|  | /* | 
|  | * Generic VM initialization for x86-64 NUMA setups. | 
|  | * Copyright 2002,2003 Andi Kleen, SuSE Labs. | 
|  | */ | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/mmzone.h> | 
|  | #include <linux/ctype.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/nodemask.h> | 
|  | #include <linux/sched.h> | 
|  |  | 
|  | #include <asm/e820.h> | 
|  | #include <asm/proto.h> | 
|  | #include <asm/dma.h> | 
|  | #include <asm/numa.h> | 
|  | #include <asm/acpi.h> | 
|  | #include <asm/amd_nb.h> | 
|  |  | 
|  | struct pglist_data *node_data[MAX_NUMNODES] __read_mostly; | 
|  | EXPORT_SYMBOL(node_data); | 
|  |  | 
|  | struct memnode memnode; | 
|  |  | 
|  | s16 apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = { | 
|  | [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE | 
|  | }; | 
|  |  | 
|  | int numa_off __initdata; | 
|  | static unsigned long __initdata nodemap_addr; | 
|  | static unsigned long __initdata nodemap_size; | 
|  |  | 
|  | /* | 
|  | * Map cpu index to node index | 
|  | */ | 
|  | DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE); | 
|  | EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map); | 
|  |  | 
|  | /* | 
|  | * Given a shift value, try to populate memnodemap[] | 
|  | * Returns : | 
|  | * 1 if OK | 
|  | * 0 if memnodmap[] too small (of shift too small) | 
|  | * -1 if node overlap or lost ram (shift too big) | 
|  | */ | 
|  | static int __init populate_memnodemap(const struct bootnode *nodes, | 
|  | int numnodes, int shift, int *nodeids) | 
|  | { | 
|  | unsigned long addr, end; | 
|  | int i, res = -1; | 
|  |  | 
|  | memset(memnodemap, 0xff, sizeof(s16)*memnodemapsize); | 
|  | for (i = 0; i < numnodes; i++) { | 
|  | addr = nodes[i].start; | 
|  | end = nodes[i].end; | 
|  | if (addr >= end) | 
|  | continue; | 
|  | if ((end >> shift) >= memnodemapsize) | 
|  | return 0; | 
|  | do { | 
|  | if (memnodemap[addr >> shift] != NUMA_NO_NODE) | 
|  | return -1; | 
|  |  | 
|  | if (!nodeids) | 
|  | memnodemap[addr >> shift] = i; | 
|  | else | 
|  | memnodemap[addr >> shift] = nodeids[i]; | 
|  |  | 
|  | addr += (1UL << shift); | 
|  | } while (addr < end); | 
|  | res = 1; | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static int __init allocate_cachealigned_memnodemap(void) | 
|  | { | 
|  | unsigned long addr; | 
|  |  | 
|  | memnodemap = memnode.embedded_map; | 
|  | if (memnodemapsize <= ARRAY_SIZE(memnode.embedded_map)) | 
|  | return 0; | 
|  |  | 
|  | addr = 0x8000; | 
|  | nodemap_size = roundup(sizeof(s16) * memnodemapsize, L1_CACHE_BYTES); | 
|  | nodemap_addr = memblock_find_in_range(addr, max_pfn<<PAGE_SHIFT, | 
|  | nodemap_size, L1_CACHE_BYTES); | 
|  | if (nodemap_addr == MEMBLOCK_ERROR) { | 
|  | printk(KERN_ERR | 
|  | "NUMA: Unable to allocate Memory to Node hash map\n"); | 
|  | nodemap_addr = nodemap_size = 0; | 
|  | return -1; | 
|  | } | 
|  | memnodemap = phys_to_virt(nodemap_addr); | 
|  | memblock_x86_reserve_range(nodemap_addr, nodemap_addr + nodemap_size, "MEMNODEMAP"); | 
|  |  | 
|  | printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n", | 
|  | nodemap_addr, nodemap_addr + nodemap_size); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The LSB of all start and end addresses in the node map is the value of the | 
|  | * maximum possible shift. | 
|  | */ | 
|  | static int __init extract_lsb_from_nodes(const struct bootnode *nodes, | 
|  | int numnodes) | 
|  | { | 
|  | int i, nodes_used = 0; | 
|  | unsigned long start, end; | 
|  | unsigned long bitfield = 0, memtop = 0; | 
|  |  | 
|  | for (i = 0; i < numnodes; i++) { | 
|  | start = nodes[i].start; | 
|  | end = nodes[i].end; | 
|  | if (start >= end) | 
|  | continue; | 
|  | bitfield |= start; | 
