|  | /* | 
|  | *  linux/arch/arm/vfp/vfpsingle.c | 
|  | * | 
|  | * This code is derived in part from John R. Housers softfloat library, which | 
|  | * carries the following notice: | 
|  | * | 
|  | * =========================================================================== | 
|  | * This C source file is part of the SoftFloat IEC/IEEE Floating-point | 
|  | * Arithmetic Package, Release 2. | 
|  | * | 
|  | * Written by John R. Hauser.  This work was made possible in part by the | 
|  | * International Computer Science Institute, located at Suite 600, 1947 Center | 
|  | * Street, Berkeley, California 94704.  Funding was partially provided by the | 
|  | * National Science Foundation under grant MIP-9311980.  The original version | 
|  | * of this code was written as part of a project to build a fixed-point vector | 
|  | * processor in collaboration with the University of California at Berkeley, | 
|  | * overseen by Profs. Nelson Morgan and John Wawrzynek.  More information | 
|  | * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ | 
|  | * arithmetic/softfloat.html'. | 
|  | * | 
|  | * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort | 
|  | * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT | 
|  | * TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO | 
|  | * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY | 
|  | * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. | 
|  | * | 
|  | * Derivative works are acceptable, even for commercial purposes, so long as | 
|  | * (1) they include prominent notice that the work is derivative, and (2) they | 
|  | * include prominent notice akin to these three paragraphs for those parts of | 
|  | * this code that are retained. | 
|  | * =========================================================================== | 
|  | */ | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/bitops.h> | 
|  |  | 
|  | #include <asm/div64.h> | 
|  | #include <asm/vfp.h> | 
|  |  | 
|  | #include "vfpinstr.h" | 
|  | #include "vfp.h" | 
|  |  | 
|  | static struct vfp_single vfp_single_default_qnan = { | 
|  | .exponent	= 255, | 
|  | .sign		= 0, | 
|  | .significand	= VFP_SINGLE_SIGNIFICAND_QNAN, | 
|  | }; | 
|  |  | 
|  | static void vfp_single_dump(const char *str, struct vfp_single *s) | 
|  | { | 
|  | pr_debug("VFP: %s: sign=%d exponent=%d significand=%08x\n", | 
|  | str, s->sign != 0, s->exponent, s->significand); | 
|  | } | 
|  |  | 
|  | static void vfp_single_normalise_denormal(struct vfp_single *vs) | 
|  | { | 
|  | int bits = 31 - fls(vs->significand); | 
|  |  | 
|  | vfp_single_dump("normalise_denormal: in", vs); | 
|  |  | 
|  | if (bits) { | 
|  | vs->exponent -= bits - 1; | 
|  | vs->significand <<= bits; | 
|  | } | 
|  |  | 
|  | vfp_single_dump("normalise_denormal: out", vs); | 
|  | } | 
|  |  | 
|  | #ifndef DEBUG | 
|  | #define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except) | 
|  | u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions) | 
|  | #else | 
|  | u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func) | 
|  | #endif | 
|  | { | 
|  | u32 significand, incr, rmode; | 
|  | int exponent, shift, underflow; | 
|  |  | 
|  | vfp_single_dump("pack: in", vs); | 
|  |  | 
|  | /* | 
|  | * Infinities and NaNs are a special case. | 
|  | */ | 
|  | if (vs->exponent == 255 && (vs->significand == 0 || exceptions)) | 
|  | goto pack; | 
|  |  | 
|  | /* | 
|  | * Special-case zero. | 
|  | */ | 
|  | if (vs->significand == 0) { | 
|  | vs->exponent = 0; | 
|  | goto pack; | 
|  | } | 
|  |  | 
|  | exponent = vs->exponent; | 
|  | significand = vs->significand; | 
|  |  | 
|  | /* | 
|  | * Normalise first.  Note that we shift the significand up to | 
|  | * bit 31, so we have VFP_SINGLE_LOW_BITS + 1 below the least | 
|  | * significant bit. | 
|  | */ | 
|  | shift = 32 - fls(significand); | 
|  | if (shift < 32 && shift) { | 
|  | exponent -= shift; | 
|  | significand <<= shift; | 
|  | } | 
|  |  | 
|  | #ifdef DEBUG | 
|  | vs->exponent = exponent; | 
|  | vs->significand = significand; | 
|  | vfp_single_dump("pack: normalised", vs); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Tiny number? | 
|  | */ | 
|  | underflow = exponent < 0; | 
|  | if (underflow) { | 
|  | significand = vfp_shiftright32jamming(significand, -exponent); | 
|  | exponent = 0; | 
|  | #ifdef DEBUG | 
|  | vs->exponent = exponent; | 
|  | vs->significand = significand; | 
|  | vfp_single_dump("pack: tiny number", vs); | 
|  | #endif | 
|  | if (!(significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1))) | 
|  | underflow = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Select rounding increment. | 
|  | */ | 
|  | incr = 0; | 
