
 | 				conf->bypass_count -= conf->bypass_threshold; | 
 | 				if (conf->bypass_count < 0) | 
 | 					conf->bypass_count = 0; | 
 | 			} | 
 | 		} | 
 | 	} else if (!list_empty(&conf->hold_list) && | 
 | 		   ((conf->bypass_threshold && | 
 | 		     conf->bypass_count > conf->bypass_threshold) || | 
 | 		    atomic_read(&conf->pending_full_writes) == 0)) { | 
 | 		sh = list_entry(conf->hold_list.next, | 
 | 				typeof(*sh), lru); | 
 | 		conf->bypass_count -= conf->bypass_threshold; | 
 | 		if (conf->bypass_count < 0) | 
 | 			conf->bypass_count = 0; | 
 | 	} else | 
 | 		return NULL; | 
 |  | 
 | 	list_del_init(&sh->lru); | 
 | 	atomic_inc(&sh->count); | 
 | 	BUG_ON(atomic_read(&sh->count) != 1); | 
 | 	return sh; | 
 | } | 
 |  | 
 | static int make_request(struct request_queue *q, struct bio * bi) | 
 | { | 
 | 	mddev_t *mddev = q->queuedata; | 
 | 	raid5_conf_t *conf = mddev_to_conf(mddev); | 
 | 	unsigned int dd_idx, pd_idx; | 
 | 	sector_t new_sector; | 
 | 	sector_t logical_sector, last_sector; | 
 | 	struct stripe_head *sh; | 
 | 	const int rw = bio_data_dir(bi); | 
 | 	int remaining; | 
 |  | 
 | 	if (unlikely(bio_barrier(bi))) { | 
 | 		bio_endio(bi, -EOPNOTSUPP); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	md_write_start(mddev, bi); | 
 |  | 
 | 	disk_stat_inc(mddev->gendisk, ios[rw]); | 
 | 	disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi)); | 
 |  | 
 | 	if (rw == READ && | 
 | 	     mddev->reshape_position == MaxSector && | 
 | 	     chunk_aligned_read(q,bi)) | 
 |             	return 0; | 
 |  | 
 | 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1); | 
 | 	last_sector = bi->bi_sector + (bi->bi_size>>9); | 
 | 	bi->bi_next = NULL; | 
 | 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */ | 
 |  | 
 | 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { | 
 | 		DEFINE_WAIT(w); | 
 | 		int disks, data_disks; | 
 |  | 
 | 	retry: | 
 | 		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); | 
 | 		if (likely(conf->expand_progress == MaxSector)) | 
 | 			disks = conf->raid_disks; | 
 | 		else { | 
 | 			/* spinlock is needed as expand_progress may be | 
 | 			 * 64bit on a 32bit platform, and so it might be | 
 | 			 * possible to see a half-updated value | 
 | 			 * Ofcourse expand_progress could change after | 
 | 			 * the lock is dropped, so once we get a reference | 
 | 			 * to the stripe that we think it is, we will have | 
 | 			 * to check again. | 
 | 			 */ | 
 | 			spin_lock_irq(&conf->device_lock); | 
 | 			disks = conf->raid_disks; | 
 | 			if (logical_sector >= conf->expand_progress) | 
 | 				disks = conf->previous_raid_disks; | 
 | 			else { | 
 | 				if (logical_sector >= conf->expand_lo) { | 
 | 					spin_unlock_irq(&conf->device_lock); | 
 | 					schedule(); | 
 | 					goto retry; | 
 | 				} | 
 | 			} | 
 | 			spin_unlock_irq(&conf->device_lock); | 
 | 		} | 
 | 		data_disks = disks - conf->max_degraded; | 
 |  | 
 |  		new_sector = raid5_compute_sector(logical_sector, disks, data_disks, | 
 | 						  &dd_idx, &pd_idx, conf); | 
 | 		pr_debug("raid5: make_request, sector %llu logical %llu\n", | 
 | 			(unsigned long long)new_sector,  | 
 | 			(unsigned long long)logical_sector); | 
 |  | 
 | 		sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK)); | 
 | 		if (sh) { | 
 | 			if (unlikely(conf->expand_progress != MaxSector)) { | 
 | 				/* expansion might have moved on while waiting for a | 
 | 				 * stripe, so we must do the range check again. | 
 | 				 * Expansion could still move past after this | 
 | 				 * test, but as we are holding a reference to | 
 | 				 * 'sh', we know that if that happens, | 
 | 				 *  STRIPE_EXPANDING will get set and the expansion | 
 | 				 * won't proceed until we finish with the stripe. | 
 | 				 */ | 
 | 				int must_retry = 0; | 
 | 				spin_lock_irq(&conf->device_lock); | 
 | 				if (logical_sector <  conf->expand_progress && | 
 | 				    disks == conf->previous_raid_disks) | 
 | 					/* mismatch, need to try again */ | 
 | 					must_retry = 1; | 
 | 				spin_unlock_irq(&conf->device_lock); | 
 | 				if (must_retry) { | 
 | 					release_stripe(sh); | 
 | 					goto retry; | 
 | 				} | 
 | 			} | 
 | 			/* FIXME what if we get a false positive because these | 
 | 			 * are being updated. | 
 | 			 */ | 
 | 			if (logical_sector >= mddev->suspend_lo && | 
 | 			    logical_sector < mddev->suspend_hi) { | 
 | 				release_stripe(sh); | 
 | 				schedule(); | 
 | 				goto retry; | 
 | 			} | 
 |  | 
 | 			if (test_bit(STRIPE_EXPANDING, &sh->state) || | 
 | 			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) { | 
 | 				/* Stripe is busy expanding or | 
 | 				 * add failed due to overlap.  Flush everything | 
 | 				 * and wait a while | 
 | 				 */ | 
 | 				raid5_unplug_device(mddev->queue); | 
 | 				release_stripe(sh); | 
 | 				schedule(); | 
 | 				goto retry; | 
 | 			} | 
 | 			finish_wait(&conf->wait_for_overlap, &w); | 
 | 			set_bit(STRIPE_HANDLE, &sh->state); | 
 | 			clear_bit(STRIPE_DELAYED, &sh->state); | 
 | 			release_stripe(sh); | 
 | 		} else { | 
 | 			/* cannot get stripe for read-ahead, just give-up */ | 
 | 			clear_bit(BIO_UPTODATE, &bi->bi_flags); | 
 | 			finish_wait(&conf->wait_for_overlap, &w); | 
 | 			break; | 
 | 		} | 
 | 			 | 
 | 	} | 
 | 	spin_lock_irq(&conf->device_lock); | 
 | 	remaining = --bi->bi_phys_segments; | 
 | 	spin_unlock_irq(&conf->device_lock); | 
 | 	if (remaining == 0) { | 
 |  | 
 | 		if ( rw == WRITE ) | 
 | 			md_write_end(mddev); | 
 |  | 
 | 		bio_endio(bi, 0); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped) | 
 | { | 
 | 	/* reshaping is quite different to recovery/resync so it is | 
 | 	 * handled quite separately ... here. | 
 | 	 * | 
 | 	 * On each call to sync_request, we gather one chunk worth of | 
 | 	 * destination stripes and flag them as expanding. | 
 | 	 * Then we find all the source stripes and request reads. | 
 | 	 * As the reads complete, handle_stripe will copy the data | 
