|  | /* $Id: sparc-stub.c,v 1.28 2001/10/30 04:54:21 davem Exp $ | 
|  | * sparc-stub.c:  KGDB support for the Linux kernel. | 
|  | * | 
|  | * Modifications to run under Linux | 
|  | * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) | 
|  | * | 
|  | * This file originally came from the gdb sources, and the | 
|  | * copyright notices have been retained below. | 
|  | */ | 
|  |  | 
|  | /**************************************************************************** | 
|  |  | 
|  | THIS SOFTWARE IS NOT COPYRIGHTED | 
|  |  | 
|  | HP offers the following for use in the public domain.  HP makes no | 
|  | warranty with regard to the software or its performance and the | 
|  | user accepts the software "AS IS" with all faults. | 
|  |  | 
|  | HP DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD | 
|  | TO THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES | 
|  | OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. | 
|  |  | 
|  | ****************************************************************************/ | 
|  |  | 
|  | /**************************************************************************** | 
|  | *  Header: remcom.c,v 1.34 91/03/09 12:29:49 glenne Exp $ | 
|  | * | 
|  | *  Module name: remcom.c $ | 
|  | *  Revision: 1.34 $ | 
|  | *  Date: 91/03/09 12:29:49 $ | 
|  | *  Contributor:     Lake Stevens Instrument Division$ | 
|  | * | 
|  | *  Description:     low level support for gdb debugger. $ | 
|  | * | 
|  | *  Considerations:  only works on target hardware $ | 
|  | * | 
|  | *  Written by:      Glenn Engel $ | 
|  | *  ModuleState:     Experimental $ | 
|  | * | 
|  | *  NOTES:           See Below $ | 
|  | * | 
|  | *  Modified for SPARC by Stu Grossman, Cygnus Support. | 
|  | * | 
|  | *  This code has been extensively tested on the Fujitsu SPARClite demo board. | 
|  | * | 
|  | *  To enable debugger support, two things need to happen.  One, a | 
|  | *  call to set_debug_traps() is necessary in order to allow any breakpoints | 
|  | *  or error conditions to be properly intercepted and reported to gdb. | 
|  | *  Two, a breakpoint needs to be generated to begin communication.  This | 
|  | *  is most easily accomplished by a call to breakpoint().  Breakpoint() | 
|  | *  simulates a breakpoint by executing a trap #1. | 
|  | * | 
|  | ************* | 
|  | * | 
|  | *    The following gdb commands are supported: | 
|  | * | 
|  | * command          function                               Return value | 
|  | * | 
|  | *    g             return the value of the CPU registers  hex data or ENN | 
|  | *    G             set the value of the CPU registers     OK or ENN | 
|  | * | 
|  | *    mAA..AA,LLLL  Read LLLL bytes at address AA..AA      hex data or ENN | 
|  | *    MAA..AA,LLLL: Write LLLL bytes at address AA.AA      OK or ENN | 
|  | * | 
|  | *    c             Resume at current address              SNN   ( signal NN) | 
|  | *    cAA..AA       Continue at address AA..AA             SNN | 
|  | * | 
|  | *    s             Step one instruction                   SNN | 
|  | *    sAA..AA       Step one instruction from AA..AA       SNN | 
|  | * | 
|  | *    k             kill | 
|  | * | 
|  | *    ?             What was the last sigval ?             SNN   (signal NN) | 
|  | * | 