|  | rmode = fpscr & FPSCR_RMODE_MASK; | 
|  |  | 
|  | if (rmode == FPSCR_ROUND_NEAREST) { | 
|  | incr = 1 << VFP_SINGLE_LOW_BITS; | 
|  | if ((significand & (1 << (VFP_SINGLE_LOW_BITS + 1))) == 0) | 
|  | incr -= 1; | 
|  | } else if (rmode == FPSCR_ROUND_TOZERO) { | 
|  | incr = 0; | 
|  | } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vs->sign != 0)) | 
|  | incr = (1 << (VFP_SINGLE_LOW_BITS + 1)) - 1; | 
|  |  | 
|  | pr_debug("VFP: rounding increment = 0x%08x\n", incr); | 
|  |  | 
|  | /* | 
|  | * Is our rounding going to overflow? | 
|  | */ | 
|  | if ((significand + incr) < significand) { | 
|  | exponent += 1; | 
|  | significand = (significand >> 1) | (significand & 1); | 
|  | incr >>= 1; | 
|  | #ifdef DEBUG | 
|  | vs->exponent = exponent; | 
|  | vs->significand = significand; | 
|  | vfp_single_dump("pack: overflow", vs); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If any of the low bits (which will be shifted out of the | 
|  | * number) are non-zero, the result is inexact. | 
|  | */ | 
|  | if (significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1)) | 
|  | exceptions |= FPSCR_IXC; | 
|  |  | 
|  | /* | 
|  | * Do our rounding. | 
|  | */ | 
|  | significand += incr; | 
|  |  | 
|  | /* | 
|  | * Infinity? | 
|  | */ | 
|  | if (exponent >= 254) { | 
|  | exceptions |= FPSCR_OFC | FPSCR_IXC; | 
|  | if (incr == 0) { | 
|  | vs->exponent = 253; | 
|  | vs->significand = 0x7fffffff; | 
|  | } else { | 
|  | vs->exponent = 255;		/* infinity */ | 
|  | vs->significand = 0; | 
|  | } | 
|  | } else { | 
|  | if (significand >> (VFP_SINGLE_LOW_BITS + 1) == 0) | 
|  | exponent = 0; | 
|  | if (exponent || significand > 0x80000000) | 
|  | underflow = 0; | 
|  | if (underflow) | 
|  | exceptions |= FPSCR_UFC; | 
|  | vs->exponent = exponent; | 
|  | vs->significand = significand >> 1; | 
|  | } | 
|  |  | 
|  | pack: | 
|  | vfp_single_dump("pack: final", vs); | 
|  | { | 
|  | s32 d = vfp_single_pack(vs); | 
|  | #ifdef DEBUG | 
|  | pr_debug("VFP: %s: d(s%d)=%08x exceptions=%08x\n", func, | 
|  | sd, d, exceptions); | 
|  | #endif | 
|  | vfp_put_float(d, sd); | 
|  | } | 
|  |  | 
|  | return exceptions; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Propagate the NaN, setting exceptions if it is signalling. | 
|  | * 'n' is always a NaN.  'm' may be a number, NaN or infinity. | 
|  | */ | 
|  | static u32 | 
|  | vfp_propagate_nan(struct vfp_single *vsd, struct vfp_single *vsn, | 
|  | struct vfp_single *vsm, u32 fpscr) | 
|  | { | 
|  | struct vfp_single *nan; | 
|  | int tn, tm = 0; | 
|  |  | 
|  | tn = vfp_single_type(vsn); | 
|  |  | 
|  | if (vsm) | 
|  | tm = vfp_single_type(vsm); | 
|  |  | 
|  | if (fpscr & FPSCR_DEFAULT_NAN) | 
|  | /* | 
|  | * Default NaN mode - always returns a quiet NaN | 
|  | */ | 
|  | nan = &vfp_single_default_qnan; | 
|  | else { | 
|  | /* | 
|  | * Contemporary mode - select the first signalling | 
|  | * NAN, or if neither are signalling, the first | 
|  | * quiet NAN. | 
|  | */ | 
|  | if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN)) | 
|  | nan = vsn; | 
|  | else | 
|  | nan = vsm; | 
|  | /* | 
|  | * Make the NaN quiet. | 
|  | */ | 
|  | nan->significand |= VFP_SINGLE_SIGNIFICAND_QNAN; | 
|  | } | 
|  |  | 
|  | *vsd = *nan; | 
|  |  | 
|  | /* | 
|  | * If one was a signalling NAN, raise invalid operation. | 
|  | */ | 
|  | return tn == VFP_SNAN || tm == VFP_SNAN ? FPSCR_IOC : VFP_NAN_FLAG; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Extended operations | 
|  | */ | 
|  | static u32 vfp_single_fabs(int sd, int unused, s32 m, u32 fpscr) | 
|  | { | 
|  | vfp_put_float(vfp_single_packed_abs(m), sd); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u32 vfp_single_fcpy(int sd, int unused, s32 m, u32 fpscr) | 
|  | { | 
|  | vfp_put_float(m, sd); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u32 vfp_single_fneg(int sd, int unused, s32 m, u32 fpscr) | 
|  | { | 
|  | vfp_put_float(vfp_single_packed_negate(m), sd); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const u16 sqrt_oddadjust[] = { | 
|  | 0x0004, 0x0022, 0x005d, 0x00b1, 0x011d, 0x019f, 0x0236, 0x02e0, | 
|  | 0x039c, 0x0468, 0x0545, 0x0631, 0x072b, 0x0832, 0x0946, 0x0a67 | 
|  | }; | 
|  |  | 
|  | static const u16 sqrt_evenadjust[] = { | 
|  | 0x0a2d, 0x08af, 0x075a, 0x0629, 0x051a, 0x0429, 0x0356, 0x029e, | 
|  | 0x0200, 0x0179, 0x0109, 0x00af, 0x0068, 0x0034, 0x0012, 0x0002 | 
|  | }; | 
|  |  | 
|  | u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand) | 
|  | { | 
|  | int index; | 
|  | u32 z, a; | 
|  |  | 
|  | if ((significand & 0xc0000000) != 0x40000000) { | 
|  | printk(KERN_WARNING "VFP: estimate_sqrt: invalid significand\n"); | 
|  | } | 
|  |  | 
|  | a = significand << 1; | 