|  | nodes_used++; | 
|  | if (end > memtop) | 
|  | memtop = end; | 
|  | } | 
|  | if (nodes_used <= 1) | 
|  | i = 63; | 
|  | else | 
|  | i = find_first_bit(&bitfield, sizeof(unsigned long)*8); | 
|  | memnodemapsize = (memtop >> i)+1; | 
|  | return i; | 
|  | } | 
|  |  | 
|  | int __init compute_hash_shift(struct bootnode *nodes, int numnodes, | 
|  | int *nodeids) | 
|  | { | 
|  | int shift; | 
|  |  | 
|  | shift = extract_lsb_from_nodes(nodes, numnodes); | 
|  | if (allocate_cachealigned_memnodemap()) | 
|  | return -1; | 
|  | printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n", | 
|  | shift); | 
|  |  | 
|  | if (populate_memnodemap(nodes, numnodes, shift, nodeids) != 1) { | 
|  | printk(KERN_INFO "Your memory is not aligned you need to " | 
|  | "rebuild your kernel with a bigger NODEMAPSIZE " | 
|  | "shift=%d\n", shift); | 
|  | return -1; | 
|  | } | 
|  | return shift; | 
|  | } | 
|  |  | 
|  | int __meminit  __early_pfn_to_nid(unsigned long pfn) | 
|  | { | 
|  | return phys_to_nid(pfn << PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | static void * __init early_node_mem(int nodeid, unsigned long start, | 
|  | unsigned long end, unsigned long size, | 
|  | unsigned long align) | 
|  | { | 
|  | unsigned long mem; | 
|  |  | 
|  | /* | 
|  | * put it on high as possible | 
|  | * something will go with NODE_DATA | 
|  | */ | 
|  | if (start < (MAX_DMA_PFN<<PAGE_SHIFT)) | 
|  | start = MAX_DMA_PFN<<PAGE_SHIFT; | 
|  | if (start < (MAX_DMA32_PFN<<PAGE_SHIFT) && | 
|  | end > (MAX_DMA32_PFN<<PAGE_SHIFT)) | 
|  | start = MAX_DMA32_PFN<<PAGE_SHIFT; | 
|  | mem = memblock_x86_find_in_range_node(nodeid, start, end, size, align); | 
|  | if (mem != MEMBLOCK_ERROR) | 
|  | return __va(mem); | 
|  |  | 
|  | /* extend the search scope */ | 
|  | end = max_pfn_mapped << PAGE_SHIFT; | 
|  | start = MAX_DMA_PFN << PAGE_SHIFT; | 
|  | mem = memblock_find_in_range(start, end, size, align); | 
|  | if (mem != MEMBLOCK_ERROR) | 
|  | return __va(mem); | 
|  |  | 
|  | printk(KERN_ERR "Cannot find %lu bytes in node %d\n", | 
|  | size, nodeid); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Initialize bootmem allocator for a node */ | 
|  | void __init | 
|  | setup_node_bootmem(int nodeid, unsigned long start, unsigned long end) | 
|  | { | 
|  | unsigned long start_pfn, last_pfn, nodedata_phys; | 
|  | const int pgdat_size = roundup(sizeof(pg_data_t), PAGE_SIZE); | 
|  | int nid; | 
|  |  | 
|  | if (!end) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Don't confuse VM with a node that doesn't have the | 
|  | * minimum amount of memory: | 
|  | */ | 
|  | if (end && (end - start) < NODE_MIN_SIZE) | 
|  | return; | 
|  |  | 
|  | start = roundup(start, ZONE_ALIGN); | 
|  |  | 
|  | printk(KERN_INFO "Initmem setup node %d %016lx-%016lx\n", nodeid, | 
|  | start, end); | 
|  |  | 
|  | start_pfn = start >> PAGE_SHIFT; | 
|  | last_pfn = end >> PAGE_SHIFT; | 
|  |  | 
|  | node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size, | 
|  | SMP_CACHE_BYTES); | 
|  | if (node_data[nodeid] == NULL) | 
|  | return; | 
|  | nodedata_phys = __pa(node_data[nodeid]); | 
|  | memblock_x86_reserve_range(nodedata_phys, nodedata_phys + pgdat_size, "NODE_DATA"); | 
|  | printk(KERN_INFO "  NODE_DATA [%016lx - %016lx]\n", nodedata_phys, | 
|  | nodedata_phys + pgdat_size - 1); | 
|  | nid = phys_to_nid(nodedata_phys); | 
|  | if (nid != nodeid) | 
|  | printk(KERN_INFO "    NODE_DATA(%d) on node %d\n", nodeid, nid); | 
|  |  | 
|  | memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t)); | 
|  | NODE_DATA(nodeid)->node_id = nodeid; | 
|  | NODE_DATA(nodeid)->node_start_pfn = start_pfn; | 
|  | NODE_DATA(nodeid)->node_spanned_pages = last_pfn - start_pfn; | 