 | 	 * into the destination stripe and release that stripe. | 
 | 	 */ | 
 | 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private; | 
 | 	struct stripe_head *sh; | 
 | 	int pd_idx; | 
 | 	sector_t first_sector, last_sector; | 
 | 	int raid_disks = conf->previous_raid_disks; | 
 | 	int data_disks = raid_disks - conf->max_degraded; | 
 | 	int new_data_disks = conf->raid_disks - conf->max_degraded; | 
 | 	int i; | 
 | 	int dd_idx; | 
 | 	sector_t writepos, safepos, gap; | 
 |  | 
 | 	if (sector_nr == 0 && | 
 | 	    conf->expand_progress != 0) { | 
 | 		/* restarting in the middle, skip the initial sectors */ | 
 | 		sector_nr = conf->expand_progress; | 
 | 		sector_div(sector_nr, new_data_disks); | 
 | 		*skipped = 1; | 
 | 		return sector_nr; | 
 | 	} | 
 |  | 
 | 	/* we update the metadata when there is more than 3Meg | 
 | 	 * in the block range (that is rather arbitrary, should | 
 | 	 * probably be time based) or when the data about to be | 
 | 	 * copied would over-write the source of the data at | 
 | 	 * the front of the range. | 
 | 	 * i.e. one new_stripe forward from expand_progress new_maps | 
 | 	 * to after where expand_lo old_maps to | 
 | 	 */ | 
 | 	writepos = conf->expand_progress + | 
 | 		conf->chunk_size/512*(new_data_disks); | 
 | 	sector_div(writepos, new_data_disks); | 
 | 	safepos = conf->expand_lo; | 
 | 	sector_div(safepos, data_disks); | 
 | 	gap = conf->expand_progress - conf->expand_lo; | 
 |  | 
 | 	if (writepos >= safepos || | 
 | 	    gap > (new_data_disks)*3000*2 /*3Meg*/) { | 
 | 		/* Cannot proceed until we've updated the superblock... */ | 
 | 		wait_event(conf->wait_for_overlap, | 
 | 			   atomic_read(&conf->reshape_stripes)==0); | 
 | 		mddev->reshape_position = conf->expand_progress; | 
 | 		set_bit(MD_CHANGE_DEVS, &mddev->flags); | 
 | 		md_wakeup_thread(mddev->thread); | 
 | 		wait_event(mddev->sb_wait, mddev->flags == 0 || | 
 | 			   kthread_should_stop()); | 
 | 		spin_lock_irq(&conf->device_lock); | 
 | 		conf->expand_lo = mddev->reshape_position; | 
 | 		spin_unlock_irq(&conf->device_lock); | 
 | 		wake_up(&conf->wait_for_overlap); | 
 | 	} | 
 |  | 
 | 	for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) { | 
 | 		int j; | 
 | 		int skipped = 0; | 
 | 		pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks); | 
 | 		sh = get_active_stripe(conf, sector_nr+i, | 
 | 				       conf->raid_disks, pd_idx, 0); | 
 | 		set_bit(STRIPE_EXPANDING, &sh->state); | 
 | 		atomic_inc(&conf->reshape_stripes); | 
 | 		/* If any of this stripe is beyond the end of the old | 
 | 		 * array, then we need to zero those blocks | 
 | 		 */ | 
 | 		for (j=sh->disks; j--;) { | 
 | 			sector_t s; | 
 | 			if (j == sh->pd_idx) | 
 | 				continue; | 
 | 			if (conf->level == 6 && | 
 | 			    j == raid6_next_disk(sh->pd_idx, sh->disks)) | 
 | 				continue; | 
 | 			s = compute_blocknr(sh, j); | 
 | 			if (s < mddev->array_sectors) { | 
 | 				skipped = 1; | 
 | 				continue; | 
 | 			} | 
 | 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE); | 
 | 			set_bit(R5_Expanded, &sh->dev[j].flags); | 
 | 			set_bit(R5_UPTODATE, &sh->dev[j].flags); | 
 | 		} | 
 | 		if (!skipped) { | 
 | 			set_bit(STRIPE_EXPAND_READY, &sh->state); | 
 | 			set_bit(STRIPE_HANDLE, &sh->state); | 
 | 		} | 
 | 		release_stripe(sh); | 
 | 	} | 
 | 	spin_lock_irq(&conf->device_lock); | 
 | 	conf->expand_progress = (sector_nr + i) * new_data_disks; | 
 | 	spin_unlock_irq(&conf->device_lock); | 
 | 	/* Ok, those stripe are ready. We can start scheduling | 
 | 	 * reads on the source stripes. | 
 | 	 * The source stripes are determined by mapping the first and last | 
 | 	 * block on the destination stripes. | 
 | 	 */ | 
 | 	first_sector = | 
 | 		raid5_compute_sector(sector_nr*(new_data_disks), | 
 | 				     raid_disks, data_disks, | 
 | 				     &dd_idx, &pd_idx, conf); | 
 | 	last_sector = | 
 | 		raid5_compute_sector((sector_nr+conf->chunk_size/512) | 
 | 				     *(new_data_disks) -1, | 
 | 				     raid_disks, data_disks, | 
 | 				     &dd_idx, &pd_idx, conf); | 
 | 	if (last_sector >= (mddev->size<<1)) | 
 | 		last_sector = (mddev->size<<1)-1; | 
 | 	while (first_sector <= last_sector) { | 
 | 		pd_idx = stripe_to_pdidx(first_sector, conf, | 
 | 					 conf->previous_raid_disks); | 
 | 		sh = get_active_stripe(conf, first_sector, | 
 | 				       conf->previous_raid_disks, pd_idx, 0); | 
 | 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state); | 
 | 		set_bit(STRIPE_HANDLE, &sh->state); | 
 | 		release_stripe(sh); | 
 | 		first_sector += STRIPE_SECTORS; | 
 | 	} | 
 | 	/* If this takes us to the resync_max point where we have to pause, | 
 | 	 * then we need to write out the superblock. | 
 | 	 */ | 
 | 	sector_nr += conf->chunk_size>>9; | 
 | 	if (sector_nr >= mddev->resync_max) { | 
 | 		/* Cannot proceed until we've updated the superblock... */ | 
 | 		wait_event(conf->wait_for_overlap, | 
 | 			   atomic_read(&conf->reshape_stripes) == 0); | 
 | 		mddev->reshape_position = conf->expand_progress; | 
 | 		set_bit(MD_CHANGE_DEVS, &mddev->flags); | 
 | 		md_wakeup_thread(mddev->thread); | 
 | 		wait_event(mddev->sb_wait, | 
 | 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags) | 
 | 			   || kthread_should_stop()); | 
 | 		spin_lock_irq(&conf->device_lock); | 
 | 		conf->expand_lo = mddev->reshape_position; | 
 | 		spin_unlock_irq(&conf->device_lock); | 
 | 		wake_up(&conf->wait_for_overlap); | 
 | 	} | 
 | 	return conf->chunk_size>>9; | 
 | } | 
 |  | 
 | /* FIXME go_faster isn't used */ | 
 | static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) | 
 | { | 
 | 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private; | 
 | 	struct stripe_head *sh; | 
 | 	int pd_idx; | 
 | 	int raid_disks = conf->raid_disks; | 
 | 	sector_t max_sector = mddev->size << 1; | 
 | 	int sync_blocks; | 
 | 	int still_degraded = 0; | 
 | 	int i; | 
 |  | 
 | 	if (sector_nr >= max_sector) { | 
 | 		/* just being told to finish up .. nothing much to do */ | 