|  | index = (a >> 27) & 15; | 
|  | if (exponent & 1) { | 
|  | z = 0x4000 + (a >> 17) - sqrt_oddadjust[index]; | 
|  | z = ((a / z) << 14) + (z << 15); | 
|  | a >>= 1; | 
|  | } else { | 
|  | z = 0x8000 + (a >> 17) - sqrt_evenadjust[index]; | 
|  | z = a / z + z; | 
|  | z = (z >= 0x20000) ? 0xffff8000 : (z << 15); | 
|  | if (z <= a) | 
|  | return (s32)a >> 1; | 
|  | } | 
|  | { | 
|  | u64 v = (u64)a << 31; | 
|  | do_div(v, z); | 
|  | return v + (z >> 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static u32 vfp_single_fsqrt(int sd, int unused, s32 m, u32 fpscr) | 
|  | { | 
|  | struct vfp_single vsm, vsd; | 
|  | int ret, tm; | 
|  |  | 
|  | vfp_single_unpack(&vsm, m); | 
|  | tm = vfp_single_type(&vsm); | 
|  | if (tm & (VFP_NAN|VFP_INFINITY)) { | 
|  | struct vfp_single *vsp = &vsd; | 
|  |  | 
|  | if (tm & VFP_NAN) | 
|  | ret = vfp_propagate_nan(vsp, &vsm, NULL, fpscr); | 
|  | else if (vsm.sign == 0) { | 
|  | sqrt_copy: | 
|  | vsp = &vsm; | 
|  | ret = 0; | 
|  | } else { | 
|  | sqrt_invalid: | 
|  | vsp = &vfp_single_default_qnan; | 
|  | ret = FPSCR_IOC; | 
|  | } | 
|  | vfp_put_float(vfp_single_pack(vsp), sd); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sqrt(+/- 0) == +/- 0 | 
|  | */ | 
|  | if (tm & VFP_ZERO) | 
|  | goto sqrt_copy; | 
|  |  | 
|  | /* | 
|  | * Normalise a denormalised number | 
|  | */ | 
|  | if (tm & VFP_DENORMAL) | 
|  | vfp_single_normalise_denormal(&vsm); | 
|  |  | 
|  | /* | 
|  | * sqrt(<0) = invalid | 
|  | */ | 
|  | if (vsm.sign) | 
|  | goto sqrt_invalid; | 
|  |  | 
|  | vfp_single_dump("sqrt", &vsm); | 
|  |  | 
|  | /* | 
|  | * Estimate the square root. | 
|  | */ | 
|  | vsd.sign = 0; | 
|  | vsd.exponent = ((vsm.exponent - 127) >> 1) + 127; | 
|  | vsd.significand = vfp_estimate_sqrt_significand(vsm.exponent, vsm.significand) + 2; | 
|  |  | 
|  | vfp_single_dump("sqrt estimate", &vsd); | 
|  |  | 
|  | /* | 
|  | * And now adjust. | 
|  | */ | 
|  | if ((vsd.significand & VFP_SINGLE_LOW_BITS_MASK) <= 5) { | 
|  | if (vsd.significand < 2) { | 
|  | vsd.significand = 0xffffffff; | 
|  | } else { | 
|  | u64 term; | 
|  | s64 rem; | 
|  | vsm.significand <<= !(vsm.exponent & 1); | 
|  | term = (u64)vsd.significand * vsd.significand; | 
|  | rem = ((u64)vsm.significand << 32) - term; | 
|  |  | 
|  | pr_debug("VFP: term=%016llx rem=%016llx\n", term, rem); | 
|  |  | 
|  | while (rem < 0) { | 
|  | vsd.significand -= 1; | 
|  | rem += ((u64)vsd.significand << 1) | 1; | 
|  | } | 
|  | vsd.significand |= rem != 0; | 
|  | } | 
|  | } | 
|  | vsd.significand = vfp_shiftright32jamming(vsd.significand, 1); | 
|  |  | 
|  | return vfp_single_normaliseround(sd, &vsd, fpscr, 0, "fsqrt"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Equal	:= ZC | 
|  | * Less than	:= N | 
|  | * Greater than	:= C | 
|  | * Unordered	:= CV | 
|  | */ | 
|  | static u32 vfp_compare(int sd, int signal_on_qnan, s32 m, u32 fpscr) | 
|  | { | 
|  | s32 d; | 
|  | u32 ret = 0; | 
|  |  | 
|  | d = vfp_get_float(sd); | 
|  | if (vfp_single_packed_exponent(m) == 255 && vfp_single_packed_mantissa(m)) { | 
|  | ret |= FPSCR_C | FPSCR_V; | 
|  | if (signal_on_qnan || !(vfp_single_packed_mantissa(m) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1)))) | 
|  | /* | 
|  | * Signalling NaN, or signalling on quiet NaN | 
|  | */ | 
|  | ret |= FPSCR_IOC; | 
|  | } | 
|  |  | 
|  | if (vfp_single_packed_exponent(d) == 255 && vfp_single_packed_mantissa(d)) { | 
|  | ret |= FPSCR_C | FPSCR_V; | 
|  | if (signal_on_qnan || !(vfp_single_packed_mantissa(d) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1)))) | 
|  | /* | 
|  | * Signalling NaN, or signalling on quiet NaN | 
|  | */ | 
|  | ret |= FPSCR_IOC; | 
|  | } | 
|  |  | 
|  | if (ret == 0) { | 
|  | if (d == m || vfp_single_packed_abs(d | m) == 0) { | 
|  | /* | 
|  | * equal | 
|  | */ | 
|  | ret |= FPSCR_Z | FPSCR_C; | 
|  | } else if (vfp_single_packed_sign(d ^ m)) { | 
|  | /* | 
|  | * different signs | 
|  | */ | 
|  | if (vfp_single_packed_sign(d)) | 
|  | /* | 
|  | * d is negative, so d < m | 
|  | */ | 
|  | ret |= FPSCR_N; | 
|  | else | 
|  | /* | 
|  | * d is positive, so d > m | 
|  | */ | 
|  | ret |= FPSCR_C; | 
|  | } else if ((vfp_single_packed_sign(d) != 0) ^ (d < m)) { | 
|  | /* | 
|  | * d < m | 
|  | */ | 
|  | ret |= FPSCR_N; | 
|  | } else if ((vfp_single_packed_sign(d) != 0) ^ (d > m)) { | 
|  | /* | 
|  | * d > m | 
|  | */ | 
|  | ret |= FPSCR_C; | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static u32 vfp_single_fcmp(int sd, int unused, s32 m, u32 fpscr) | 
|  | { | 
|  | return vfp_compare(sd, 0, m, fpscr); | 
|  | } | 
|  |  | 
|  | static u32 vfp_single_fcmpe(int sd, int unused, s32 m, u32 fpscr) | 
|  | { | 