|  |  | 
|  | node_set_online(nodeid); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There are unfortunately some poorly designed mainboards around that | 
|  | * only connect memory to a single CPU. This breaks the 1:1 cpu->node | 
|  | * mapping. To avoid this fill in the mapping for all possible CPUs, | 
|  | * as the number of CPUs is not known yet. We round robin the existing | 
|  | * nodes. | 
|  | */ | 
|  | void __init numa_init_array(void) | 
|  | { | 
|  | int rr, i; | 
|  |  | 
|  | rr = first_node(node_online_map); | 
|  | for (i = 0; i < nr_cpu_ids; i++) { | 
|  | if (early_cpu_to_node(i) != NUMA_NO_NODE) | 
|  | continue; | 
|  | numa_set_node(i, rr); | 
|  | rr = next_node(rr, node_online_map); | 
|  | if (rr == MAX_NUMNODES) | 
|  | rr = first_node(node_online_map); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA_EMU | 
|  | /* Numa emulation */ | 
|  | static struct bootnode nodes[MAX_NUMNODES] __initdata; | 
|  | static struct bootnode physnodes[MAX_NUMNODES] __cpuinitdata; | 
|  | static char *cmdline __initdata; | 
|  |  | 
|  | static int __init setup_physnodes(unsigned long start, unsigned long end, | 
|  | int acpi, int amd) | 
|  | { | 
|  | int ret = 0; | 
|  | int i; | 
|  |  | 
|  | memset(physnodes, 0, sizeof(physnodes)); | 
|  | #ifdef CONFIG_ACPI_NUMA | 
|  | if (acpi) | 
|  | acpi_get_nodes(physnodes, start, end); | 
|  | #endif | 
|  | #ifdef CONFIG_AMD_NUMA | 
|  | if (amd) | 
|  | amd_get_nodes(physnodes); | 
|  | #endif | 
|  | /* | 
|  | * Basic sanity checking on the physical node map: there may be errors | 
|  | * if the SRAT or AMD code incorrectly reported the topology or the mem= | 
|  | * kernel parameter is used. | 
|  | */ | 
|  | for (i = 0; i < MAX_NUMNODES; i++) { | 
|  | if (physnodes[i].start == physnodes[i].end) | 
|  | continue; | 
|  | if (physnodes[i].start > end) { | 
|  | physnodes[i].end = physnodes[i].start; | 
|  | continue; | 
|  | } | 
|  | if (physnodes[i].end < start) { | 
|  | physnodes[i].start = physnodes[i].end; | 
|  | continue; | 
|  | } | 
|  | if (physnodes[i].start < start) | 
|  | physnodes[i].start = start; | 
|  | if (physnodes[i].end > end) | 
|  | physnodes[i].end = end; | 
|  | ret++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If no physical topology was detected, a single node is faked to cover | 
|  | * the entire address space. | 
|  | */ | 
|  | if (!ret) { | 
|  | physnodes[ret].start = start; | 
|  | physnodes[ret].end = end; | 
|  | ret = 1; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void __init fake_physnodes(int acpi, int amd, int nr_nodes) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | BUG_ON(acpi && amd); | 
|  | #ifdef CONFIG_ACPI_NUMA | 
|  | if (acpi) | 
|  | acpi_fake_nodes(nodes, nr_nodes); | 
|  | #endif | 
|  | #ifdef CONFIG_AMD_NUMA | 
|  | if (amd) | 
|  | amd_fake_nodes(nodes, nr_nodes); | 
|  | #endif | 
|  | if (!acpi && !amd) | 
|  | for (i = 0; i < nr_cpu_ids; i++) | 
|  | numa_set_node(i, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Setups up nid to range from addr to addr + size.  If the end | 
|  | * boundary is greater than max_addr, then max_addr is used instead. | 
|  | * The return value is 0 if there is additional memory left for | 
|  | * allocation past addr and -1 otherwise.  addr is adjusted to be at | 
|  | * the end of the node. | 
|  | */ | 
|  | static int __init setup_node_range(int nid, u64 *addr, u64 size, u64 max_addr) | 
|  | { | 
|  | int ret = 0; | 
|  | nodes[nid].start = *addr; | 
|  | *addr += size; | 
|  | if (*addr >= max_addr) { | 
|  | *addr = max_addr; | 
|  | ret = -1; | 
|  | } | 
|  | nodes[nid].end = *addr; | 
|  | node_set(nid, node_possible_map); | 
|  | printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid, | 