|  | *    bBB..BB	    Set baud rate to BB..BB		   OK or BNN, then sets | 
|  | *							   baud rate | 
|  | * | 
|  | * All commands and responses are sent with a packet which includes a | 
|  | * checksum.  A packet consists of | 
|  | * | 
|  | * $<packet info>#<checksum>. | 
|  | * | 
|  | * where | 
|  | * <packet info> :: <characters representing the command or response> | 
|  | * <checksum>    :: < two hex digits computed as modulo 256 sum of <packetinfo>> | 
|  | * | 
|  | * When a packet is received, it is first acknowledged with either '+' or '-'. | 
|  | * '+' indicates a successful transfer.  '-' indicates a failed transfer. | 
|  | * | 
|  | * Example: | 
|  | * | 
|  | * Host:                  Reply: | 
|  | * $m0,10#2a               +$00010203040506070809101112131415#42 | 
|  | * | 
|  | ****************************************************************************/ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/smp_lock.h> | 
|  |  | 
|  | #include <asm/system.h> | 
|  | #include <asm/signal.h> | 
|  | #include <asm/oplib.h> | 
|  | #include <asm/head.h> | 
|  | #include <asm/traps.h> | 
|  | #include <asm/vac-ops.h> | 
|  | #include <asm/kgdb.h> | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/cacheflush.h> | 
|  |  | 
|  | /* | 
|  | * | 
|  | * external low-level support routines | 
|  | */ | 
|  |  | 
|  | extern void putDebugChar(char);   /* write a single character      */ | 
|  | extern char getDebugChar(void);   /* read and return a single char */ | 
|  |  | 
|  | /* | 
|  | * BUFMAX defines the maximum number of characters in inbound/outbound buffers | 
|  | * at least NUMREGBYTES*2 are needed for register packets | 
|  | */ | 
|  | #define BUFMAX 2048 | 
|  |  | 
|  | static int initialized;	/* !0 means we've been initialized */ | 
|  |  | 
|  | static const char hexchars[]="0123456789abcdef"; | 
|  |  | 
|  | #define NUMREGS 72 | 
|  |  | 
|  | /* Number of bytes of registers.  */ | 
|  | #define NUMREGBYTES (NUMREGS * 4) | 
|  | enum regnames {G0, G1, G2, G3, G4, G5, G6, G7, | 
|  | O0, O1, O2, O3, O4, O5, SP, O7, | 
|  | L0, L1, L2, L3, L4, L5, L6, L7, | 
|  | I0, I1, I2, I3, I4, I5, FP, I7, | 
|  |  | 
|  | F0, F1, F2, F3, F4, F5, F6, F7, | 
|  | F8, F9, F10, F11, F12, F13, F14, F15, | 
|  | F16, F17, F18, F19, F20, F21, F22, F23, | 
|  | F24, F25, F26, F27, F28, F29, F30, F31, | 
|  | Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR }; | 
|  |  | 
|  |  | 
|  | extern void trap_low(void);  /* In arch/sparc/kernel/entry.S */ | 
|  |  | 
|  | unsigned long get_sun4cpte(unsigned long addr) | 
|  | { | 
|  | unsigned long entry; | 
|  |  | 
|  | __asm__ __volatile__("\n\tlda [%1] %2, %0\n\t" : | 
|  | "=r" (entry) : | 
|  | "r" (addr), "i" (ASI_PTE)); | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | unsigned long get_sun4csegmap(unsigned long addr) | 
|  | { | 
|  | unsigned long entry; | 
|  |  | 
|  | __asm__ __volatile__("\n\tlduba [%1] %2, %0\n\t" : | 
|  | "=r" (entry) : | 
|  | "r" (addr), "i" (ASI_SEGMAP)); | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | /* Have to sort this out. This cannot be done after initialization. */ | 
|  | static void flush_cache_all_nop(void) {} | 
|  | #endif | 
|  |  | 
|  | /* Place where we save old trap entries for restoration */ | 