|  | return vfp_compare(sd, 1, m, fpscr); | 
|  | } | 
|  |  | 
|  | static u32 vfp_single_fcmpz(int sd, int unused, s32 m, u32 fpscr) | 
|  | { | 
|  | return vfp_compare(sd, 0, 0, fpscr); | 
|  | } | 
|  |  | 
|  | static u32 vfp_single_fcmpez(int sd, int unused, s32 m, u32 fpscr) | 
|  | { | 
|  | return vfp_compare(sd, 1, 0, fpscr); | 
|  | } | 
|  |  | 
|  | static u32 vfp_single_fcvtd(int dd, int unused, s32 m, u32 fpscr) | 
|  | { | 
|  | struct vfp_single vsm; | 
|  | struct vfp_double vdd; | 
|  | int tm; | 
|  | u32 exceptions = 0; | 
|  |  | 
|  | vfp_single_unpack(&vsm, m); | 
|  |  | 
|  | tm = vfp_single_type(&vsm); | 
|  |  | 
|  | /* | 
|  | * If we have a signalling NaN, signal invalid operation. | 
|  | */ | 
|  | if (tm == VFP_SNAN) | 
|  | exceptions = FPSCR_IOC; | 
|  |  | 
|  | if (tm & VFP_DENORMAL) | 
|  | vfp_single_normalise_denormal(&vsm); | 
|  |  | 
|  | vdd.sign = vsm.sign; | 
|  | vdd.significand = (u64)vsm.significand << 32; | 
|  |  | 
|  | /* | 
|  | * If we have an infinity or NaN, the exponent must be 2047. | 
|  | */ | 
|  | if (tm & (VFP_INFINITY|VFP_NAN)) { | 
|  | vdd.exponent = 2047; | 
|  | if (tm == VFP_QNAN) | 
|  | vdd.significand |= VFP_DOUBLE_SIGNIFICAND_QNAN; | 
|  | goto pack_nan; | 
|  | } else if (tm & VFP_ZERO) | 
|  | vdd.exponent = 0; | 
|  | else | 
|  | vdd.exponent = vsm.exponent + (1023 - 127); | 
|  |  | 
|  | return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fcvtd"); | 
|  |  | 
|  | pack_nan: | 
|  | vfp_put_double(vfp_double_pack(&vdd), dd); | 
|  | return exceptions; | 
|  | } | 
|  |  | 
|  | static u32 vfp_single_fuito(int sd, int unused, s32 m, u32 fpscr) | 
|  | { | 
|  | struct vfp_single vs; | 
|  |  | 
|  | vs.sign = 0; | 
|  | vs.exponent = 127 + 31 - 1; | 
|  | vs.significand = (u32)m; | 
|  |  | 
|  | return vfp_single_normaliseround(sd, &vs, fpscr, 0, "fuito"); | 
|  | } | 
|  |  | 
|  | static u32 vfp_single_fsito(int sd, int unused, s32 m, u32 fpscr) | 
|  | { | 
|  | struct vfp_single vs; | 
|  |  | 
|  | vs.sign = (m & 0x80000000) >> 16; | 
|  | vs.exponent = 127 + 31 - 1; | 
|  | vs.significand = vs.sign ? -m : m; | 
|  |  | 
|  | return vfp_single_normaliseround(sd, &vs, fpscr, 0, "fsito"); | 
|  | } | 
|  |  | 
|  | static u32 vfp_single_ftoui(int sd, int unused, s32 m, u32 fpscr) | 
|  | { | 
|  | struct vfp_single vsm; | 
|  | u32 d, exceptions = 0; | 
|  | int rmode = fpscr & FPSCR_RMODE_MASK; | 
|  | int tm; | 
|  |  | 
|  | vfp_single_unpack(&vsm, m); | 
|  | vfp_single_dump("VSM", &vsm); | 
|  |  | 
|  | /* | 
|  | * Do we have a denormalised number? | 
|  | */ | 
|  | tm = vfp_single_type(&vsm); | 
|  | if (tm & VFP_DENORMAL) | 
|  | exceptions |= FPSCR_IDC; | 
|  |  | 
|  | if (tm & VFP_NAN) | 
|  | vsm.sign = 0; | 
|  |  | 
|  | if (vsm.exponent >= 127 + 32) { | 
|  | d = vsm.sign ? 0 : 0xffffffff; | 
|  | exceptions = FPSCR_IOC; | 
|  | } else if (vsm.exponent >= 127 - 1) { | 
|  | int shift = 127 + 31 - vsm.exponent; | 
|  | u32 rem, incr = 0; | 
|  |  | 
|  | /* | 
|  | * 2^0 <= m < 2^32-2^8 | 
|  | */ | 
|  | d = (vsm.significand << 1) >> shift; | 
|  | rem = vsm.significand << (33 - shift); | 
|  |  | 
|  | if (rmode == FPSCR_ROUND_NEAREST) { | 
|  | incr = 0x80000000; | 
|  | if ((d & 1) == 0) | 
|  | incr -= 1; | 
|  | } else if (rmode == FPSCR_ROUND_TOZERO) { | 
|  | incr = 0; | 
|  | } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) { | 
|  | incr = ~0; | 
|  | } | 
|  |  | 
|  | if ((rem + incr) < rem) { | 
|  | if (d < 0xffffffff) | 
|  | d += 1; | 
|  | else | 
|  | exceptions |= FPSCR_IOC; | 
|  | } | 
|  |  | 
|  | if (d && vsm.sign) { | 
|  | d = 0; | 
|  | exceptions |= FPSCR_IOC; | 
|  | } else if (rem) | 
|  | exceptions |= FPSCR_IXC; | 
|  | } else { | 
|  | d = 0; | 
|  | if (vsm.exponent | vsm.significand) { | 
|  | exceptions |= FPSCR_IXC; | 
|  | if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0) | 
|  | d = 1; | 
|  | else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign) { | 
|  | d = 0; | 
|  | exceptions |= FPSCR_IOC; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | pr_debug("VFP: ftoui: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions); | 
|  |  | 
|  | vfp_put_float(d, sd); | 
|  |  | 
|  | return exceptions; | 
|  | } | 
|  |  | 
|  | static u32 vfp_single_ftouiz(int sd, int unused, s32 m, u32 fpscr) | 
|  | { | 
|  | return vfp_single_ftoui(sd, unused, m, FPSCR_ROUND_TOZERO); | 
|  | } | 
|  |  | 
|  | static u32 vfp_single_ftosi(int sd, int unused, s32 m, u32 fpscr) | 
|  | { | 
|  | struct vfp_single vsm; | 
|  | u32 d, exceptions = 0; | 
|  | int rmode = fpscr & FPSCR_RMODE_MASK; | 
|  | int tm; | 
|  |  | 
|  | vfp_single_unpack(&vsm, m); | 
|  | vfp_single_dump("VSM", &vsm); | 
|  |  | 
|  | /* | 