 | 		unplug_slaves(mddev); | 
 | 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { | 
 | 			end_reshape(conf); | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		if (mddev->curr_resync < max_sector) /* aborted */ | 
 | 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync, | 
 | 					&sync_blocks, 1); | 
 | 		else /* completed sync */ | 
 | 			conf->fullsync = 0; | 
 | 		bitmap_close_sync(mddev->bitmap); | 
 |  | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) | 
 | 		return reshape_request(mddev, sector_nr, skipped); | 
 |  | 
 | 	/* No need to check resync_max as we never do more than one | 
 | 	 * stripe, and as resync_max will always be on a chunk boundary, | 
 | 	 * if the check in md_do_sync didn't fire, there is no chance | 
 | 	 * of overstepping resync_max here | 
 | 	 */ | 
 |  | 
 | 	/* if there is too many failed drives and we are trying | 
 | 	 * to resync, then assert that we are finished, because there is | 
 | 	 * nothing we can do. | 
 | 	 */ | 
 | 	if (mddev->degraded >= conf->max_degraded && | 
 | 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { | 
 | 		sector_t rv = (mddev->size << 1) - sector_nr; | 
 | 		*skipped = 1; | 
 | 		return rv; | 
 | 	} | 
 | 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && | 
 | 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && | 
 | 	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) { | 
 | 		/* we can skip this block, and probably more */ | 
 | 		sync_blocks /= STRIPE_SECTORS; | 
 | 		*skipped = 1; | 
 | 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */ | 
 | 	} | 
 |  | 
 |  | 
 | 	bitmap_cond_end_sync(mddev->bitmap, sector_nr); | 
 |  | 
 | 	pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks); | 
 | 	sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1); | 
 | 	if (sh == NULL) { | 
 | 		sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0); | 
 | 		/* make sure we don't swamp the stripe cache if someone else | 
 | 		 * is trying to get access | 
 | 		 */ | 
 | 		schedule_timeout_uninterruptible(1); | 
 | 	} | 
 | 	/* Need to check if array will still be degraded after recovery/resync | 
 | 	 * We don't need to check the 'failed' flag as when that gets set, | 
 | 	 * recovery aborts. | 
 | 	 */ | 
 | 	for (i=0; i<mddev->raid_disks; i++) | 
 | 		if (conf->disks[i].rdev == NULL) | 
 | 			still_degraded = 1; | 
 |  | 
 | 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); | 
 |  | 
 | 	spin_lock(&sh->lock); | 
 | 	set_bit(STRIPE_SYNCING, &sh->state); | 
 | 	clear_bit(STRIPE_INSYNC, &sh->state); | 
 | 	spin_unlock(&sh->lock); | 
 |  | 
 | 	/* wait for any blocked device to be handled */ | 
 | 	while(unlikely(!handle_stripe(sh, NULL))) | 
 | 		; | 
 | 	release_stripe(sh); | 
 |  | 
 | 	return STRIPE_SECTORS; | 
 | } | 
 |  | 
 | static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio) | 
 | { | 
 | 	/* We may not be able to submit a whole bio at once as there | 
 | 	 * may not be enough stripe_heads available. | 
 | 	 * We cannot pre-allocate enough stripe_heads as we may need | 
 | 	 * more than exist in the cache (if we allow ever large chunks). | 
 | 	 * So we do one stripe head at a time and record in | 
 | 	 * ->bi_hw_segments how many have been done. | 
 | 	 * | 
 | 	 * We *know* that this entire raid_bio is in one chunk, so | 
 | 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. | 
 | 	 */ | 
 | 	struct stripe_head *sh; | 
 | 	int dd_idx, pd_idx; | 
 | 	sector_t sector, logical_sector, last_sector; | 
 | 	int scnt = 0; | 
 | 	int remaining; | 
 | 	int handled = 0; | 
 |  | 
 | 	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1); | 
 | 	sector = raid5_compute_sector(	logical_sector, | 
 | 					conf->raid_disks, | 
 | 					conf->raid_disks - conf->max_degraded, | 
 | 					&dd_idx, | 
 | 					&pd_idx, | 
 | 					conf); | 
 | 	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9); | 
 |  | 
 | 	for (; logical_sector < last_sector; | 
 | 	     logical_sector += STRIPE_SECTORS, | 
 | 		     sector += STRIPE_SECTORS, | 
 | 		     scnt++) { | 
 |  | 
 | 		if (scnt < raid_bio->bi_hw_segments) | 
 | 			/* already done this stripe */ | 
 | 			continue; | 
 |  | 
 | 		sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1); | 
 |  | 
 | 		if (!sh) { | 
 | 			/* failed to get a stripe - must wait */ | 
 | 			raid_bio->bi_hw_segments = scnt; | 
 | 			conf->retry_read_aligned = raid_bio; | 
 | 			return handled; | 
 | 		} | 
 |  | 
 | 		set_bit(R5_ReadError, &sh->dev[dd_idx].flags); | 
 | 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) { | 
 | 			release_stripe(sh); | 
 | 			raid_bio->bi_hw_segments = scnt; | 
 | 			conf->retry_read_aligned = raid_bio; | 
 | 			return handled; | 
 | 		} | 
 |  | 
 | 		handle_stripe(sh, NULL); | 
 | 		release_stripe(sh); | 
 | 		handled++; | 
 | 	} | 
 | 	spin_lock_irq(&conf->device_lock); | 
 | 	remaining = --raid_bio->bi_phys_segments; | 
 | 	spin_unlock_irq(&conf->device_lock); | 
 | 	if (remaining == 0) | 
 | 		bio_endio(raid_bio, 0); | 
 | 	if (atomic_dec_and_test(&conf->active_aligned_reads)) | 
 | 		wake_up(&conf->wait_for_stripe); | 
 | 	return handled; | 
 | } | 
 |  | 
 |  | 
 |  | 
 | /* | 
 |  * This is our raid5 kernel thread. | 
 |  * | 
 |  * We scan the hash table for stripes which can be handled now. | 
 |  * During the scan, completed stripes are saved for us by the interrupt | 
 |  * handler, so that they will not have to wait for our next wakeup. | 
 |  */ | 
 | static void raid5d(mddev_t *mddev) | 
 | { | 
 | 	struct stripe_head *sh; | 
 | 	raid5_conf_t *conf = mddev_to_conf(mddev); | 
 | 	int handled; | 
 |  | 
 | 	pr_debug("+++ raid5d active\n"); | 
 |  | 
 | 	md_check_recovery(mddev); | 
 |  | 
 | 	handled = 0; | 
 | 	spin_lock_irq(&conf->device_lock); | 
 | 	while (1) { | 
 | 		struct bio *bio; | 
 |  | 
 | 		if (conf->seq_flush != conf->seq_write) { | 
 | 			int seq = conf->seq_flush; | 
 | 			spin_unlock_irq(&conf->device_lock); | 
 | 			bitmap_unplug(mddev->bitmap); | 