|  | struct tt_entry kgdb_savettable[256]; | 
|  | typedef void (*trapfunc_t)(void); | 
|  |  | 
|  | /* Helper routine for manipulation of kgdb_savettable */ | 
|  | static inline void copy_ttentry(struct tt_entry *src, struct tt_entry *dest) | 
|  | { | 
|  | dest->inst_one = src->inst_one; | 
|  | dest->inst_two = src->inst_two; | 
|  | dest->inst_three = src->inst_three; | 
|  | dest->inst_four = src->inst_four; | 
|  | } | 
|  |  | 
|  | /* Initialize the kgdb_savettable so that debugging can commence */ | 
|  | static void eh_init(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for(i=0; i < 256; i++) | 
|  | copy_ttentry(&sparc_ttable[i], &kgdb_savettable[i]); | 
|  | } | 
|  |  | 
|  | /* Install an exception handler for kgdb */ | 
|  | static void exceptionHandler(int tnum, trapfunc_t trap_entry) | 
|  | { | 
|  | unsigned long te_addr = (unsigned long) trap_entry; | 
|  |  | 
|  | /* Make new vector */ | 
|  | sparc_ttable[tnum].inst_one = | 
|  | SPARC_BRANCH((unsigned long) te_addr, | 
|  | (unsigned long) &sparc_ttable[tnum].inst_one); | 
|  | sparc_ttable[tnum].inst_two = SPARC_RD_PSR_L0; | 
|  | sparc_ttable[tnum].inst_three = SPARC_NOP; | 
|  | sparc_ttable[tnum].inst_four = SPARC_NOP; | 
|  | } | 
|  |  | 
|  | /* Convert ch from a hex digit to an int */ | 
|  | static int | 
|  | hex(unsigned char ch) | 
|  | { | 
|  | if (ch >= 'a' && ch <= 'f') | 
|  | return ch-'a'+10; | 
|  | if (ch >= '0' && ch <= '9') | 
|  | return ch-'0'; | 
|  | if (ch >= 'A' && ch <= 'F') | 
|  | return ch-'A'+10; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* scan for the sequence $<data>#<checksum>     */ | 
|  | static void | 
|  | getpacket(char *buffer) | 
|  | { | 
|  | unsigned char checksum; | 
|  | unsigned char xmitcsum; | 
|  | int i; | 
|  | int count; | 
|  | unsigned char ch; | 
|  |  | 
|  | do { | 
|  | /* wait around for the start character, ignore all other characters */ | 
|  | while ((ch = (getDebugChar() & 0x7f)) != '$') ; | 
|  |  | 
|  | checksum = 0; | 
|  | xmitcsum = -1; | 
|  |  | 
|  | count = 0; | 
|  |  | 
|  | /* now, read until a # or end of buffer is found */ | 
|  | while (count < BUFMAX) { | 
|  | ch = getDebugChar() & 0x7f; | 
|  | if (ch == '#') | 
|  | break; | 
|  | checksum = checksum + ch; | 
|  | buffer[count] = ch; | 
|  | count = count + 1; | 
|  | } | 
|  |  | 
|  | if (count >= BUFMAX) | 
|  | continue; | 
|  |  | 
|  | buffer[count] = 0; | 
|  |  | 
|  | if (ch == '#') { | 
|  | xmitcsum = hex(getDebugChar() & 0x7f) << 4; | 
|  | xmitcsum |= hex(getDebugChar() & 0x7f); | 
|  | if (checksum != xmitcsum) | 
|  | putDebugChar('-');	/* failed checksum */ | 
|  | else { | 
|  | putDebugChar('+'); /* successful transfer */ | 
|  | /* if a sequence char is present, reply the ID */ | 
|  | if (buffer[2] == ':') { | 
|  | putDebugChar(buffer[0]); | 
|  | putDebugChar(buffer[1]); | 
|  | /* remove sequence chars from buffer */ | 
|  | count = strlen(buffer); | 
|  | for (i=3; i <= count; i++) | 
|  | buffer[i-3] = buffer[i]; | 
|  | } | 
|  | } | 
|  | } | 
|  | } while (checksum != xmitcsum); | 
|  | } | 
|  |  | 
|  | /* send the packet in buffer.  */ | 
|  |  | 
|  | static void | 
|  | putpacket(unsigned char *buffer) | 
|  | { | 
|  | unsigned char checksum; | 
|  | int count; | 