|  | * Do we have a denormalised number? | 
|  | */ | 
|  | tm = vfp_single_type(&vsm); | 
|  | if (vfp_single_type(&vsm) & VFP_DENORMAL) | 
|  | exceptions |= FPSCR_IDC; | 
|  |  | 
|  | if (tm & VFP_NAN) { | 
|  | d = 0; | 
|  | exceptions |= FPSCR_IOC; | 
|  | } else if (vsm.exponent >= 127 + 32) { | 
|  | /* | 
|  | * m >= 2^31-2^7: invalid | 
|  | */ | 
|  | d = 0x7fffffff; | 
|  | if (vsm.sign) | 
|  | d = ~d; | 
|  | exceptions |= FPSCR_IOC; | 
|  | } else if (vsm.exponent >= 127 - 1) { | 
|  | int shift = 127 + 31 - vsm.exponent; | 
|  | u32 rem, incr = 0; | 
|  |  | 
|  | /* 2^0 <= m <= 2^31-2^7 */ | 
|  | d = (vsm.significand << 1) >> shift; | 
|  | rem = vsm.significand << (33 - shift); | 
|  |  | 
|  | if (rmode == FPSCR_ROUND_NEAREST) { | 
|  | incr = 0x80000000; | 
|  | if ((d & 1) == 0) | 
|  | incr -= 1; | 
|  | } else if (rmode == FPSCR_ROUND_TOZERO) { | 
|  | incr = 0; | 
|  | } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) { | 
|  | incr = ~0; | 
|  | } | 
|  |  | 
|  | if ((rem + incr) < rem && d < 0xffffffff) | 
|  | d += 1; | 
|  | if (d > 0x7fffffff + (vsm.sign != 0)) { | 
|  | d = 0x7fffffff + (vsm.sign != 0); | 
|  | exceptions |= FPSCR_IOC; | 
|  | } else if (rem) | 
|  | exceptions |= FPSCR_IXC; | 
|  |  | 
|  | if (vsm.sign) | 
|  | d = -d; | 
|  | } else { | 
|  | d = 0; | 
|  | if (vsm.exponent | vsm.significand) { | 
|  | exceptions |= FPSCR_IXC; | 
|  | if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0) | 
|  | d = 1; | 
|  | else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign) | 
|  | d = -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | pr_debug("VFP: ftosi: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions); | 
|  |  | 
|  | vfp_put_float((s32)d, sd); | 
|  |  | 
|  | return exceptions; | 
|  | } | 
|  |  | 
|  | static u32 vfp_single_ftosiz(int sd, int unused, s32 m, u32 fpscr) | 
|  | { | 
|  | return vfp_single_ftosi(sd, unused, m, FPSCR_ROUND_TOZERO); | 
|  | } | 
|  |  | 
|  | static struct op fops_ext[32] = { | 
|  | [FEXT_TO_IDX(FEXT_FCPY)]	= { vfp_single_fcpy,   0 }, | 
|  | [FEXT_TO_IDX(FEXT_FABS)]	= { vfp_single_fabs,   0 }, | 
|  | [FEXT_TO_IDX(FEXT_FNEG)]	= { vfp_single_fneg,   0 }, | 
|  | [FEXT_TO_IDX(FEXT_FSQRT)]	= { vfp_single_fsqrt,  0 }, | 
|  | [FEXT_TO_IDX(FEXT_FCMP)]	= { vfp_single_fcmp,   OP_SCALAR }, | 
|  | [FEXT_TO_IDX(FEXT_FCMPE)]	= { vfp_single_fcmpe,  OP_SCALAR }, | 
|  | [FEXT_TO_IDX(FEXT_FCMPZ)]	= { vfp_single_fcmpz,  OP_SCALAR }, | 
|  | [FEXT_TO_IDX(FEXT_FCMPEZ)]	= { vfp_single_fcmpez, OP_SCALAR }, | 
|  | [FEXT_TO_IDX(FEXT_FCVT)]	= { vfp_single_fcvtd,  OP_SCALAR|OP_DD }, | 
|  | [FEXT_TO_IDX(FEXT_FUITO)]	= { vfp_single_fuito,  OP_SCALAR }, | 
|  | [FEXT_TO_IDX(FEXT_FSITO)]	= { vfp_single_fsito,  OP_SCALAR }, | 
|  | [FEXT_TO_IDX(FEXT_FTOUI)]	= { vfp_single_ftoui,  OP_SCALAR }, | 
|  | [FEXT_TO_IDX(FEXT_FTOUIZ)]	= { vfp_single_ftouiz, OP_SCALAR }, | 
|  | [FEXT_TO_IDX(FEXT_FTOSI)]	= { vfp_single_ftosi,  OP_SCALAR }, | 
|  | [FEXT_TO_IDX(FEXT_FTOSIZ)]	= { vfp_single_ftosiz, OP_SCALAR }, | 
|  | }; | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | static u32 | 
|  | vfp_single_fadd_nonnumber(struct vfp_single *vsd, struct vfp_single *vsn, | 
|  | struct vfp_single *vsm, u32 fpscr) | 
|  | { | 
|  | struct vfp_single *vsp; | 
|  | u32 exceptions = 0; | 
|  | int tn, tm; | 
|  |  | 
|  | tn = vfp_single_type(vsn); | 
|  | tm = vfp_single_type(vsm); | 
|  |  | 
|  | if (tn & tm & VFP_INFINITY) { | 
|  | /* | 
|  | * Two infinities.  Are they different signs? | 
|  | */ | 
|  | if (vsn->sign ^ vsm->sign) { | 
|  | /* | 
|  | * different signs -> invalid | 
|  | */ | 
|  | exceptions = FPSCR_IOC; | 
|  | vsp = &vfp_single_default_qnan; | 
|  | } else { | 
|  | /* | 
|  | * same signs -> valid | 
|  | */ | 
|  | vsp = vsn; | 
|  | } | 
|  | } else if (tn & VFP_INFINITY && tm & VFP_NUMBER) { | 
|  | /* | 
|  | * One infinity and one number -> infinity | 
|  | */ | 
|  | vsp = vsn; | 
|  | } else { | 
|  | /* | 
|  | * 'n' is a NaN of some type | 
|  | */ | 
|  | return vfp_propagate_nan(vsd, vsn, vsm, fpscr); | 
|  | } | 
|  | *vsd = *vsp; | 
|  | return exceptions; | 
|  | } | 
|  |  | 
|  | static u32 | 
|  | vfp_single_add(struct vfp_single *vsd, struct vfp_single *vsn, | 
|  | struct vfp_single *vsm, u32 fpscr) | 
|  | { | 
|  | u32 exp_diff, m_sig; | 
|  |  | 
|  | if (vsn->significand & 0x80000000 || | 
|  | vsm->significand & 0x80000000) { | 
|  | pr_info("VFP: bad FP values in %s\n", __func__); | 
|  | vfp_single_dump("VSN", vsn); | 
|  | vfp_single_dump("VSM", vsm); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ensure that 'n' is the largest magnitude number.  Note that | 
|  | * if 'n' and 'm' have equal exponents, we do not swap them. | 
