|  | /* | 
|  | * Copyright 2002 Andi Kleen, SuSE Labs. | 
|  | * Thanks to Ben LaHaise for precious feedback. | 
|  | */ | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/debugfs.h> | 
|  | #include <linux/pfn.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/pci.h> | 
|  |  | 
|  | #include <asm/e820.h> | 
|  | #include <asm/processor.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/sections.h> | 
|  | #include <asm/setup.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/proto.h> | 
|  | #include <asm/pat.h> | 
|  |  | 
|  | /* | 
|  | * The current flushing context - we pass it instead of 5 arguments: | 
|  | */ | 
|  | struct cpa_data { | 
|  | unsigned long	*vaddr; | 
|  | pgprot_t	mask_set; | 
|  | pgprot_t	mask_clr; | 
|  | int		numpages; | 
|  | int		flags; | 
|  | unsigned long	pfn; | 
|  | unsigned	force_split : 1; | 
|  | int		curpage; | 
|  | struct page	**pages; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings) | 
|  | * using cpa_lock. So that we don't allow any other cpu, with stale large tlb | 
|  | * entries change the page attribute in parallel to some other cpu | 
|  | * splitting a large page entry along with changing the attribute. | 
|  | */ | 
|  | static DEFINE_SPINLOCK(cpa_lock); | 
|  |  | 
|  | #define CPA_FLUSHTLB 1 | 
|  | #define CPA_ARRAY 2 | 
|  | #define CPA_PAGES_ARRAY 4 | 
|  |  | 
|  | #ifdef CONFIG_PROC_FS | 
|  | static unsigned long direct_pages_count[PG_LEVEL_NUM]; | 
|  |  | 
|  | void update_page_count(int level, unsigned long pages) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | /* Protect against CPA */ | 
|  | spin_lock_irqsave(&pgd_lock, flags); | 
|  | direct_pages_count[level] += pages; | 
|  | spin_unlock_irqrestore(&pgd_lock, flags); | 
|  | } | 
|  |  | 
|  | static void split_page_count(int level) | 
|  | { | 
|  | direct_pages_count[level]--; | 
|  | direct_pages_count[level - 1] += PTRS_PER_PTE; | 
|  | } | 
|  |  | 
|  | void arch_report_meminfo(struct seq_file *m) | 
|  | { | 
|  | seq_printf(m, "DirectMap4k:    %8lu kB\n", | 
|  | direct_pages_count[PG_LEVEL_4K] << 2); | 
|  | #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) | 
|  | seq_printf(m, "DirectMap2M:    %8lu kB\n", | 
|  | direct_pages_count[PG_LEVEL_2M] << 11); | 
|  | #else | 
|  | seq_printf(m, "DirectMap4M:    %8lu kB\n", | 
|  | direct_pages_count[PG_LEVEL_2M] << 12); | 
|  | #endif | 
|  | #ifdef CONFIG_X86_64 | 
|  | if (direct_gbpages) | 
|  | seq_printf(m, "DirectMap1G:    %8lu kB\n", | 
|  | direct_pages_count[PG_LEVEL_1G] << 20); | 
|  | #endif | 
|  | } | 
|  | #else | 
|  | static inline void split_page_count(int level) { } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  |  | 
|  | static inline unsigned long highmap_start_pfn(void) | 
|  | { | 
|  | return __pa(_text) >> PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  | static inline unsigned long highmap_end_pfn(void) | 
|  | { | 
|  | return __pa(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_PAGEALLOC | 
|  | # define debug_pagealloc 1 | 
|  | #else | 
|  | # define debug_pagealloc 0 | 
|  | #endif | 
|  |  | 
|  | static inline int | 
|  | within(unsigned long addr, unsigned long start, unsigned long end) | 
|  | { | 
|  | return addr >= start && addr < end; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Flushing functions | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * clflush_cache_range - flush a cache range with clflush | 
|  | * @addr:	virtual start address | 
|  | * @size:	number of bytes to flush | 
|  | * | 
|  | * clflush is an unordered instruction which needs fencing with mfence | 
|  | * to avoid ordering issues. | 
|  | */ | 
|  | void clflush_cache_range(void *vaddr, unsigned int size) | 
|  | { | 
|  | void *vend = vaddr + size - 1; | 
|  |  | 
|  | mb(); | 
|  |  | 
|  | for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size) | 
|  | clflush(vaddr); | 
|  | /* | 
|  | * Flush any possible final partial cacheline: | 
|  | */ | 
|  | clflush(vend); | 
|  |  | 
|  | mb(); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(clflush_cache_range); | 
|  |  | 
|  | static void __cpa_flush_all(void *arg) | 
|  | { | 
|  | unsigned long cache = (unsigned long)arg; | 
|  |  | 
|  | /* | 
|  | * Flush all to work around Errata in early athlons regarding | 
|  | * large page flushing. | 
|  | */ | 
|  | __flush_tlb_all(); | 
|  |  | 
|  | if (cache && boot_cpu_data.x86 >= 4) | 
|  | wbinvd(); | 
|  | } | 
|  |  | 