 | 			spin_lock_irq(&conf->device_lock); | 
 | 			conf->seq_write = seq; | 
 | 			activate_bit_delay(conf); | 
 | 		} | 
 |  | 
 | 		while ((bio = remove_bio_from_retry(conf))) { | 
 | 			int ok; | 
 | 			spin_unlock_irq(&conf->device_lock); | 
 | 			ok = retry_aligned_read(conf, bio); | 
 | 			spin_lock_irq(&conf->device_lock); | 
 | 			if (!ok) | 
 | 				break; | 
 | 			handled++; | 
 | 		} | 
 |  | 
 | 		sh = __get_priority_stripe(conf); | 
 |  | 
 | 		if (!sh) | 
 | 			break; | 
 | 		spin_unlock_irq(&conf->device_lock); | 
 | 		 | 
 | 		handled++; | 
 | 		handle_stripe(sh, conf->spare_page); | 
 | 		release_stripe(sh); | 
 |  | 
 | 		spin_lock_irq(&conf->device_lock); | 
 | 	} | 
 | 	pr_debug("%d stripes handled\n", handled); | 
 |  | 
 | 	spin_unlock_irq(&conf->device_lock); | 
 |  | 
 | 	async_tx_issue_pending_all(); | 
 | 	unplug_slaves(mddev); | 
 |  | 
 | 	pr_debug("--- raid5d inactive\n"); | 
 | } | 
 |  | 
 | static ssize_t | 
 | raid5_show_stripe_cache_size(mddev_t *mddev, char *page) | 
 | { | 
 | 	raid5_conf_t *conf = mddev_to_conf(mddev); | 
 | 	if (conf) | 
 | 		return sprintf(page, "%d\n", conf->max_nr_stripes); | 
 | 	else | 
 | 		return 0; | 
 | } | 
 |  | 
 | static ssize_t | 
 | raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len) | 
 | { | 
 | 	raid5_conf_t *conf = mddev_to_conf(mddev); | 
 | 	unsigned long new; | 
 | 	int err; | 
 |  | 
 | 	if (len >= PAGE_SIZE) | 
 | 		return -EINVAL; | 
 | 	if (!conf) | 
 | 		return -ENODEV; | 
 |  | 
 | 	if (strict_strtoul(page, 10, &new)) | 
 | 		return -EINVAL; | 
 | 	if (new <= 16 || new > 32768) | 
 | 		return -EINVAL; | 
 | 	while (new < conf->max_nr_stripes) { | 
 | 		if (drop_one_stripe(conf)) | 
 | 			conf->max_nr_stripes--; | 
 | 		else | 
 | 			break; | 
 | 	} | 
 | 	err = md_allow_write(mddev); | 
 | 	if (err) | 
 | 		return err; | 
 | 	while (new > conf->max_nr_stripes) { | 
 | 		if (grow_one_stripe(conf)) | 
 | 			conf->max_nr_stripes++; | 
 | 		else break; | 
 | 	} | 
 | 	return len; | 
 | } | 
 |  | 
 | static struct md_sysfs_entry | 
 | raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, | 
 | 				raid5_show_stripe_cache_size, | 
 | 				raid5_store_stripe_cache_size); | 
 |  | 
 | static ssize_t | 
 | raid5_show_preread_threshold(mddev_t *mddev, char *page) | 
 | { | 
 | 	raid5_conf_t *conf = mddev_to_conf(mddev); | 
 | 	if (conf) | 
 | 		return sprintf(page, "%d\n", conf->bypass_threshold); | 
 | 	else | 
 | 		return 0; | 
 | } | 
 |  | 
 | static ssize_t | 
 | raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len) | 
 | { | 
 | 	raid5_conf_t *conf = mddev_to_conf(mddev); | 
 | 	unsigned long new; | 
 | 	if (len >= PAGE_SIZE) | 
 | 		return -EINVAL; | 
 | 	if (!conf) | 
 | 		return -ENODEV; | 
 |  | 
 | 	if (strict_strtoul(page, 10, &new)) | 
 | 		return -EINVAL; | 
 | 	if (new > conf->max_nr_stripes) | 
 | 		return -EINVAL; | 
 | 	conf->bypass_threshold = new; | 
 | 	return len; | 
 | } | 
 |  | 
 | static struct md_sysfs_entry | 
 | raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, | 
 | 					S_IRUGO | S_IWUSR, | 
 | 					raid5_show_preread_threshold, | 
 | 					raid5_store_preread_threshold); | 
 |  | 
 | static ssize_t | 
 | stripe_cache_active_show(mddev_t *mddev, char *page) | 
 | { | 
 | 	raid5_conf_t *conf = mddev_to_conf(mddev); | 
 | 	if (conf) | 
 | 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); | 
 | 	else | 
 | 		return 0; | 
 | } | 
 |  | 
 | static struct md_sysfs_entry | 
 | raid5_stripecache_active = __ATTR_RO(stripe_cache_active); | 
 |  | 
 | static struct attribute *raid5_attrs[] =  { | 
 | 	&raid5_stripecache_size.attr, | 
 | 	&raid5_stripecache_active.attr, | 
 | 	&raid5_preread_bypass_threshold.attr, | 
 | 	NULL, | 
 | }; | 
 | static struct attribute_group raid5_attrs_group = { | 
 | 	.name = NULL, | 
 | 	.attrs = raid5_attrs, | 
 | }; | 
 |  | 
 | static int run(mddev_t *mddev) | 
 | { | 
 | 	raid5_conf_t *conf; | 
 | 	int raid_disk, memory; | 
 | 	mdk_rdev_t *rdev; | 
 | 	struct disk_info *disk; | 
 | 	struct list_head *tmp; | 
 | 	int working_disks = 0; | 
 |  | 
 | 	if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) { | 
 | 		printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n", | 
 | 		       mdname(mddev), mddev->level); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	if (mddev->reshape_position != MaxSector) { | 
 | 		/* Check that we can continue the reshape. | 
 | 		 * Currently only disks can change, it must | 
 | 		 * increase, and we must be past the point where | 
 | 		 * a stripe over-writes itself | 
 | 		 */ | 
 | 		sector_t here_new, here_old; | 
 | 		int old_disks; | 
 | 		int max_degraded = (mddev->level == 5 ? 1 : 2); | 
 |  | 
 | 		if (mddev->new_level != mddev->level || | 
 | 		    mddev->new_layout != mddev->layout || | 
 | 		    mddev->new_chunk != mddev->chunk_size) { | 
 | 			printk(KERN_ERR "raid5: %s: unsupported reshape " | 
 | 			       "required - aborting.\n", | 
 | 			       mdname(mddev)); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		if (mddev->delta_disks <= 0) { | 
 | 			printk(KERN_ERR "raid5: %s: unsupported reshape " | 
 | 			       "(reduce disks) required - aborting.\n", | 
 | 			       mdname(mddev)); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		old_disks = mddev->raid_disks - mddev->delta_disks; | 
 | 		/* reshape_position must be on a new-stripe boundary, and one | 
 | 		 * further up in new geometry must map after here in old | 
 | 		 * geometry. | 
 | 		 */ | 
 | 		here_new = mddev->reshape_position; | 
 | 		if (sector_div(here_new, (mddev->chunk_size>>9)* | 
 | 			       (mddev->raid_disks - max_degraded))) { | 
 | 			printk(KERN_ERR "raid5: reshape_position not " | 
 | 			       "on a stripe boundary\n"); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		/* here_new is the stripe we will write to */ | 
 | 		here_old = mddev->reshape_position; | 
 | 		sector_div(here_old, (mddev->chunk_size>>9)* | 
 | 			   (old_disks-max_degraded)); | 