|  | nodes[nid].start, nodes[nid].end, | 
|  | (nodes[nid].end - nodes[nid].start) >> 20); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sets up nr_nodes fake nodes interleaved over physical nodes ranging from addr | 
|  | * to max_addr.  The return value is the number of nodes allocated. | 
|  | */ | 
|  | static int __init split_nodes_interleave(u64 addr, u64 max_addr, int nr_nodes) | 
|  | { | 
|  | nodemask_t physnode_mask = NODE_MASK_NONE; | 
|  | u64 size; | 
|  | int big; | 
|  | int ret = 0; | 
|  | int i; | 
|  |  | 
|  | if (nr_nodes <= 0) | 
|  | return -1; | 
|  | if (nr_nodes > MAX_NUMNODES) { | 
|  | pr_info("numa=fake=%d too large, reducing to %d\n", | 
|  | nr_nodes, MAX_NUMNODES); | 
|  | nr_nodes = MAX_NUMNODES; | 
|  | } | 
|  |  | 
|  | size = (max_addr - addr - memblock_x86_hole_size(addr, max_addr)) / nr_nodes; | 
|  | /* | 
|  | * Calculate the number of big nodes that can be allocated as a result | 
|  | * of consolidating the remainder. | 
|  | */ | 
|  | big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * nr_nodes) / | 
|  | FAKE_NODE_MIN_SIZE; | 
|  |  | 
|  | size &= FAKE_NODE_MIN_HASH_MASK; | 
|  | if (!size) { | 
|  | pr_err("Not enough memory for each node.  " | 
|  | "NUMA emulation disabled.\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < MAX_NUMNODES; i++) | 
|  | if (physnodes[i].start != physnodes[i].end) | 
|  | node_set(i, physnode_mask); | 
|  |  | 
|  | /* | 
|  | * Continue to fill physical nodes with fake nodes until there is no | 
|  | * memory left on any of them. | 
|  | */ | 
|  | while (nodes_weight(physnode_mask)) { | 
|  | for_each_node_mask(i, physnode_mask) { | 
|  | u64 end = physnodes[i].start + size; | 
|  | u64 dma32_end = PFN_PHYS(MAX_DMA32_PFN); | 
|  |  | 
|  | if (ret < big) | 
|  | end += FAKE_NODE_MIN_SIZE; | 
|  |  | 
|  | /* | 
|  | * Continue to add memory to this fake node if its | 
|  | * non-reserved memory is less than the per-node size. | 
|  | */ | 
|  | while (end - physnodes[i].start - | 
|  | memblock_x86_hole_size(physnodes[i].start, end) < size) { | 
|  | end += FAKE_NODE_MIN_SIZE; | 
|  | if (end > physnodes[i].end) { | 
|  | end = physnodes[i].end; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If there won't be at least FAKE_NODE_MIN_SIZE of | 
|  | * non-reserved memory in ZONE_DMA32 for the next node, | 
|  | * this one must extend to the boundary. | 
|  | */ | 
|  | if (end < dma32_end && dma32_end - end - | 
|  | memblock_x86_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE) | 
|  | end = dma32_end; | 
|  |  | 
|  | /* | 
|  | * If there won't be enough non-reserved memory for the | 
|  | * next node, this one must extend to the end of the | 
|  | * physical node. | 
|  | */ | 
|  | if (physnodes[i].end - end - | 
|  | memblock_x86_hole_size(end, physnodes[i].end) < size) | 
|  | end = physnodes[i].end; | 
|  |  | 
|  | /* | 
|  | * Avoid allocating more nodes than requested, which can | 
|  | * happen as a result of rounding down each node's size | 
|  | * to FAKE_NODE_MIN_SIZE. | 
|  | */ | 
|  | if (nodes_weight(physnode_mask) + ret >= nr_nodes) | 
|  | end = physnodes[i].end; | 
|  |  | 
|  | if (setup_node_range(ret++, &physnodes[i].start, | 
|  | end - physnodes[i].start, | 
|  | physnodes[i].end) < 0) | 
|  | node_clear(i, physnode_mask); | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns the end address of a node so that there is at least `size' amount of | 
|  | * non-reserved memory or `max_addr' is reached. | 
|  | */ | 
|  | static u64 __init find_end_of_node(u64 start, u64 max_addr, u64 size) | 
|  | { | 
|  | u64 end = start + size; | 
|  |  | 
|  | while (end - start - memblock_x86_hole_size(start, end) < size) { | 
|  | end += FAKE_NODE_MIN_SIZE; | 