|  | static void cpa_flush_all(unsigned long cache) | 
|  | { | 
|  | BUG_ON(irqs_disabled()); | 
|  |  | 
|  | on_each_cpu(__cpa_flush_all, (void *) cache, 1); | 
|  | } | 
|  |  | 
|  | static void __cpa_flush_range(void *arg) | 
|  | { | 
|  | /* | 
|  | * We could optimize that further and do individual per page | 
|  | * tlb invalidates for a low number of pages. Caveat: we must | 
|  | * flush the high aliases on 64bit as well. | 
|  | */ | 
|  | __flush_tlb_all(); | 
|  | } | 
|  |  | 
|  | static void cpa_flush_range(unsigned long start, int numpages, int cache) | 
|  | { | 
|  | unsigned int i, level; | 
|  | unsigned long addr; | 
|  |  | 
|  | BUG_ON(irqs_disabled()); | 
|  | WARN_ON(PAGE_ALIGN(start) != start); | 
|  |  | 
|  | on_each_cpu(__cpa_flush_range, NULL, 1); | 
|  |  | 
|  | if (!cache) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * We only need to flush on one CPU, | 
|  | * clflush is a MESI-coherent instruction that | 
|  | * will cause all other CPUs to flush the same | 
|  | * cachelines: | 
|  | */ | 
|  | for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) { | 
|  | pte_t *pte = lookup_address(addr, &level); | 
|  |  | 
|  | /* | 
|  | * Only flush present addresses: | 
|  | */ | 
|  | if (pte && (pte_val(*pte) & _PAGE_PRESENT)) | 
|  | clflush_cache_range((void *) addr, PAGE_SIZE); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void cpa_flush_array(unsigned long *start, int numpages, int cache, | 
|  | int in_flags, struct page **pages) | 
|  | { | 
|  | unsigned int i, level; | 
|  | unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */ | 
|  |  | 
|  | BUG_ON(irqs_disabled()); | 
|  |  | 
|  | on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1); | 
|  |  | 
|  | if (!cache || do_wbinvd) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * We only need to flush on one CPU, | 
|  | * clflush is a MESI-coherent instruction that | 
|  | * will cause all other CPUs to flush the same | 
|  | * cachelines: | 
|  | */ | 
|  | for (i = 0; i < numpages; i++) { | 
|  | unsigned long addr; | 
|  | pte_t *pte; | 
|  |  | 
|  | if (in_flags & CPA_PAGES_ARRAY) | 
|  | addr = (unsigned long)page_address(pages[i]); | 
|  | else | 
|  | addr = start[i]; | 
|  |  | 
|  | pte = lookup_address(addr, &level); | 
|  |  | 
|  | /* | 
|  | * Only flush present addresses: | 
|  | */ | 
|  | if (pte && (pte_val(*pte) & _PAGE_PRESENT)) | 
|  | clflush_cache_range((void *)addr, PAGE_SIZE); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Certain areas of memory on x86 require very specific protection flags, | 
|  | * for example the BIOS area or kernel text. Callers don't always get this | 
|  | * right (again, ioremap() on BIOS memory is not uncommon) so this function | 
|  | * checks and fixes these known static required protection bits. | 
|  | */ | 
|  | static inline pgprot_t static_protections(pgprot_t prot, unsigned long address, | 
|  | unsigned long pfn) | 
|  | { | 
|  | pgprot_t forbidden = __pgprot(0); | 
|  | pgprot_t required = __pgprot(0); | 
|  |  | 
|  | /* | 
|  | * The BIOS area between 640k and 1Mb needs to be executable for | 
|  | * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support. | 
|  | */ | 
|  | #ifdef CONFIG_PCI_BIOS | 
|  | if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT)) | 
|  | pgprot_val(forbidden) |= _PAGE_NX; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * The kernel text needs to be executable for obvious reasons | 
|  | * Does not cover __inittext since that is gone later on. On | 
|  | * 64bit we do not enforce !NX on the low mapping | 
|  | */ | 
|  | if (within(address, (unsigned long)_text, (unsigned long)_etext)) | 
|  | pgprot_val(forbidden) |= _PAGE_NX; | 
|  |  | 
|  | /* | 
|  | * The .rodata section needs to be read-only. Using the pfn | 
|  | * catches all aliases. | 
|  | */ | 
|  | if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT, | 
|  | __pa((unsigned long)__end_rodata) >> PAGE_SHIFT)) | 
|  | pgprot_val(forbidden) |= _PAGE_RW; | 
|  | /* | 
|  | * .data and .bss should always be writable. | 
|  | */ | 
|  | if (within(address, (unsigned long)_sdata, (unsigned long)_edata) || | 
|  | within(address, (unsigned long)__bss_start, (unsigned long)__bss_stop)) | 
|  | pgprot_val(required) |= _PAGE_RW; | 
|  |  | 
|  | #if defined(CONFIG_X86_64) && defined(CONFIG_DEBUG_RODATA) | 
|  | /* | 
|  | * Once the kernel maps the text as RO (kernel_set_to_readonly is set), | 