|  | unsigned char ch, recv; | 
|  |  | 
|  | /*  $<packet info>#<checksum>. */ | 
|  | do { | 
|  | putDebugChar('$'); | 
|  | checksum = 0; | 
|  | count = 0; | 
|  |  | 
|  | while ((ch = buffer[count])) { | 
|  | putDebugChar(ch); | 
|  | checksum += ch; | 
|  | count += 1; | 
|  | } | 
|  |  | 
|  | putDebugChar('#'); | 
|  | putDebugChar(hexchars[checksum >> 4]); | 
|  | putDebugChar(hexchars[checksum & 0xf]); | 
|  | recv = getDebugChar(); | 
|  | } while ((recv & 0x7f) != '+'); | 
|  | } | 
|  |  | 
|  | static char remcomInBuffer[BUFMAX]; | 
|  | static char remcomOutBuffer[BUFMAX]; | 
|  |  | 
|  | /* Convert the memory pointed to by mem into hex, placing result in buf. | 
|  | * Return a pointer to the last char put in buf (null), in case of mem fault, | 
|  | * return 0. | 
|  | */ | 
|  |  | 
|  | static unsigned char * | 
|  | mem2hex(char *mem, char *buf, int count) | 
|  | { | 
|  | unsigned char ch; | 
|  |  | 
|  | while (count-- > 0) { | 
|  | /* This assembler code is basically:  ch = *mem++; | 
|  | * except that we use the SPARC/Linux exception table | 
|  | * mechanism (see how "fixup" works in kernel_mna_trap_fault) | 
|  | * to arrange for a "return 0" upon a memory fault | 
|  | */ | 
|  | __asm__( | 
|  | "\n1:\n\t" | 
|  | "ldub [%0], %1\n\t" | 
|  | "inc %0\n\t" | 
|  | ".section .fixup,#alloc,#execinstr\n\t" | 
|  | ".align 4\n" | 
|  | "2:\n\t" | 
|  | "retl\n\t" | 
|  | " mov 0, %%o0\n\t" | 
|  | ".section __ex_table, #alloc\n\t" | 
|  | ".align 4\n\t" | 
|  | ".word 1b, 2b\n\t" | 
|  | ".text\n" | 
|  | : "=r" (mem), "=r" (ch) : "0" (mem)); | 
|  | *buf++ = hexchars[ch >> 4]; | 
|  | *buf++ = hexchars[ch & 0xf]; | 
|  | } | 
|  |  | 
|  | *buf = 0; | 
|  | return buf; | 
|  | } | 
|  |  | 
|  | /* convert the hex array pointed to by buf into binary to be placed in mem | 
|  | * return a pointer to the character AFTER the last byte written. | 
|  | */ | 
|  | static char * | 
|  | hex2mem(char *buf, char *mem, int count) | 
|  | { | 
|  | int i; | 
|  | unsigned char ch; | 
|  |  | 
|  | for (i=0; i<count; i++) { | 
|  |  | 
|  | ch = hex(*buf++) << 4; | 
|  | ch |= hex(*buf++); | 
|  | /* Assembler code is   *mem++ = ch;   with return 0 on fault */ | 
|  | __asm__( | 
|  | "\n1:\n\t" | 
|  | "stb %1, [%0]\n\t" | 
|  | "inc %0\n\t" | 
|  | ".section .fixup,#alloc,#execinstr\n\t" | 
|  | ".align 4\n" | 
|  | "2:\n\t" | 
|  | "retl\n\t" | 
|  | " mov 0, %%o0\n\t" | 
|  | ".section __ex_table, #alloc\n\t" | 
|  | ".align 4\n\t" | 
|  | ".word 1b, 2b\n\t" | 
|  | ".text\n" | 
|  | : "=r" (mem) : "r" (ch) , "0" (mem)); | 
|  | } | 
|  | return mem; | 
|  | } | 
|  |  | 
|  | /* This table contains the mapping between SPARC hardware trap types, and | 
|  | signals, which are primarily what GDB understands.  It also indicates | 
|  | which hardware traps we need to commandeer when initializing the stub. */ | 
|  |  | 
|  | static struct hard_trap_info | 
|  | { | 
|  | unsigned char tt;		/* Trap type code for SPARC */ | 
|  | unsigned char signo;		/* Signal that we map this trap into */ | 
|  | } hard_trap_info[] = { | 
|  | {SP_TRAP_SBPT, SIGTRAP},      /* ta 1 - Linux/KGDB software breakpoint */ | 
|  | {0, 0}			/* Must be last */ | 
|  | }; | 
|  |  | 
|  | /* Set up exception handlers for tracing and breakpoints */ | 