|  | if (end > max_addr) { | 
|  | end = max_addr; | 
|  | break; | 
|  | } | 
|  | } | 
|  | return end; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sets up fake nodes of `size' interleaved over physical nodes ranging from | 
|  | * `addr' to `max_addr'.  The return value is the number of nodes allocated. | 
|  | */ | 
|  | static int __init split_nodes_size_interleave(u64 addr, u64 max_addr, u64 size) | 
|  | { | 
|  | nodemask_t physnode_mask = NODE_MASK_NONE; | 
|  | u64 min_size; | 
|  | int ret = 0; | 
|  | int i; | 
|  |  | 
|  | if (!size) | 
|  | return -1; | 
|  | /* | 
|  | * The limit on emulated nodes is MAX_NUMNODES, so the size per node is | 
|  | * increased accordingly if the requested size is too small.  This | 
|  | * creates a uniform distribution of node sizes across the entire | 
|  | * machine (but not necessarily over physical nodes). | 
|  | */ | 
|  | min_size = (max_addr - addr - memblock_x86_hole_size(addr, max_addr)) / | 
|  | MAX_NUMNODES; | 
|  | min_size = max(min_size, FAKE_NODE_MIN_SIZE); | 
|  | if ((min_size & FAKE_NODE_MIN_HASH_MASK) < min_size) | 
|  | min_size = (min_size + FAKE_NODE_MIN_SIZE) & | 
|  | FAKE_NODE_MIN_HASH_MASK; | 
|  | if (size < min_size) { | 
|  | pr_err("Fake node size %LuMB too small, increasing to %LuMB\n", | 
|  | size >> 20, min_size >> 20); | 
|  | size = min_size; | 
|  | } | 
|  | size &= FAKE_NODE_MIN_HASH_MASK; | 
|  |  | 
|  | for (i = 0; i < MAX_NUMNODES; i++) | 
|  | if (physnodes[i].start != physnodes[i].end) | 
|  | node_set(i, physnode_mask); | 
|  | /* | 
|  | * Fill physical nodes with fake nodes of size until there is no memory | 
|  | * left on any of them. | 
|  | */ | 
|  | while (nodes_weight(physnode_mask)) { | 
|  | for_each_node_mask(i, physnode_mask) { | 
|  | u64 dma32_end = MAX_DMA32_PFN << PAGE_SHIFT; | 
|  | u64 end; | 
|  |  | 
|  | end = find_end_of_node(physnodes[i].start, | 
|  | physnodes[i].end, size); | 
|  | /* | 
|  | * If there won't be at least FAKE_NODE_MIN_SIZE of | 
|  | * non-reserved memory in ZONE_DMA32 for the next node, | 
|  | * this one must extend to the boundary. | 
|  | */ | 
|  | if (end < dma32_end && dma32_end - end - | 
|  | memblock_x86_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE) | 
|  | end = dma32_end; | 
|  |  | 
|  | /* | 
|  | * If there won't be enough non-reserved memory for the | 
|  | * next node, this one must extend to the end of the | 
|  | * physical node. | 
|  | */ | 
|  | if (physnodes[i].end - end - | 
|  | memblock_x86_hole_size(end, physnodes[i].end) < size) | 
|  | end = physnodes[i].end; | 
|  |  | 
|  | /* | 
|  | * Setup the fake node that will be allocated as bootmem | 
|  | * later.  If setup_node_range() returns non-zero, there | 
|  | * is no more memory available on this physical node. | 
|  | */ | 
|  | if (setup_node_range(ret++, &physnodes[i].start, | 
|  | end - physnodes[i].start, | 
|  | physnodes[i].end) < 0) | 
|  | node_clear(i, physnode_mask); | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sets up the system RAM area from start_pfn to last_pfn according to the | 
|  | * numa=fake command-line option. | 
|  | */ | 
|  | static int __init numa_emulation(unsigned long start_pfn, | 
|  | unsigned long last_pfn, int acpi, int amd) | 
|  | { | 
|  | u64 addr = start_pfn << PAGE_SHIFT; | 
|  | u64 max_addr = last_pfn << PAGE_SHIFT; | 
|  | int num_nodes; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * If the numa=fake command-line contains a 'M' or 'G', it represents | 
|  | * the fixed node size.  Otherwise, if it is just a single number N, | 
|  | * split the system RAM into N fake nodes. | 
|  | */ | 
|  | if (strchr(cmdline, 'M') || strchr(cmdline, 'G')) { | 
|  | u64 size; | 
|  |  | 