 | 		/* here_old is the first stripe that we might need to read | 
 | 		 * from */ | 
 | 		if (here_new >= here_old) { | 
 | 			/* Reading from the same stripe as writing to - bad */ | 
 | 			printk(KERN_ERR "raid5: reshape_position too early for " | 
 | 			       "auto-recovery - aborting.\n"); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		printk(KERN_INFO "raid5: reshape will continue\n"); | 
 | 		/* OK, we should be able to continue; */ | 
 | 	} | 
 |  | 
 |  | 
 | 	mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL); | 
 | 	if ((conf = mddev->private) == NULL) | 
 | 		goto abort; | 
 | 	if (mddev->reshape_position == MaxSector) { | 
 | 		conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks; | 
 | 	} else { | 
 | 		conf->raid_disks = mddev->raid_disks; | 
 | 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; | 
 | 	} | 
 |  | 
 | 	conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info), | 
 | 			      GFP_KERNEL); | 
 | 	if (!conf->disks) | 
 | 		goto abort; | 
 |  | 
 | 	conf->mddev = mddev; | 
 |  | 
 | 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) | 
 | 		goto abort; | 
 |  | 
 | 	if (mddev->level == 6) { | 
 | 		conf->spare_page = alloc_page(GFP_KERNEL); | 
 | 		if (!conf->spare_page) | 
 | 			goto abort; | 
 | 	} | 
 | 	spin_lock_init(&conf->device_lock); | 
 | 	mddev->queue->queue_lock = &conf->device_lock; | 
 | 	init_waitqueue_head(&conf->wait_for_stripe); | 
 | 	init_waitqueue_head(&conf->wait_for_overlap); | 
 | 	INIT_LIST_HEAD(&conf->handle_list); | 
 | 	INIT_LIST_HEAD(&conf->hold_list); | 
 | 	INIT_LIST_HEAD(&conf->delayed_list); | 
 | 	INIT_LIST_HEAD(&conf->bitmap_list); | 
 | 	INIT_LIST_HEAD(&conf->inactive_list); | 
 | 	atomic_set(&conf->active_stripes, 0); | 
 | 	atomic_set(&conf->preread_active_stripes, 0); | 
 | 	atomic_set(&conf->active_aligned_reads, 0); | 
 | 	conf->bypass_threshold = BYPASS_THRESHOLD; | 
 |  | 
 | 	pr_debug("raid5: run(%s) called.\n", mdname(mddev)); | 
 |  | 
 | 	rdev_for_each(rdev, tmp, mddev) { | 
 | 		raid_disk = rdev->raid_disk; | 
 | 		if (raid_disk >= conf->raid_disks | 
 | 		    || raid_disk < 0) | 
 | 			continue; | 
 | 		disk = conf->disks + raid_disk; | 
 |  | 
 | 		disk->rdev = rdev; | 
 |  | 
 | 		if (test_bit(In_sync, &rdev->flags)) { | 
 | 			char b[BDEVNAME_SIZE]; | 
 | 			printk(KERN_INFO "raid5: device %s operational as raid" | 
 | 				" disk %d\n", bdevname(rdev->bdev,b), | 
 | 				raid_disk); | 
 | 			working_disks++; | 
 | 		} else | 
 | 			/* Cannot rely on bitmap to complete recovery */ | 
 | 			conf->fullsync = 1; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * 0 for a fully functional array, 1 or 2 for a degraded array. | 
 | 	 */ | 
 | 	mddev->degraded = conf->raid_disks - working_disks; | 
 | 	conf->mddev = mddev; | 
 | 	conf->chunk_size = mddev->chunk_size; | 
 | 	conf->level = mddev->level; | 
 | 	if (conf->level == 6) | 
 | 		conf->max_degraded = 2; | 
 | 	else | 
 | 		conf->max_degraded = 1; | 
 | 	conf->algorithm = mddev->layout; | 
 | 	conf->max_nr_stripes = NR_STRIPES; | 
 | 	conf->expand_progress = mddev->reshape_position; | 
 |  | 
 | 	/* device size must be a multiple of chunk size */ | 
 | 	mddev->size &= ~(mddev->chunk_size/1024 -1); | 
 | 	mddev->resync_max_sectors = mddev->size << 1; | 
 |  | 
 | 	if (conf->level == 6 && conf->raid_disks < 4) { | 
 | 		printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n", | 
 | 		       mdname(mddev), conf->raid_disks); | 
 | 		goto abort; | 
 | 	} | 
 | 	if (!conf->chunk_size || conf->chunk_size % 4) { | 
 | 		printk(KERN_ERR "raid5: invalid chunk size %d for %s\n", | 
 | 			conf->chunk_size, mdname(mddev)); | 
 | 		goto abort; | 
 | 	} | 
 | 	if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) { | 
 | 		printk(KERN_ERR  | 
 | 			"raid5: unsupported parity algorithm %d for %s\n", | 
 | 			conf->algorithm, mdname(mddev)); | 
 | 		goto abort; | 
 | 	} | 
 | 	if (mddev->degraded > conf->max_degraded) { | 
 | 		printk(KERN_ERR "raid5: not enough operational devices for %s" | 
 | 			" (%d/%d failed)\n", | 
 | 			mdname(mddev), mddev->degraded, conf->raid_disks); | 
 | 		goto abort; | 
 | 	} | 
 |  | 
 | 	if (mddev->degraded > 0 && | 
 | 	    mddev->recovery_cp != MaxSector) { | 
 | 		if (mddev->ok_start_degraded) | 
 | 			printk(KERN_WARNING | 
 | 			       "raid5: starting dirty degraded array: %s" | 
 | 			       "- data corruption possible.\n", | 
 | 			       mdname(mddev)); | 
 | 		else { | 
 | 			printk(KERN_ERR | 
 | 			       "raid5: cannot start dirty degraded array for %s\n", | 
 | 			       mdname(mddev)); | 
 | 			goto abort; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	{ | 
 | 		mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5"); | 
 | 		if (!mddev->thread) { | 
 | 			printk(KERN_ERR  | 
 | 				"raid5: couldn't allocate thread for %s\n", | 
 | 				mdname(mddev)); | 
 | 			goto abort; | 
 | 		} | 
 | 	} | 
 | 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) + | 
 | 		 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; | 
 | 	if (grow_stripes(conf, conf->max_nr_stripes)) { | 
 | 		printk(KERN_ERR  | 
 | 			"raid5: couldn't allocate %dkB for buffers\n", memory); | 
 | 		shrink_stripes(conf); | 
 | 		md_unregister_thread(mddev->thread); | 
 | 		goto abort; | 
 | 	} else | 
 | 		printk(KERN_INFO "raid5: allocated %dkB for %s\n", | 
 | 			memory, mdname(mddev)); | 
 |  | 
 | 	if (mddev->degraded == 0) | 
 | 		printk("raid5: raid level %d set %s active with %d out of %d" | 
 | 			" devices, algorithm %d\n", conf->level, mdname(mddev),  | 
 | 			mddev->raid_disks-mddev->degraded, mddev->raid_disks, | 
 | 			conf->algorithm); | 
 | 	else | 
 | 		printk(KERN_ALERT "raid5: raid level %d set %s active with %d" | 
 | 			" out of %d devices, algorithm %d\n", conf->level, | 
 | 			mdname(mddev), mddev->raid_disks - mddev->degraded, | 
 | 			mddev->raid_disks, conf->algorithm); | 
 |  | 
 | 	print_raid5_conf(conf); | 
 |  | 
 | 	if (conf->expand_progress != MaxSector) { | 
 | 		printk("...ok start reshape thread\n"); | 