|  |  | 
|  | void | 
|  | set_debug_traps(void) | 
|  | { | 
|  | struct hard_trap_info *ht; | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | #if 0 | 
|  | /* Have to sort this out. This cannot be done after initialization. */ | 
|  | BTFIXUPSET_CALL(flush_cache_all, flush_cache_all_nop, BTFIXUPCALL_NOP); | 
|  | #endif | 
|  |  | 
|  | /* Initialize our copy of the Linux Sparc trap table */ | 
|  | eh_init(); | 
|  |  | 
|  | for (ht = hard_trap_info; ht->tt && ht->signo; ht++) { | 
|  | /* Only if it doesn't destroy our fault handlers */ | 
|  | if((ht->tt != SP_TRAP_TFLT) && | 
|  | (ht->tt != SP_TRAP_DFLT)) | 
|  | exceptionHandler(ht->tt, trap_low); | 
|  | } | 
|  |  | 
|  | /* In case GDB is started before us, ack any packets (presumably | 
|  | * "$?#xx") sitting there. | 
|  | * | 
|  | * I've found this code causes more problems than it solves, | 
|  | * so that's why it's commented out.  GDB seems to work fine | 
|  | * now starting either before or after the kernel   -bwb | 
|  | */ | 
|  | #if 0 | 
|  | while((c = getDebugChar()) != '$'); | 
|  | while((c = getDebugChar()) != '#'); | 
|  | c = getDebugChar(); /* eat first csum byte */ | 
|  | c = getDebugChar(); /* eat second csum byte */ | 
|  | putDebugChar('+'); /* ack it */ | 
|  | #endif | 
|  |  | 
|  | initialized = 1; /* connect! */ | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | /* Convert the SPARC hardware trap type code to a unix signal number. */ | 
|  |  | 
|  | static int | 
|  | computeSignal(int tt) | 
|  | { | 
|  | struct hard_trap_info *ht; | 
|  |  | 
|  | for (ht = hard_trap_info; ht->tt && ht->signo; ht++) | 
|  | if (ht->tt == tt) | 
|  | return ht->signo; | 
|  |  | 
|  | return SIGHUP;         /* default for things we don't know about */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * While we find nice hex chars, build an int. | 
|  | * Return number of chars processed. | 
|  | */ | 
|  |  | 
|  | static int | 
|  | hexToInt(char **ptr, int *intValue) | 
|  | { | 
|  | int numChars = 0; | 
|  | int hexValue; | 
|  |  | 
|  | *intValue = 0; | 
|  |  | 
|  | while (**ptr) { | 
|  | hexValue = hex(**ptr); | 
|  | if (hexValue < 0) | 
|  | break; | 
|  |  | 
|  | *intValue = (*intValue << 4) | hexValue; | 
|  | numChars ++; | 
|  |  | 
|  | (*ptr)++; | 
|  | } | 
|  |  | 
|  | return (numChars); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function does all command processing for interfacing to gdb.  It | 
|  | * returns 1 if you should skip the instruction at the trap address, 0 | 
|  | * otherwise. | 
|  | */ | 
|  |  | 
|  | extern void breakinst(void); | 
|  |  | 
|  | void | 
|  | handle_exception (unsigned long *registers) | 
|  | { | 
|  | int tt;       /* Trap type */ | 
|  | int sigval; | 
|  | int addr; | 
|  | int length; | 
|  | char *ptr; | 
|  | unsigned long *sp; | 
|  |  | 
|  | /* First, we must force all of the windows to be spilled out */ | 
|  |  | 
|  | asm("save %sp, -64, %sp\n\t" | 
|  | "save %sp, -64, %sp\n\t" | 
|  | "save %sp, -64, %sp\n\t" | 
|  | "save %sp, -64, %sp\n\t" | 
|  | "save %sp, -64, %sp\n\t" | 
|  | "save %sp, -64, %sp\n\t" | 
|  | "save %sp, -64, %sp\n\t" | 
|  | "save %sp, -64, %sp\n\t" | 
|  | "restore\n\t" | 
|  | "restore\n\t" | 
|  | "restore\n\t" | 