|  | * This ensures that NaN propagation works correctly. | 
|  | */ | 
|  | if (vsn->exponent < vsm->exponent) { | 
|  | struct vfp_single *t = vsn; | 
|  | vsn = vsm; | 
|  | vsm = t; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Is 'n' an infinity or a NaN?  Note that 'm' may be a number, | 
|  | * infinity or a NaN here. | 
|  | */ | 
|  | if (vsn->exponent == 255) | 
|  | return vfp_single_fadd_nonnumber(vsd, vsn, vsm, fpscr); | 
|  |  | 
|  | /* | 
|  | * We have two proper numbers, where 'vsn' is the larger magnitude. | 
|  | * | 
|  | * Copy 'n' to 'd' before doing the arithmetic. | 
|  | */ | 
|  | *vsd = *vsn; | 
|  |  | 
|  | /* | 
|  | * Align both numbers. | 
|  | */ | 
|  | exp_diff = vsn->exponent - vsm->exponent; | 
|  | m_sig = vfp_shiftright32jamming(vsm->significand, exp_diff); | 
|  |  | 
|  | /* | 
|  | * If the signs are different, we are really subtracting. | 
|  | */ | 
|  | if (vsn->sign ^ vsm->sign) { | 
|  | m_sig = vsn->significand - m_sig; | 
|  | if ((s32)m_sig < 0) { | 
|  | vsd->sign = vfp_sign_negate(vsd->sign); | 
|  | m_sig = -m_sig; | 
|  | } else if (m_sig == 0) { | 
|  | vsd->sign = (fpscr & FPSCR_RMODE_MASK) == | 
|  | FPSCR_ROUND_MINUSINF ? 0x8000 : 0; | 
|  | } | 
|  | } else { | 
|  | m_sig = vsn->significand + m_sig; | 
|  | } | 
|  | vsd->significand = m_sig; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u32 | 
|  | vfp_single_multiply(struct vfp_single *vsd, struct vfp_single *vsn, struct vfp_single *vsm, u32 fpscr) | 
|  | { | 
|  | vfp_single_dump("VSN", vsn); | 
|  | vfp_single_dump("VSM", vsm); | 
|  |  | 
|  | /* | 
|  | * Ensure that 'n' is the largest magnitude number.  Note that | 
|  | * if 'n' and 'm' have equal exponents, we do not swap them. | 
|  | * This ensures that NaN propagation works correctly. | 
|  | */ | 
|  | if (vsn->exponent < vsm->exponent) { | 
|  | struct vfp_single *t = vsn; | 
|  | vsn = vsm; | 
|  | vsm = t; | 
|  | pr_debug("VFP: swapping M <-> N\n"); | 
|  | } | 
|  |  | 
|  | vsd->sign = vsn->sign ^ vsm->sign; | 
|  |  | 
|  | /* | 
|  | * If 'n' is an infinity or NaN, handle it.  'm' may be anything. | 
|  | */ | 
|  | if (vsn->exponent == 255) { | 
|  | if (vsn->significand || (vsm->exponent == 255 && vsm->significand)) | 
|  | return vfp_propagate_nan(vsd, vsn, vsm, fpscr); | 
|  | if ((vsm->exponent | vsm->significand) == 0) { | 
|  | *vsd = vfp_single_default_qnan; | 
|  | return FPSCR_IOC; | 
|  | } | 
|  | vsd->exponent = vsn->exponent; | 
|  | vsd->significand = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If 'm' is zero, the result is always zero.  In this case, | 
|  | * 'n' may be zero or a number, but it doesn't matter which. | 
|  | */ | 
|  | if ((vsm->exponent | vsm->significand) == 0) { | 
|  | vsd->exponent = 0; | 
|  | vsd->significand = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We add 2 to the destination exponent for the same reason as | 
|  | * the addition case - though this time we have +1 from each | 
|  | * input operand. | 
|  | */ | 
|  | vsd->exponent = vsn->exponent + vsm->exponent - 127 + 2; | 
|  | vsd->significand = vfp_hi64to32jamming((u64)vsn->significand * vsm->significand); | 
|  |  | 
|  | vfp_single_dump("VSD", vsd); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define NEG_MULTIPLY	(1 << 0) | 
|  | #define NEG_SUBTRACT	(1 << 1) | 
|  |  | 
|  | static u32 | 
|  | vfp_single_multiply_accumulate(int sd, int sn, s32 m, u32 fpscr, u32 negate, char *func) | 
|  | { | 
|  | struct vfp_single vsd, vsp, vsn, vsm; | 
|  | u32 exceptions; | 
|  | s32 v; | 
|  |  | 
|  | v = vfp_get_float(sn); | 
|  | pr_debug("VFP: s%u = %08x\n", sn, v); | 
|  | vfp_single_unpack(&vsn, v); | 
|  | if (vsn.exponent == 0 && vsn.significand) | 
|  | vfp_single_normalise_denormal(&vsn); | 
|  |  | 
|  | vfp_single_unpack(&vsm, m); | 
|  | if (vsm.exponent == 0 && vsm.significand) | 
|  | vfp_single_normalise_denormal(&vsm); | 
|  |  | 
|  | exceptions = vfp_single_multiply(&vsp, &vsn, &vsm, fpscr); | 
|  | if (negate & NEG_MULTIPLY) | 
|  | vsp.sign = vfp_sign_negate(vsp.sign); | 
|  |  | 
|  | v = vfp_get_float(sd); | 
|  | pr_debug("VFP: s%u = %08x\n", sd, v); | 
|  | vfp_single_unpack(&vsn, v); | 
|  | if (negate & NEG_SUBTRACT) | 
|  | vsn.sign = vfp_sign_negate(vsn.sign); | 
|  |  | 
|  | exceptions |= vfp_single_add(&vsd, &vsn, &vsp, fpscr); | 
|  |  | 
|  | return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, func); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Standard operations | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * sd = sd + (sn * sm) | 
|  | */ | 
|  | static u32 vfp_single_fmac(int sd, int sn, s32 m, u32 fpscr) | 
|  | { | 
|  | return vfp_single_multiply_accumulate(sd, sn, m, fpscr, 0, "fmac"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sd = sd - (sn * sm) | 