|  | size = memparse(cmdline, &cmdline); | 
|  | num_nodes = split_nodes_size_interleave(addr, max_addr, size); | 
|  | } else { | 
|  | unsigned long n; | 
|  |  | 
|  | n = simple_strtoul(cmdline, NULL, 0); | 
|  | num_nodes = split_nodes_interleave(addr, max_addr, n); | 
|  | } | 
|  |  | 
|  | if (num_nodes < 0) | 
|  | return num_nodes; | 
|  | memnode_shift = compute_hash_shift(nodes, num_nodes, NULL); | 
|  | if (memnode_shift < 0) { | 
|  | memnode_shift = 0; | 
|  | printk(KERN_ERR "No NUMA hash function found.  NUMA emulation " | 
|  | "disabled.\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to vacate all active ranges that may have been registered for | 
|  | * the e820 memory map. | 
|  | */ | 
|  | remove_all_active_ranges(); | 
|  | for_each_node_mask(i, node_possible_map) { | 
|  | memblock_x86_register_active_regions(i, nodes[i].start >> PAGE_SHIFT, | 
|  | nodes[i].end >> PAGE_SHIFT); | 
|  | setup_node_bootmem(i, nodes[i].start, nodes[i].end); | 
|  | } | 
|  | setup_physnodes(addr, max_addr, acpi, amd); | 
|  | fake_physnodes(acpi, amd, num_nodes); | 
|  | numa_init_array(); | 
|  | return 0; | 
|  | } | 
|  | #endif /* CONFIG_NUMA_EMU */ | 
|  |  | 
|  | void __init initmem_init(unsigned long start_pfn, unsigned long last_pfn, | 
|  | int acpi, int amd) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | nodes_clear(node_possible_map); | 
|  | nodes_clear(node_online_map); | 
|  |  | 
|  | #ifdef CONFIG_NUMA_EMU | 
|  | setup_physnodes(start_pfn << PAGE_SHIFT, last_pfn << PAGE_SHIFT, | 
|  | acpi, amd); | 
|  | if (cmdline && !numa_emulation(start_pfn, last_pfn, acpi, amd)) | 
|  | return; | 
|  | setup_physnodes(start_pfn << PAGE_SHIFT, last_pfn << PAGE_SHIFT, | 
|  | acpi, amd); | 
|  | nodes_clear(node_possible_map); | 
|  | nodes_clear(node_online_map); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_ACPI_NUMA | 
|  | if (!numa_off && acpi && !acpi_scan_nodes(start_pfn << PAGE_SHIFT, | 
|  | last_pfn << PAGE_SHIFT)) | 
|  | return; | 
|  | nodes_clear(node_possible_map); | 
|  | nodes_clear(node_online_map); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_AMD_NUMA | 
|  | if (!numa_off && amd && !amd_scan_nodes()) | 
|  | return; | 
|  | nodes_clear(node_possible_map); | 
|  | nodes_clear(node_online_map); | 
|  | #endif | 
|  | printk(KERN_INFO "%s\n", | 
|  | numa_off ? "NUMA turned off" : "No NUMA configuration found"); | 
|  |  | 
|  | printk(KERN_INFO "Faking a node at %016lx-%016lx\n", | 
|  | start_pfn << PAGE_SHIFT, | 
|  | last_pfn << PAGE_SHIFT); | 
|  | /* setup dummy node covering all memory */ | 
|  | memnode_shift = 63; | 
|  | memnodemap = memnode.embedded_map; | 
|  | memnodemap[0] = 0; | 
|  | node_set_online(0); | 
|  | node_set(0, node_possible_map); | 
|  | for (i = 0; i < nr_cpu_ids; i++) | 
|  | numa_set_node(i, 0); | 
|  | memblock_x86_register_active_regions(0, start_pfn, last_pfn); | 
|  | setup_node_bootmem(0, start_pfn << PAGE_SHIFT, last_pfn << PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | unsigned long __init numa_free_all_bootmem(void) | 
|  | { | 
|  | unsigned long pages = 0; | 
|  | int i; | 
|  |  | 
|  | for_each_online_node(i) | 
|  | pages += free_all_bootmem_node(NODE_DATA(i)); | 
|  |  | 
|  | pages += free_all_memory_core_early(MAX_NUMNODES); | 
|  |  | 
|  | return pages; | 
|  | } | 
|  |  | 
|  | static __init int numa_setup(char *opt) | 
|  | { | 
|  | if (!opt) | 
|  | return -EINVAL; | 
|  | if (!strncmp(opt, "off", 3)) | 
|  | numa_off = 1; | 
|  | #ifdef CONFIG_NUMA_EMU | 
|  | if (!strncmp(opt, "fake=", 5)) | 
|  | cmdline = opt + 5; | 
|  | #endif | 
|  | #ifdef CONFIG_ACPI_NUMA | 
|  | if (!strncmp(opt, "noacpi", 6)) | 