|  | "restore\n\t" | 
|  | "restore\n\t" | 
|  | "restore\n\t" | 
|  | "restore\n\t" | 
|  | "restore\n\t"); | 
|  |  | 
|  | lock_kernel(); | 
|  | if (registers[PC] == (unsigned long)breakinst) { | 
|  | /* Skip over breakpoint trap insn */ | 
|  | registers[PC] = registers[NPC]; | 
|  | registers[NPC] += 4; | 
|  | } | 
|  |  | 
|  | sp = (unsigned long *)registers[SP]; | 
|  |  | 
|  | tt = (registers[TBR] >> 4) & 0xff; | 
|  |  | 
|  | /* reply to host that an exception has occurred */ | 
|  | sigval = computeSignal(tt); | 
|  | ptr = remcomOutBuffer; | 
|  |  | 
|  | *ptr++ = 'T'; | 
|  | *ptr++ = hexchars[sigval >> 4]; | 
|  | *ptr++ = hexchars[sigval & 0xf]; | 
|  |  | 
|  | *ptr++ = hexchars[PC >> 4]; | 
|  | *ptr++ = hexchars[PC & 0xf]; | 
|  | *ptr++ = ':'; | 
|  | ptr = mem2hex((char *)®isters[PC], ptr, 4); | 
|  | *ptr++ = ';'; | 
|  |  | 
|  | *ptr++ = hexchars[FP >> 4]; | 
|  | *ptr++ = hexchars[FP & 0xf]; | 
|  | *ptr++ = ':'; | 
|  | ptr = mem2hex((char *) (sp + 8 + 6), ptr, 4); /* FP */ | 
|  | *ptr++ = ';'; | 
|  |  | 
|  | *ptr++ = hexchars[SP >> 4]; | 
|  | *ptr++ = hexchars[SP & 0xf]; | 
|  | *ptr++ = ':'; | 
|  | ptr = mem2hex((char *)&sp, ptr, 4); | 
|  | *ptr++ = ';'; | 
|  |  | 
|  | *ptr++ = hexchars[NPC >> 4]; | 
|  | *ptr++ = hexchars[NPC & 0xf]; | 
|  | *ptr++ = ':'; | 
|  | ptr = mem2hex((char *)®isters[NPC], ptr, 4); | 
|  | *ptr++ = ';'; | 
|  |  | 
|  | *ptr++ = hexchars[O7 >> 4]; | 
|  | *ptr++ = hexchars[O7 & 0xf]; | 
|  | *ptr++ = ':'; | 
|  | ptr = mem2hex((char *)®isters[O7], ptr, 4); | 
|  | *ptr++ = ';'; | 
|  |  | 
|  | *ptr++ = 0; | 
|  |  | 
|  | putpacket(remcomOutBuffer); | 
|  |  | 
|  | /* XXX We may want to add some features dealing with poking the | 
|  | * XXX page tables, the real ones on the srmmu, and what is currently | 
|  | * XXX loaded in the sun4/sun4c tlb at this point in time.  But this | 
|  | * XXX also required hacking to the gdb sources directly... | 
|  | */ | 
|  |  | 
|  | while (1) { | 
|  | remcomOutBuffer[0] = 0; | 
|  |  | 
|  | getpacket(remcomInBuffer); | 
|  | switch (remcomInBuffer[0]) { | 
|  | case '?': | 
|  | remcomOutBuffer[0] = 'S'; | 
|  | remcomOutBuffer[1] = hexchars[sigval >> 4]; | 
|  | remcomOutBuffer[2] = hexchars[sigval & 0xf]; | 
|  | remcomOutBuffer[3] = 0; | 
|  | break; | 
|  |  | 
|  | case 'd': | 
|  | /* toggle debug flag */ | 
|  | break; | 
|  |  | 
|  | case 'g':		/* return the value of the CPU registers */ | 
|  | { | 
|  | ptr = remcomOutBuffer; | 
|  | /* G & O regs */ | 
|  | ptr = mem2hex((char *)registers, ptr, 16 * 4); | 
|  | /* L & I regs */ | 
|  | ptr = mem2hex((char *) (sp + 0), ptr, 16 * 4); | 
|  | /* Floating point */ | 
|  | memset(ptr, '0', 32 * 8); | 
|  | /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */ | 
|  | mem2hex((char *)®isters[Y], (ptr + 32 * 4 * 2), (8 * 4)); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case 'G':	   /* set the value of the CPU registers - return OK */ | 
|  | { | 
|  | unsigned long *newsp, psr; | 
|  |  | 
|  | psr = registers[PSR]; | 
|  |  | 
|  | ptr = &remcomInBuffer[1]; | 
|  | /* G & O regs */ | 
|  | hex2mem(ptr, (char *)registers, 16 * 4); | 
|  | /* L & I regs */ | 
|  | hex2mem(ptr + 16 * 4 * 2, (char *) (sp + 0), 16 * 4); | 
|  | /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */ | 
