|  | /* -*- linux-c -*- ------------------------------------------------------- * | 
|  | * | 
|  | *   Copyright 2002 H. Peter Anvin - All Rights Reserved | 
|  | * | 
|  | *   This program is free software; you can redistribute it and/or modify | 
|  | *   it under the terms of the GNU General Public License as published by | 
|  | *   the Free Software Foundation, Inc., 53 Temple Place Ste 330, | 
|  | *   Bostom MA 02111-1307, USA; either version 2 of the License, or | 
|  | *   (at your option) any later version; incorporated herein by reference. | 
|  | * | 
|  | * ----------------------------------------------------------------------- */ | 
|  |  | 
|  | /* | 
|  | * raid6test.c | 
|  | * | 
|  | * Test RAID-6 recovery with various algorithms | 
|  | */ | 
|  |  | 
|  | #include <stdlib.h> | 
|  | #include <stdio.h> | 
|  | #include <string.h> | 
|  | #include "raid6.h" | 
|  |  | 
|  | #define NDISKS		16	/* Including P and Q */ | 
|  |  | 
|  | const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256))); | 
|  | struct raid6_calls raid6_call; | 
|  |  | 
|  | char *dataptrs[NDISKS]; | 
|  | char data[NDISKS][PAGE_SIZE]; | 
|  | char recovi[PAGE_SIZE], recovj[PAGE_SIZE]; | 
|  |  | 
|  | void makedata(void) | 
|  | { | 
|  | int i, j; | 
|  |  | 
|  | for (  i = 0 ; i < NDISKS ; i++ ) { | 
|  | for ( j = 0 ; j < PAGE_SIZE ; j++ ) { | 
|  | data[i][j] = rand(); | 
|  | } | 
|  | dataptrs[i] = data[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | int main(int argc, char *argv[]) | 
|  | { | 
|  | const struct raid6_calls * const * algo; | 
|  | int i, j; | 
|  | int erra, errb; | 
|  |  | 
|  | makedata(); | 
|  |  | 
|  | for ( algo = raid6_algos ; *algo ; algo++ ) { | 
|  | if ( !(*algo)->valid || (*algo)->valid() ) { | 
|  | raid6_call = **algo; | 
|  |  | 
|  | /* Nuke syndromes */ | 
|  | memset(data[NDISKS-2], 0xee, 2*PAGE_SIZE); | 
|  |  | 
|  | /* Generate assumed good syndrome */ | 
|  | raid6_call.gen_syndrome(NDISKS, PAGE_SIZE, (void **)&dataptrs); | 
|  |  | 
|  | for ( i = 0 ; i < NDISKS-1 ; i++ ) { | 
|  | for ( j = i+1 ; j < NDISKS ; j++ ) { | 
|  | memset(recovi, 0xf0, PAGE_SIZE); | 
|  | memset(recovj, 0xba, PAGE_SIZE); | 
|  |  | 
|  | dataptrs[i] = recovi; | 
|  | dataptrs[j] = recovj; | 
|  |  | 
|  | raid6_dual_recov(NDISKS, PAGE_SIZE, i, j, (void **)&dataptrs); | 
|  |  | 
|  | erra = memcmp(data[i], recovi, PAGE_SIZE); | 
|  | errb = memcmp(data[j], recovj, PAGE_SIZE); | 
|  |  | 
|  | if ( i < NDISKS-2 && j == NDISKS-1 ) { | 
|  | /* We don't implement the DQ failure scenario, since it's | 
|  | equivalent to a RAID-5 failure (XOR, then recompute Q) */ | 
|  | } else { | 
|  | printf("algo=%-8s  faila=%3d(%c)  failb=%3d(%c)  %s\n", | 
|  | raid6_call.name, | 
|  | i, (i==NDISKS-2)?'P':'D', | 
|  | j, (j==NDISKS-1)?'Q':(j==NDISKS-2)?'P':'D', | 
|  | (!erra && !errb) ? "OK" : | 
|  | !erra ? "ERRB" : | 
|  | !errb ? "ERRA" : | 
|  | "ERRAB"); | 
|  | } | 
|  |  | 
|  | dataptrs[i] = data[i]; | 
|  | dataptrs[j] = data[j]; | 
|  | } | 
|  | } | 
|  | } | 
|  | printf("\n"); | 
|  | } | 
|  |  | 
|  | printf("\n"); | 
|  | /* Pick the best algorithm test */ | 
|  | raid6_select_algo(); | 
|  |  | 
|  | return 0; | 
|  | } |