|  | */ | 
|  | static u32 vfp_single_fnmac(int sd, int sn, s32 m, u32 fpscr) | 
|  | { | 
|  | return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_MULTIPLY, "fnmac"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sd = -sd + (sn * sm) | 
|  | */ | 
|  | static u32 vfp_single_fmsc(int sd, int sn, s32 m, u32 fpscr) | 
|  | { | 
|  | return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_SUBTRACT, "fmsc"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sd = -sd - (sn * sm) | 
|  | */ | 
|  | static u32 vfp_single_fnmsc(int sd, int sn, s32 m, u32 fpscr) | 
|  | { | 
|  | return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_SUBTRACT | NEG_MULTIPLY, "fnmsc"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sd = sn * sm | 
|  | */ | 
|  | static u32 vfp_single_fmul(int sd, int sn, s32 m, u32 fpscr) | 
|  | { | 
|  | struct vfp_single vsd, vsn, vsm; | 
|  | u32 exceptions; | 
|  | s32 n = vfp_get_float(sn); | 
|  |  | 
|  | pr_debug("VFP: s%u = %08x\n", sn, n); | 
|  |  | 
|  | vfp_single_unpack(&vsn, n); | 
|  | if (vsn.exponent == 0 && vsn.significand) | 
|  | vfp_single_normalise_denormal(&vsn); | 
|  |  | 
|  | vfp_single_unpack(&vsm, m); | 
|  | if (vsm.exponent == 0 && vsm.significand) | 
|  | vfp_single_normalise_denormal(&vsm); | 
|  |  | 
|  | exceptions = vfp_single_multiply(&vsd, &vsn, &vsm, fpscr); | 
|  | return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fmul"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sd = -(sn * sm) | 
|  | */ | 
|  | static u32 vfp_single_fnmul(int sd, int sn, s32 m, u32 fpscr) | 
|  | { | 
|  | struct vfp_single vsd, vsn, vsm; | 
|  | u32 exceptions; | 
|  | s32 n = vfp_get_float(sn); | 
|  |  | 
|  | pr_debug("VFP: s%u = %08x\n", sn, n); | 
|  |  | 
|  | vfp_single_unpack(&vsn, n); | 
|  | if (vsn.exponent == 0 && vsn.significand) | 
|  | vfp_single_normalise_denormal(&vsn); | 
|  |  | 
|  | vfp_single_unpack(&vsm, m); | 
|  | if (vsm.exponent == 0 && vsm.significand) | 
|  | vfp_single_normalise_denormal(&vsm); | 
|  |  | 
|  | exceptions = vfp_single_multiply(&vsd, &vsn, &vsm, fpscr); | 
|  | vsd.sign = vfp_sign_negate(vsd.sign); | 
|  | return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fnmul"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sd = sn + sm | 
|  | */ | 
|  | static u32 vfp_single_fadd(int sd, int sn, s32 m, u32 fpscr) | 
|  | { | 
|  | struct vfp_single vsd, vsn, vsm; | 
|  | u32 exceptions; | 
|  | s32 n = vfp_get_float(sn); | 
|  |  | 
|  | pr_debug("VFP: s%u = %08x\n", sn, n); | 
|  |  | 
|  | /* | 
|  | * Unpack and normalise denormals. | 
|  | */ | 
|  | vfp_single_unpack(&vsn, n); | 
|  | if (vsn.exponent == 0 && vsn.significand) | 
|  | vfp_single_normalise_denormal(&vsn); | 
|  |  | 
|  | vfp_single_unpack(&vsm, m); | 
|  | if (vsm.exponent == 0 && vsm.significand) | 
|  | vfp_single_normalise_denormal(&vsm); | 
|  |  | 
|  | exceptions = vfp_single_add(&vsd, &vsn, &vsm, fpscr); | 
|  |  | 
|  | return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fadd"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sd = sn - sm | 
|  | */ | 
|  | static u32 vfp_single_fsub(int sd, int sn, s32 m, u32 fpscr) | 
|  | { | 
|  | /* | 
|  | * Subtraction is addition with one sign inverted. | 
|  | */ | 
|  | return vfp_single_fadd(sd, sn, vfp_single_packed_negate(m), fpscr); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sd = sn / sm | 
|  | */ | 
|  | static u32 vfp_single_fdiv(int sd, int sn, s32 m, u32 fpscr) | 
|  | { | 
|  | struct vfp_single vsd, vsn, vsm; | 
|  | u32 exceptions = 0; | 
|  | s32 n = vfp_get_float(sn); | 
|  | int tm, tn; | 
|  |  | 
|  | pr_debug("VFP: s%u = %08x\n", sn, n); | 
|  |  | 
|  | vfp_single_unpack(&vsn, n); | 
|  | vfp_single_unpack(&vsm, m); | 
|  |  | 
|  | vsd.sign = vsn.sign ^ vsm.sign; | 
|  |  | 
|  | tn = vfp_single_type(&vsn); | 
|  | tm = vfp_single_type(&vsm); | 
|  |  | 
|  | /* | 
|  | * Is n a NAN? | 
|  | */ | 
|  | if (tn & VFP_NAN) | 
|  | goto vsn_nan; | 
|  |  | 
|  | /* | 
|  | * Is m a NAN? | 
|  | */ | 
|  | if (tm & VFP_NAN) | 
|  | goto vsm_nan; | 
|  |  | 
|  | /* | 
|  | * If n and m are infinity, the result is invalid | 
|  | * If n and m are zero, the result is invalid | 
|  | */ | 
|  | if (tm & tn & (VFP_INFINITY|VFP_ZERO)) | 
|  | goto invalid; | 
|  |  | 
|  | /* | 
|  | * If n is infinity, the result is infinity | 
|  | */ | 
|  | if (tn & VFP_INFINITY) | 
|  | goto infinity; | 
|  |  | 
|  | /* | 
|  | * If m is zero, raise div0 exception | 
|  | */ | 
|  | if (tm & VFP_ZERO) | 
|  | goto divzero; | 
|  |  | 
|  | /* | 
|  | * If m is infinity, or n is zero, the result is zero | 
|  | */ | 
|  | if (tm & VFP_INFINITY || tn & VFP_ZERO) | 