|  | hex2mem(ptr + 64 * 4 * 2, (char *)®isters[Y], 8 * 4); | 
|  |  | 
|  | /* See if the stack pointer has moved.  If so, | 
|  | * then copy the saved locals and ins to the | 
|  | * new location.  This keeps the window | 
|  | * overflow and underflow routines happy. | 
|  | */ | 
|  |  | 
|  | newsp = (unsigned long *)registers[SP]; | 
|  | if (sp != newsp) | 
|  | sp = memcpy(newsp, sp, 16 * 4); | 
|  |  | 
|  | /* Don't allow CWP to be modified. */ | 
|  |  | 
|  | if (psr != registers[PSR]) | 
|  | registers[PSR] = (psr & 0x1f) | (registers[PSR] & ~0x1f); | 
|  |  | 
|  | strcpy(remcomOutBuffer,"OK"); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case 'm':	  /* mAA..AA,LLLL  Read LLLL bytes at address AA..AA */ | 
|  | /* Try to read %x,%x.  */ | 
|  |  | 
|  | ptr = &remcomInBuffer[1]; | 
|  |  | 
|  | if (hexToInt(&ptr, &addr) | 
|  | && *ptr++ == ',' | 
|  | && hexToInt(&ptr, &length))	{ | 
|  | if (mem2hex((char *)addr, remcomOutBuffer, length)) | 
|  | break; | 
|  |  | 
|  | strcpy (remcomOutBuffer, "E03"); | 
|  | } else { | 
|  | strcpy(remcomOutBuffer,"E01"); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK */ | 
|  | /* Try to read '%x,%x:'.  */ | 
|  |  | 
|  | ptr = &remcomInBuffer[1]; | 
|  |  | 
|  | if (hexToInt(&ptr, &addr) | 
|  | && *ptr++ == ',' | 
|  | && hexToInt(&ptr, &length) | 
|  | && *ptr++ == ':') { | 
|  | if (hex2mem(ptr, (char *)addr, length)) { | 
|  | strcpy(remcomOutBuffer, "OK"); | 
|  | } else { | 
|  | strcpy(remcomOutBuffer, "E03"); | 
|  | } | 
|  | } else { | 
|  | strcpy(remcomOutBuffer, "E02"); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case 'c':    /* cAA..AA    Continue at address AA..AA(optional) */ | 
|  | /* try to read optional parameter, pc unchanged if no parm */ | 
|  |  | 
|  | ptr = &remcomInBuffer[1]; | 
|  | if (hexToInt(&ptr, &addr)) { | 
|  | registers[PC] = addr; | 
|  | registers[NPC] = addr + 4; | 
|  | } | 
|  |  | 
|  | /* Need to flush the instruction cache here, as we may have deposited a | 
|  | * breakpoint, and the icache probably has no way of knowing that a data ref to | 
|  | * some location may have changed something that is in the instruction cache. | 
|  | */ | 
|  | flush_cache_all(); | 
|  | unlock_kernel(); | 
|  | return; | 
|  |  | 
|  | /* kill the program */ | 
|  | case 'k' :		/* do nothing */ | 
|  | break; | 
|  | case 'r':		/* Reset */ | 
|  | asm ("call 0\n\t" | 
|  | "nop\n\t"); | 
|  | break; | 
|  | }			/* switch */ | 
|  |  | 
|  | /* reply to the request */ | 
|  | putpacket(remcomOutBuffer); | 
|  | } /* while(1) */ | 
|  | } | 
|  |  | 
|  | /* This function will generate a breakpoint exception.  It is used at the | 
|  | beginning of a program to sync up with a debugger and can be used | 
|  | otherwise as a quick means to stop program execution and "break" into | 
|  | the debugger. */ | 
|  |  | 
|  | void | 
|  | breakpoint(void) | 
|  | { | 
|  | if (!initialized) | 
|  | return; | 
|  |  | 
|  | /* Again, watch those c-prefixes for ELF kernels */ | 
|  | #if defined(__svr4__) || defined(__ELF__) | 
|  | asm(".globl breakinst\n" | 
|  | "breakinst:\n\t" | 
|  | "ta 1\n"); | 
|  | #else | 
|  | asm(".globl _breakinst\n" | 
|  | "_breakinst:\n\t" | 
|  | "ta 1\n"); | 
|  | #endif | 
|  | } |