|  | acpi_numa = -1; | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  | early_param("numa", numa_setup); | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  |  | 
|  | static __init int find_near_online_node(int node) | 
|  | { | 
|  | int n, val; | 
|  | int min_val = INT_MAX; | 
|  | int best_node = -1; | 
|  |  | 
|  | for_each_online_node(n) { | 
|  | val = node_distance(node, n); | 
|  |  | 
|  | if (val < min_val) { | 
|  | min_val = val; | 
|  | best_node = n; | 
|  | } | 
|  | } | 
|  |  | 
|  | return best_node; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Setup early cpu_to_node. | 
|  | * | 
|  | * Populate cpu_to_node[] only if x86_cpu_to_apicid[], | 
|  | * and apicid_to_node[] tables have valid entries for a CPU. | 
|  | * This means we skip cpu_to_node[] initialisation for NUMA | 
|  | * emulation and faking node case (when running a kernel compiled | 
|  | * for NUMA on a non NUMA box), which is OK as cpu_to_node[] | 
|  | * is already initialized in a round robin manner at numa_init_array, | 
|  | * prior to this call, and this initialization is good enough | 
|  | * for the fake NUMA cases. | 
|  | * | 
|  | * Called before the per_cpu areas are setup. | 
|  | */ | 
|  | void __init init_cpu_to_node(void) | 
|  | { | 
|  | int cpu; | 
|  | u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid); | 
|  |  | 
|  | BUG_ON(cpu_to_apicid == NULL); | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | int node; | 
|  | u16 apicid = cpu_to_apicid[cpu]; | 
|  |  | 
|  | if (apicid == BAD_APICID) | 
|  | continue; | 
|  | node = apicid_to_node[apicid]; | 
|  | if (node == NUMA_NO_NODE) | 
|  | continue; | 
|  | if (!node_online(node)) | 
|  | node = find_near_online_node(node); | 
|  | numa_set_node(cpu, node); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | void __cpuinit numa_set_node(int cpu, int node) | 
|  | { | 
|  | int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map); | 
|  |  | 
|  | /* early setting, no percpu area yet */ | 
|  | if (cpu_to_node_map) { | 
|  | cpu_to_node_map[cpu] = node; | 
|  | return; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_PER_CPU_MAPS | 
|  | if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) { | 
|  | printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu); | 
|  | dump_stack(); | 
|  | return; | 
|  | } | 
|  | #endif | 
|  | per_cpu(x86_cpu_to_node_map, cpu) = node; | 
|  |  | 
|  | if (node != NUMA_NO_NODE) | 
|  | set_cpu_numa_node(cpu, node); | 
|  | } | 
|  |  | 
|  | void __cpuinit numa_clear_node(int cpu) | 
|  | { | 
|  | numa_set_node(cpu, NUMA_NO_NODE); | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_DEBUG_PER_CPU_MAPS | 
|  |  | 
|  | #ifndef CONFIG_NUMA_EMU | 
|  | void __cpuinit numa_add_cpu(int cpu) | 
|  | { | 
|  | cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]); | 
|  | } | 
|  |  | 
|  | void __cpuinit numa_remove_cpu(int cpu) | 
|  | { | 
|  | cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]); | 
|  | } | 
|  | #else | 
|  | void __cpuinit numa_add_cpu(int cpu) | 
|  | { | 
|  | unsigned long addr; | 
|  | u16 apicid; | 
|  | int physnid; | 
|  | int nid = NUMA_NO_NODE; | 
|  |  | 
|  | apicid = early_per_cpu(x86_cpu_to_apicid, cpu); | 
|  | if (apicid != BAD_APICID) | 
|  | nid = apicid_to_node[apicid]; | 
|  | if (nid == NUMA_NO_NODE) | 
|  | nid = early_cpu_to_node(cpu); | 
|  | BUG_ON(nid == NUMA_NO_NODE || !node_online(nid)); | 
|  |  | 
|  | /* | 
|  | * Use the starting address of the emulated node to find which physical | 
|  | * node it is allocated on. | 
|  | */ | 
|  | addr = node_start_pfn(nid) << PAGE_SHIFT; | 
|  | for (physnid = 0; physnid < MAX_NUMNODES; physnid++) | 
|  | if (addr >= physnodes[physnid].start && | 
|  | addr < physnodes[physnid].end) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Map the cpu to each emulated node that is allocated on the physical | 