 | 		conf->expand_lo = conf->expand_progress; | 
 | 		atomic_set(&conf->reshape_stripes, 0); | 
 | 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); | 
 | 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); | 
 | 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); | 
 | 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); | 
 | 		mddev->sync_thread = md_register_thread(md_do_sync, mddev, | 
 | 							"%s_reshape"); | 
 | 	} | 
 |  | 
 | 	/* read-ahead size must cover two whole stripes, which is | 
 | 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices | 
 | 	 */ | 
 | 	{ | 
 | 		int data_disks = conf->previous_raid_disks - conf->max_degraded; | 
 | 		int stripe = data_disks * | 
 | 			(mddev->chunk_size / PAGE_SIZE); | 
 | 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) | 
 | 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe; | 
 | 	} | 
 |  | 
 | 	/* Ok, everything is just fine now */ | 
 | 	if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) | 
 | 		printk(KERN_WARNING | 
 | 		       "raid5: failed to create sysfs attributes for %s\n", | 
 | 		       mdname(mddev)); | 
 |  | 
 | 	mddev->queue->unplug_fn = raid5_unplug_device; | 
 | 	mddev->queue->backing_dev_info.congested_data = mddev; | 
 | 	mddev->queue->backing_dev_info.congested_fn = raid5_congested; | 
 |  | 
 | 	mddev->array_sectors = 2 * mddev->size * (conf->previous_raid_disks - | 
 | 					    conf->max_degraded); | 
 |  | 
 | 	blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec); | 
 |  | 
 | 	return 0; | 
 | abort: | 
 | 	if (conf) { | 
 | 		print_raid5_conf(conf); | 
 | 		safe_put_page(conf->spare_page); | 
 | 		kfree(conf->disks); | 
 | 		kfree(conf->stripe_hashtbl); | 
 | 		kfree(conf); | 
 | 	} | 
 | 	mddev->private = NULL; | 
 | 	printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev)); | 
 | 	return -EIO; | 
 | } | 
 |  | 
 |  | 
 |  | 
 | static int stop(mddev_t *mddev) | 
 | { | 
 | 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private; | 
 |  | 
 | 	md_unregister_thread(mddev->thread); | 
 | 	mddev->thread = NULL; | 
 | 	shrink_stripes(conf); | 
 | 	kfree(conf->stripe_hashtbl); | 
 | 	mddev->queue->backing_dev_info.congested_fn = NULL; | 
 | 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ | 
 | 	sysfs_remove_group(&mddev->kobj, &raid5_attrs_group); | 
 | 	kfree(conf->disks); | 
 | 	kfree(conf); | 
 | 	mddev->private = NULL; | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef DEBUG | 
 | static void print_sh (struct seq_file *seq, struct stripe_head *sh) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n", | 
 | 		   (unsigned long long)sh->sector, sh->pd_idx, sh->state); | 
 | 	seq_printf(seq, "sh %llu,  count %d.\n", | 
 | 		   (unsigned long long)sh->sector, atomic_read(&sh->count)); | 
 | 	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector); | 
 | 	for (i = 0; i < sh->disks; i++) { | 
 | 		seq_printf(seq, "(cache%d: %p %ld) ", | 
 | 			   i, sh->dev[i].page, sh->dev[i].flags); | 
 | 	} | 
 | 	seq_printf(seq, "\n"); | 
 | } | 
 |  | 
 | static void printall (struct seq_file *seq, raid5_conf_t *conf) | 
 | { | 
 | 	struct stripe_head *sh; | 
 | 	struct hlist_node *hn; | 
 | 	int i; | 
 |  | 
 | 	spin_lock_irq(&conf->device_lock); | 
 | 	for (i = 0; i < NR_HASH; i++) { | 
 | 		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) { | 
 | 			if (sh->raid_conf != conf) | 
 | 				continue; | 
 | 			print_sh(seq, sh); | 
 | 		} | 
 | 	} | 
 | 	spin_unlock_irq(&conf->device_lock); | 
 | } | 
 | #endif | 
 |  | 
 | static void status (struct seq_file *seq, mddev_t *mddev) | 
 | { | 
 | 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private; | 
 | 	int i; | 
 |  | 
 | 	seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout); | 
 | 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); | 
 | 	for (i = 0; i < conf->raid_disks; i++) | 
 | 		seq_printf (seq, "%s", | 
 | 			       conf->disks[i].rdev && | 
 | 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_"); | 
 | 	seq_printf (seq, "]"); | 
 | #ifdef DEBUG | 
 | 	seq_printf (seq, "\n"); | 
 | 	printall(seq, conf); | 
 | #endif | 
 | } | 
 |  | 
 | static void print_raid5_conf (raid5_conf_t *conf) | 
 | { | 
 | 	int i; | 
 | 	struct disk_info *tmp; | 
 |  | 
 | 	printk("RAID5 conf printout:\n"); | 
 | 	if (!conf) { | 
 | 		printk("(conf==NULL)\n"); | 
 | 		return; | 
 | 	} | 
 | 	printk(" --- rd:%d wd:%d\n", conf->raid_disks, | 
 | 		 conf->raid_disks - conf->mddev->degraded); | 
 |  | 
 | 	for (i = 0; i < conf->raid_disks; i++) { | 
 | 		char b[BDEVNAME_SIZE]; | 
 | 		tmp = conf->disks + i; | 
 | 		if (tmp->rdev) | 
 | 		printk(" disk %d, o:%d, dev:%s\n", | 
 | 			i, !test_bit(Faulty, &tmp->rdev->flags), | 
 | 			bdevname(tmp->rdev->bdev,b)); | 
 | 	} | 
 | } | 
 |  | 
 | static int raid5_spare_active(mddev_t *mddev) | 
 | { | 
 | 	int i; | 
 | 	raid5_conf_t *conf = mddev->private; | 
 | 	struct disk_info *tmp; | 
 |  | 
 | 	for (i = 0; i < conf->raid_disks; i++) { | 
 | 		tmp = conf->disks + i; | 
 | 		if (tmp->rdev | 
 | 		    && !test_bit(Faulty, &tmp->rdev->flags) | 
 | 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { | 
 | 			unsigned long flags; | 
 | 			spin_lock_irqsave(&conf->device_lock, flags); | 
 | 			mddev->degraded--; | 
 | 			spin_unlock_irqrestore(&conf->device_lock, flags); | 
 | 		} | 
 | 	} | 
 | 	print_raid5_conf(conf); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int raid5_remove_disk(mddev_t *mddev, int number) | 
 | { | 
 | 	raid5_conf_t *conf = mddev->private; | 
 | 	int err = 0; | 
 | 	mdk_rdev_t *rdev; | 
 | 	struct disk_info *p = conf->disks + number; | 
 |  | 
 | 	print_raid5_conf(conf); | 
 | 	rdev = p->rdev; | 
 | 	if (rdev) { | 
 | 		if (test_bit(In_sync, &rdev->flags) || | 
 | 		    atomic_read(&rdev->nr_pending)) { | 
 | 			err = -EBUSY; | 
 | 			goto abort; | 
 | 		} | 
 | 		/* Only remove non-faulty devices if recovery | 
 | 		 * isn't possible. | 
 | 		 */ | 
 | 		if (!test_bit(Faulty, &rdev->flags) && | 