|  | goto zero; | 
|  |  | 
|  | if (tn & VFP_DENORMAL) | 
|  | vfp_single_normalise_denormal(&vsn); | 
|  | if (tm & VFP_DENORMAL) | 
|  | vfp_single_normalise_denormal(&vsm); | 
|  |  | 
|  | /* | 
|  | * Ok, we have two numbers, we can perform division. | 
|  | */ | 
|  | vsd.exponent = vsn.exponent - vsm.exponent + 127 - 1; | 
|  | vsm.significand <<= 1; | 
|  | if (vsm.significand <= (2 * vsn.significand)) { | 
|  | vsn.significand >>= 1; | 
|  | vsd.exponent++; | 
|  | } | 
|  | { | 
|  | u64 significand = (u64)vsn.significand << 32; | 
|  | do_div(significand, vsm.significand); | 
|  | vsd.significand = significand; | 
|  | } | 
|  | if ((vsd.significand & 0x3f) == 0) | 
|  | vsd.significand |= ((u64)vsm.significand * vsd.significand != (u64)vsn.significand << 32); | 
|  |  | 
|  | return vfp_single_normaliseround(sd, &vsd, fpscr, 0, "fdiv"); | 
|  |  | 
|  | vsn_nan: | 
|  | exceptions = vfp_propagate_nan(&vsd, &vsn, &vsm, fpscr); | 
|  | pack: | 
|  | vfp_put_float(vfp_single_pack(&vsd), sd); | 
|  | return exceptions; | 
|  |  | 
|  | vsm_nan: | 
|  | exceptions = vfp_propagate_nan(&vsd, &vsm, &vsn, fpscr); | 
|  | goto pack; | 
|  |  | 
|  | zero: | 
|  | vsd.exponent = 0; | 
|  | vsd.significand = 0; | 
|  | goto pack; | 
|  |  | 
|  | divzero: | 
|  | exceptions = FPSCR_DZC; | 
|  | infinity: | 
|  | vsd.exponent = 255; | 
|  | vsd.significand = 0; | 
|  | goto pack; | 
|  |  | 
|  | invalid: | 
|  | vfp_put_float(vfp_single_pack(&vfp_single_default_qnan), sd); | 
|  | return FPSCR_IOC; | 
|  | } | 
|  |  | 
|  | static struct op fops[16] = { | 
|  | [FOP_TO_IDX(FOP_FMAC)]	= { vfp_single_fmac,  0 }, | 
|  | [FOP_TO_IDX(FOP_FNMAC)]	= { vfp_single_fnmac, 0 }, | 
|  | [FOP_TO_IDX(FOP_FMSC)]	= { vfp_single_fmsc,  0 }, | 
|  | [FOP_TO_IDX(FOP_FNMSC)]	= { vfp_single_fnmsc, 0 }, | 
|  | [FOP_TO_IDX(FOP_FMUL)]	= { vfp_single_fmul,  0 }, | 
|  | [FOP_TO_IDX(FOP_FNMUL)]	= { vfp_single_fnmul, 0 }, | 
|  | [FOP_TO_IDX(FOP_FADD)]	= { vfp_single_fadd,  0 }, | 
|  | [FOP_TO_IDX(FOP_FSUB)]	= { vfp_single_fsub,  0 }, | 
|  | [FOP_TO_IDX(FOP_FDIV)]	= { vfp_single_fdiv,  0 }, | 
|  | }; | 
|  |  | 
|  | #define FREG_BANK(x)	((x) & 0x18) | 
|  | #define FREG_IDX(x)	((x) & 7) | 
|  |  | 
|  | u32 vfp_single_cpdo(u32 inst, u32 fpscr) | 
|  | { | 
|  | u32 op = inst & FOP_MASK; | 
|  | u32 exceptions = 0; | 
|  | unsigned int dest; | 
|  | unsigned int sn = vfp_get_sn(inst); | 
|  | unsigned int sm = vfp_get_sm(inst); | 
|  | unsigned int vecitr, veclen, vecstride; | 
|  | struct op *fop; | 
|  |  | 
|  | vecstride = 1 + ((fpscr & FPSCR_STRIDE_MASK) == FPSCR_STRIDE_MASK); | 
|  |  | 
|  | fop = (op == FOP_EXT) ? &fops_ext[FEXT_TO_IDX(inst)] : &fops[FOP_TO_IDX(op)]; | 
|  |  | 
|  | /* | 
|  | * fcvtsd takes a dN register number as destination, not sN. | 
|  | * Technically, if bit 0 of dd is set, this is an invalid | 
|  | * instruction.  However, we ignore this for efficiency. | 
|  | * It also only operates on scalars. | 
|  | */ | 
|  | if (fop->flags & OP_DD) | 
|  | dest = vfp_get_dd(inst); | 
|  | else | 
|  | dest = vfp_get_sd(inst); | 
|  |  | 
|  | /* | 
|  | * If destination bank is zero, vector length is always '1'. | 
|  | * ARM DDI0100F C5.1.3, C5.3.2. | 
|  | */ | 
|  | if ((fop->flags & OP_SCALAR) || FREG_BANK(dest) == 0) | 
|  | veclen = 0; | 
|  | else | 
|  | veclen = fpscr & FPSCR_LENGTH_MASK; | 
|  |  | 
|  | pr_debug("VFP: vecstride=%u veclen=%u\n", vecstride, | 
|  | (veclen >> FPSCR_LENGTH_BIT) + 1); | 
|  |  | 
|  | if (!fop->fn) | 
|  | goto invalid; | 
|  |  | 
|  | for (vecitr = 0; vecitr <= veclen; vecitr += 1 << FPSCR_LENGTH_BIT) { | 
|  | s32 m = vfp_get_float(sm); | 
|  | u32 except; | 
|  | char type; | 
|  |  | 
|  | type = fop->flags & OP_DD ? 'd' : 's'; | 
|  | if (op == FOP_EXT) | 
|  | pr_debug("VFP: itr%d (%c%u) = op[%u] (s%u=%08x)\n", | 
|  | vecitr >> FPSCR_LENGTH_BIT, type, dest, sn, | 
|  | sm, m); | 
|  | else | 
|  | pr_debug("VFP: itr%d (%c%u) = (s%u) op[%u] (s%u=%08x)\n", | 
|  | vecitr >> FPSCR_LENGTH_BIT, type, dest, sn, | 
|  | FOP_TO_IDX(op), sm, m); | 
|  |  | 
|  | except = fop->fn(dest, sn, m, fpscr); | 
|  | pr_debug("VFP: itr%d: exceptions=%08x\n", | 
|  | vecitr >> FPSCR_LENGTH_BIT, except); | 
|  |  | 
|  | exceptions |= except; | 
|  |  | 
|  | /* | 
|  | * CHECK: It appears to be undefined whether we stop when | 
|  | * we encounter an exception.  We continue. | 
|  | */ | 
|  | dest = FREG_BANK(dest) + ((FREG_IDX(dest) + vecstride) & 7); | 
|  | sn = FREG_BANK(sn) + ((FREG_IDX(sn) + vecstride) & 7); | 
|  | if (FREG_BANK(sm) != 0) | 
|  | sm = FREG_BANK(sm) + ((FREG_IDX(sm) + vecstride) & 7); | 
|  | } | 
|  | return exceptions; | 
|  |  | 
|  | invalid: | 
|  | return (u32)-1; | 
|  | } |