|  | * node of the cpu's apic id. | 
|  | */ | 
|  | for_each_online_node(nid) { | 
|  | addr = node_start_pfn(nid) << PAGE_SHIFT; | 
|  | if (addr >= physnodes[physnid].start && | 
|  | addr < physnodes[physnid].end) | 
|  | cpumask_set_cpu(cpu, node_to_cpumask_map[nid]); | 
|  | } | 
|  | } | 
|  |  | 
|  | void __cpuinit numa_remove_cpu(int cpu) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for_each_online_node(i) | 
|  | cpumask_clear_cpu(cpu, node_to_cpumask_map[i]); | 
|  | } | 
|  | #endif /* !CONFIG_NUMA_EMU */ | 
|  |  | 
|  | #else /* CONFIG_DEBUG_PER_CPU_MAPS */ | 
|  | static struct cpumask __cpuinit *debug_cpumask_set_cpu(int cpu, int enable) | 
|  | { | 
|  | int node = early_cpu_to_node(cpu); | 
|  | struct cpumask *mask; | 
|  | char buf[64]; | 
|  |  | 
|  | mask = node_to_cpumask_map[node]; | 
|  | if (!mask) { | 
|  | pr_err("node_to_cpumask_map[%i] NULL\n", node); | 
|  | dump_stack(); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | cpulist_scnprintf(buf, sizeof(buf), mask); | 
|  | printk(KERN_DEBUG "%s cpu %d node %d: mask now %s\n", | 
|  | enable ? "numa_add_cpu" : "numa_remove_cpu", | 
|  | cpu, node, buf); | 
|  | return mask; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * --------- debug versions of the numa functions --------- | 
|  | */ | 
|  | #ifndef CONFIG_NUMA_EMU | 
|  | static void __cpuinit numa_set_cpumask(int cpu, int enable) | 
|  | { | 
|  | struct cpumask *mask; | 
|  |  | 
|  | mask = debug_cpumask_set_cpu(cpu, enable); | 
|  | if (!mask) | 
|  | return; | 
|  |  | 
|  | if (enable) | 
|  | cpumask_set_cpu(cpu, mask); | 
|  | else | 
|  | cpumask_clear_cpu(cpu, mask); | 
|  | } | 
|  | #else | 
|  | static void __cpuinit numa_set_cpumask(int cpu, int enable) | 
|  | { | 
|  | int node = early_cpu_to_node(cpu); | 
|  | struct cpumask *mask; | 
|  | int i; | 
|  |  | 
|  | for_each_online_node(i) { | 
|  | unsigned long addr; | 
|  |  | 
|  | addr = node_start_pfn(i) << PAGE_SHIFT; | 
|  | if (addr < physnodes[node].start || | 
|  | addr >= physnodes[node].end) | 
|  | continue; | 
|  | mask = debug_cpumask_set_cpu(cpu, enable); | 
|  | if (!mask) | 
|  | return; | 
|  |  | 
|  | if (enable) | 
|  | cpumask_set_cpu(cpu, mask); | 
|  | else | 
|  | cpumask_clear_cpu(cpu, mask); | 
|  | } | 
|  | } | 
|  | #endif /* CONFIG_NUMA_EMU */ | 
|  |  | 
|  | void __cpuinit numa_add_cpu(int cpu) | 
|  | { | 
|  | numa_set_cpumask(cpu, 1); | 
|  | } | 
|  |  | 
|  | void __cpuinit numa_remove_cpu(int cpu) | 
|  | { | 
|  | numa_set_cpumask(cpu, 0); | 
|  | } | 
|  |  | 
|  | int __cpu_to_node(int cpu) | 
|  | { | 
|  | if (early_per_cpu_ptr(x86_cpu_to_node_map)) { | 
|  | printk(KERN_WARNING | 
|  | "cpu_to_node(%d): usage too early!\n", cpu); | 
|  | dump_stack(); | 
|  | return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu]; | 
|  | } | 
|  | return per_cpu(x86_cpu_to_node_map, cpu); | 
|  | } | 
|  | EXPORT_SYMBOL(__cpu_to_node); | 
|  |  | 
|  | /* | 
|  | * Same function as cpu_to_node() but used if called before the | 
|  | * per_cpu areas are setup. | 
|  | */ | 
|  | int early_cpu_to_node(int cpu) | 
|  | { | 
|  | if (early_per_cpu_ptr(x86_cpu_to_node_map)) | 
|  | return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu]; | 
|  |  | 
|  | if (!cpu_possible(cpu)) { | 
|  | printk(KERN_WARNING | 
|  | "early_cpu_to_node(%d): no per_cpu area!\n", cpu); | 
|  | dump_stack(); | 
|  | return NUMA_NO_NODE; | 
|  | } | 
|  | return per_cpu(x86_cpu_to_node_map, cpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * --------- end of debug versions of the numa functions --------- | 
|  | */ | 
|  |  | 
|  | #endif /* CONFIG_DEBUG_PER_CPU_MAPS */ |