 | 		    mddev->degraded <= conf->max_degraded) { | 
 | 			err = -EBUSY; | 
 | 			goto abort; | 
 | 		} | 
 | 		p->rdev = NULL; | 
 | 		synchronize_rcu(); | 
 | 		if (atomic_read(&rdev->nr_pending)) { | 
 | 			/* lost the race, try later */ | 
 | 			err = -EBUSY; | 
 | 			p->rdev = rdev; | 
 | 		} | 
 | 	} | 
 | abort: | 
 |  | 
 | 	print_raid5_conf(conf); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) | 
 | { | 
 | 	raid5_conf_t *conf = mddev->private; | 
 | 	int err = -EEXIST; | 
 | 	int disk; | 
 | 	struct disk_info *p; | 
 | 	int first = 0; | 
 | 	int last = conf->raid_disks - 1; | 
 |  | 
 | 	if (mddev->degraded > conf->max_degraded) | 
 | 		/* no point adding a device */ | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (rdev->raid_disk >= 0) | 
 | 		first = last = rdev->raid_disk; | 
 |  | 
 | 	/* | 
 | 	 * find the disk ... but prefer rdev->saved_raid_disk | 
 | 	 * if possible. | 
 | 	 */ | 
 | 	if (rdev->saved_raid_disk >= 0 && | 
 | 	    rdev->saved_raid_disk >= first && | 
 | 	    conf->disks[rdev->saved_raid_disk].rdev == NULL) | 
 | 		disk = rdev->saved_raid_disk; | 
 | 	else | 
 | 		disk = first; | 
 | 	for ( ; disk <= last ; disk++) | 
 | 		if ((p=conf->disks + disk)->rdev == NULL) { | 
 | 			clear_bit(In_sync, &rdev->flags); | 
 | 			rdev->raid_disk = disk; | 
 | 			err = 0; | 
 | 			if (rdev->saved_raid_disk != disk) | 
 | 				conf->fullsync = 1; | 
 | 			rcu_assign_pointer(p->rdev, rdev); | 
 | 			break; | 
 | 		} | 
 | 	print_raid5_conf(conf); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int raid5_resize(mddev_t *mddev, sector_t sectors) | 
 | { | 
 | 	/* no resync is happening, and there is enough space | 
 | 	 * on all devices, so we can resize. | 
 | 	 * We need to make sure resync covers any new space. | 
 | 	 * If the array is shrinking we should possibly wait until | 
 | 	 * any io in the removed space completes, but it hardly seems | 
 | 	 * worth it. | 
 | 	 */ | 
 | 	raid5_conf_t *conf = mddev_to_conf(mddev); | 
 |  | 
 | 	sectors &= ~((sector_t)mddev->chunk_size/512 - 1); | 
 | 	mddev->array_sectors = sectors * (mddev->raid_disks | 
 | 					  - conf->max_degraded); | 
 | 	set_capacity(mddev->gendisk, mddev->array_sectors); | 
 | 	mddev->changed = 1; | 
 | 	if (sectors/2  > mddev->size && mddev->recovery_cp == MaxSector) { | 
 | 		mddev->recovery_cp = mddev->size << 1; | 
 | 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); | 
 | 	} | 
 | 	mddev->size = sectors /2; | 
 | 	mddev->resync_max_sectors = sectors; | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_MD_RAID5_RESHAPE | 
 | static int raid5_check_reshape(mddev_t *mddev) | 
 | { | 
 | 	raid5_conf_t *conf = mddev_to_conf(mddev); | 
 | 	int err; | 
 |  | 
 | 	if (mddev->delta_disks < 0 || | 
 | 	    mddev->new_level != mddev->level) | 
 | 		return -EINVAL; /* Cannot shrink array or change level yet */ | 
 | 	if (mddev->delta_disks == 0) | 
 | 		return 0; /* nothing to do */ | 
 |  | 
 | 	/* Can only proceed if there are plenty of stripe_heads. | 
 | 	 * We need a minimum of one full stripe,, and for sensible progress | 
 | 	 * it is best to have about 4 times that. | 
 | 	 * If we require 4 times, then the default 256 4K stripe_heads will | 
 | 	 * allow for chunk sizes up to 256K, which is probably OK. | 
 | 	 * If the chunk size is greater, user-space should request more | 
 | 	 * stripe_heads first. | 
 | 	 */ | 
 | 	if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes || | 
 | 	    (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) { | 
 | 		printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n", | 
 | 		       (mddev->chunk_size / STRIPE_SIZE)*4); | 
 | 		return -ENOSPC; | 
 | 	} | 
 |  | 
 | 	err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	if (mddev->degraded > conf->max_degraded) | 
 | 		return -EINVAL; | 
 | 	/* looks like we might be able to manage this */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int raid5_start_reshape(mddev_t *mddev) | 
 | { | 
 | 	raid5_conf_t *conf = mddev_to_conf(mddev); | 
 | 	mdk_rdev_t *rdev; | 
 | 	struct list_head *rtmp; | 
 | 	int spares = 0; | 
 | 	int added_devices = 0; | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) | 
 | 		return -EBUSY; | 
 |  | 
 | 	rdev_for_each(rdev, rtmp, mddev) | 
 | 		if (rdev->raid_disk < 0 && | 
 | 		    !test_bit(Faulty, &rdev->flags)) | 
 | 			spares++; | 
 |  | 
 | 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) | 
 | 		/* Not enough devices even to make a degraded array | 
 | 		 * of that size | 
 | 		 */ | 
 | 		return -EINVAL; | 
 |  | 
 | 	atomic_set(&conf->reshape_stripes, 0); | 
 | 	spin_lock_irq(&conf->device_lock); | 
 | 	conf->previous_raid_disks = conf->raid_disks; | 
 | 	conf->raid_disks += mddev->delta_disks; | 
 | 	conf->expand_progress = 0; | 
 | 	conf->expand_lo = 0; | 
 | 	spin_unlock_irq(&conf->device_lock); | 
 |  | 
 | 	/* Add some new drives, as many as will fit. | 
 | 	 * We know there are enough to make the newly sized array work. | 
 | 	 */ | 
 | 	rdev_for_each(rdev, rtmp, mddev) | 
 | 		if (rdev->raid_disk < 0 && | 
 | 		    !test_bit(Faulty, &rdev->flags)) { | 
 | 			if (raid5_add_disk(mddev, rdev) == 0) { | 
 | 				char nm[20]; | 
 | 				set_bit(In_sync, &rdev->flags); | 
 | 				added_devices++; | 
 | 				rdev->recovery_offset = 0; | 
 | 				sprintf(nm, "rd%d", rdev->raid_disk); | 
 | 				if (sysfs_create_link(&mddev->kobj, | 
 | 						      &rdev->kobj, nm)) | 
 | 					printk(KERN_WARNING | 
 | 					       "raid5: failed to create " | 
 | 					       " link %s for %s\n", | 
 | 					       nm, mdname(mddev)); | 
 | 			} else | 
 | 				break; | 
 | 		} | 
 |  | 
 | 	spin_lock_irqsave(&conf->device_lock, flags); | 
 | 	mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices; | 
 | 	spin_unlock_irqrestore(&conf->device_lock, flags); | 
 | 	mddev->raid_disks = conf->raid_disks; | 
 | 	mddev->reshape_position = 0; | 
 | 	set_bit(MD_CHANGE_DEVS, &mddev->flags); | 
 |  | 
 | 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); | 
 | 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); | 
 | 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); | 
 | 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); | 
 | 	mddev->sync_thread = md_register_thread(md_do_sync, mddev, | 
 | 						"%s_reshape"); | 
 | 	if (!mddev->sync_thread) { | 
 | 		mddev->recovery = 0; | 
 | 		spin_lock_irq(&conf->device_lock); | 
 | 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; | 
 | 		conf->expand_progress = MaxSector; | 
 | 		spin_unlock_irq(&conf->device_lock); | 
 | 		return -EAGAIN; | 
 | 	} | 
 | 	md_wakeup_thread(mddev->sync_thread); | 
 | 	md_new_event(mddev); | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | static void end_reshape(raid5_conf_t *conf) | 
 | { | 
 | 	struct block_device *bdev; | 
 |  | 
 | 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { | 
 | 		conf->mddev->array_sectors = 2 * conf->mddev->size * | 
 | 			(conf->raid_disks - conf->max_degraded); | 
 | 		set_capacity(conf->mddev->gendisk, conf->mddev->array_sectors); | 
 | 		conf->mddev->changed = 1; | 
 |  | 
 | 		bdev = bdget_disk(conf->mddev->gendisk, 0); | 
 | 		if (bdev) { | 
 | 			mutex_lock(&bdev->bd_inode->i_mutex); | 
 | 			i_size_write(bdev->bd_inode, | 
 | 				     (loff_t)conf->mddev->array_sectors << 9); | 
 | 			mutex_unlock(&bdev->bd_inode->i_mutex); | 
 | 			bdput(bdev); | 
 | 		} | 
 | 		spin_lock_irq(&conf->device_lock); | 
 | 		conf->expand_progress = MaxSector; | 
 | 		spin_unlock_irq(&conf->device_lock); | 
 | 		conf->mddev->reshape_position = MaxSector; | 
 |  | 
 | 		/* read-ahead size must cover two whole stripes, which is | 
 | 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices | 
 | 		 */ | 
 | 		{ | 
 | 			int data_disks = conf->previous_raid_disks - conf->max_degraded; | 
 | 			int stripe = data_disks * | 
 | 				(conf->mddev->chunk_size / PAGE_SIZE); | 
 | 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) | 
 | 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void raid5_quiesce(mddev_t *mddev, int state) | 
 | { | 
 | 	raid5_conf_t *conf = mddev_to_conf(mddev); | 
 |  | 
 | 	switch(state) { | 
 | 	case 2: /* resume for a suspend */ | 
 | 		wake_up(&conf->wait_for_overlap); | 
 | 		break; | 
 |  | 
 | 	case 1: /* stop all writes */ | 
 | 		spin_lock_irq(&conf->device_lock); | 
 | 		conf->quiesce = 1; | 
 | 		wait_event_lock_irq(conf->wait_for_stripe, | 
 | 				    atomic_read(&conf->active_stripes) == 0 && | 
 | 				    atomic_read(&conf->active_aligned_reads) == 0, | 
 | 				    conf->device_lock, /* nothing */); | 
 | 		spin_unlock_irq(&conf->device_lock); | 
 | 		break; | 
 |  | 
 | 	case 0: /* re-enable writes */ | 
 | 		spin_lock_irq(&conf->device_lock); | 
 | 		conf->quiesce = 0; | 
 | 		wake_up(&conf->wait_for_stripe); | 
 | 		wake_up(&conf->wait_for_overlap); | 
 | 		spin_unlock_irq(&conf->device_lock); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | static struct mdk_personality raid6_personality = | 
 | { | 
 | 	.name		= "raid6", | 
 | 	.level		= 6, | 
 | 	.owner		= THIS_MODULE, | 
 | 	.make_request	= make_request, | 
 | 	.run		= run, | 
 | 	.stop		= stop, | 
 | 	.status		= status, | 
 | 	.error_handler	= error, | 
 | 	.hot_add_disk	= raid5_add_disk, | 
 | 	.hot_remove_disk= raid5_remove_disk, | 
 | 	.spare_active	= raid5_spare_active, | 
 | 	.sync_request	= sync_request, | 
 | 	.resize		= raid5_resize, | 
 | #ifdef CONFIG_MD_RAID5_RESHAPE | 
 | 	.check_reshape	= raid5_check_reshape, | 
 | 	.start_reshape  = raid5_start_reshape, | 
 | #endif | 
 | 	.quiesce	= raid5_quiesce, | 
 | }; | 
 | static struct mdk_personality raid5_personality = | 
 | { | 
 | 	.name		= "raid5", | 
 | 	.level		= 5, | 
 | 	.owner		= THIS_MODULE, | 
 | 	.make_request	= make_request, | 
 | 	.run		= run, | 
 | 	.stop		= stop, | 
 | 	.status		= status, | 
 | 	.error_handler	= error, | 
 | 	.hot_add_disk	= raid5_add_disk, | 
 | 	.hot_remove_disk= raid5_remove_disk, | 
 | 	.spare_active	= raid5_spare_active, | 
 | 	.sync_request	= sync_request, | 
 | 	.resize		= raid5_resize, | 
 | #ifdef CONFIG_MD_RAID5_RESHAPE | 
 | 	.check_reshape	= raid5_check_reshape, | 
 | 	.start_reshape  = raid5_start_reshape, | 
 | #endif | 
 | 	.quiesce	= raid5_quiesce, | 
 | }; | 
 |  | 
 | static struct mdk_personality raid4_personality = | 
 | { | 
 | 	.name		= "raid4", | 
 | 	.level		= 4, | 
 | 	.owner		= THIS_MODULE, | 
 | 	.make_request	= make_request, | 
 | 	.run		= run, | 
 | 	.stop		= stop, | 
 | 	.status		= status, | 
 | 	.error_handler	= error, | 
 | 	.hot_add_disk	= raid5_add_disk, | 
 | 	.hot_remove_disk= raid5_remove_disk, | 
 | 	.spare_active	= raid5_spare_active, | 
 | 	.sync_request	= sync_request, | 
 | 	.resize		= raid5_resize, | 
 | #ifdef CONFIG_MD_RAID5_RESHAPE | 
 | 	.check_reshape	= raid5_check_reshape, | 
 | 	.start_reshape  = raid5_start_reshape, | 
 | #endif | 
 | 	.quiesce	= raid5_quiesce, | 
 | }; | 
 |  | 
 | static int __init raid5_init(void) | 
 | { | 
 | 	int e; | 
 |  | 
 | 	e = raid6_select_algo(); | 
 | 	if ( e ) | 
 | 		return e; | 
 | 	register_md_personality(&raid6_personality); | 
 | 	register_md_personality(&raid5_personality); | 
 | 	register_md_personality(&raid4_personality); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void raid5_exit(void) | 
 | { | 
 | 	unregister_md_personality(&raid6_personality); | 
 | 	unregister_md_personality(&raid5_personality); | 
 | 	unregister_md_personality(&raid4_personality); | 
 | } | 
 |  | 
 | module_init(raid5_init); | 
 | module_exit(raid5_exit); | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_ALIAS("md-personality-4"); /* RAID5 */ | 
 | MODULE_ALIAS("md-raid5"); | 
 | MODULE_ALIAS("md-raid4"); | 
 | MODULE_ALIAS("md-level-5"); | 
 | MODULE_ALIAS("md-level-4"); | 
 | MODULE_ALIAS("md-personality-8"); /* RAID6 */ | 
 | MODULE_ALIAS("md-raid6"); | 
 | MODULE_ALIAS("md-level-6"); | 
 |  | 
 | /* This used to be two separate modules, they were: */ | 
 | MODULE_ALIAS("raid5"); | 
 | MODULE_ALIAS("raid6"); |