|  | * kernel text mappings for the large page aligned text, rodata sections | 
|  | * will be always read-only. For the kernel identity mappings covering | 
|  | * the holes caused by this alignment can be anything that user asks. | 
|  | * | 
|  | * This will preserve the large page mappings for kernel text/data | 
|  | * at no extra cost. | 
|  | */ | 
|  | if (kernel_set_to_readonly && | 
|  | within(address, (unsigned long)_text, | 
|  | (unsigned long)__end_rodata_hpage_align)) { | 
|  | unsigned int level; | 
|  |  | 
|  | /* | 
|  | * Don't enforce the !RW mapping for the kernel text mapping, | 
|  | * if the current mapping is already using small page mapping. | 
|  | * No need to work hard to preserve large page mappings in this | 
|  | * case. | 
|  | * | 
|  | * This also fixes the Linux Xen paravirt guest boot failure | 
|  | * (because of unexpected read-only mappings for kernel identity | 
|  | * mappings). In this paravirt guest case, the kernel text | 
|  | * mapping and the kernel identity mapping share the same | 
|  | * page-table pages. Thus we can't really use different | 
|  | * protections for the kernel text and identity mappings. Also, | 
|  | * these shared mappings are made of small page mappings. | 
|  | * Thus this don't enforce !RW mapping for small page kernel | 
|  | * text mapping logic will help Linux Xen parvirt guest boot | 
|  | * aswell. | 
|  | */ | 
|  | if (lookup_address(address, &level) && (level != PG_LEVEL_4K)) | 
|  | pgprot_val(forbidden) |= _PAGE_RW; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden)); | 
|  | prot = __pgprot(pgprot_val(prot) | pgprot_val(required)); | 
|  |  | 
|  | return prot; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Lookup the page table entry for a virtual address. Return a pointer | 
|  | * to the entry and the level of the mapping. | 
|  | * | 
|  | * Note: We return pud and pmd either when the entry is marked large | 
|  | * or when the present bit is not set. Otherwise we would return a | 
|  | * pointer to a nonexisting mapping. | 
|  | */ | 
|  | pte_t *lookup_address(unsigned long address, unsigned int *level) | 
|  | { | 
|  | pgd_t *pgd = pgd_offset_k(address); | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  |  | 
|  | *level = PG_LEVEL_NONE; | 
|  |  | 
|  | if (pgd_none(*pgd)) | 
|  | return NULL; | 
|  |  | 
|  | pud = pud_offset(pgd, address); | 
|  | if (pud_none(*pud)) | 
|  | return NULL; | 
|  |  | 
|  | *level = PG_LEVEL_1G; | 
|  | if (pud_large(*pud) || !pud_present(*pud)) | 
|  | return (pte_t *)pud; | 
|  |  | 
|  | pmd = pmd_offset(pud, address); | 
|  | if (pmd_none(*pmd)) | 
|  | return NULL; | 
|  |  | 
|  | *level = PG_LEVEL_2M; | 
|  | if (pmd_large(*pmd) || !pmd_present(*pmd)) | 
|  | return (pte_t *)pmd; | 
|  |  | 
|  | *level = PG_LEVEL_4K; | 
|  |  | 
|  | return pte_offset_kernel(pmd, address); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(lookup_address); | 
|  |  | 
|  | /* | 
|  | * Set the new pmd in all the pgds we know about: | 
|  | */ | 
|  | static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte) | 
|  | { | 
|  | /* change init_mm */ | 
|  | set_pte_atomic(kpte, pte); | 
|  | #ifdef CONFIG_X86_32 | 
|  | if (!SHARED_KERNEL_PMD) { | 
|  | struct page *page; | 
|  |  | 
|  | list_for_each_entry(page, &pgd_list, lru) { | 
|  | pgd_t *pgd; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  |  | 
|  | pgd = (pgd_t *)page_address(page) + pgd_index(address); | 
|  | pud = pud_offset(pgd, address); | 
|  | pmd = pmd_offset(pud, address); | 
|  | set_pte_atomic((pte_t *)pmd, pte); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static int | 
|  | try_preserve_large_page(pte_t *kpte, unsigned long address, | 
|  | struct cpa_data *cpa) | 
|  | { | 
|  | unsigned long nextpage_addr, numpages, pmask, psize, flags, addr, pfn; | 
|  | pte_t new_pte, old_pte, *tmp; | 
|  | pgprot_t old_prot, new_prot, req_prot; | 
|  | int i, do_split = 1; | 
|  | unsigned int level; | 
|  |  | 
|  | if (cpa->force_split) | 
|  | return 1; | 
|  |  | 
|  | spin_lock_irqsave(&pgd_lock, flags); | 
|  | /* | 
|  | * Check for races, another CPU might have split this page | 
|  | * up already: | 
|  | */ | 
|  | tmp = lookup_address(address, &level); | 
|  | if (tmp != kpte) | 
|  | goto out_unlock; | 
|  |  | 
|  | switch (level) { | 
|  | case PG_LEVEL_2M: | 
|  | psize = PMD_PAGE_SIZE; | 
|  | pmask = PMD_PAGE_MASK; | 
|  | break; | 
|  | #ifdef CONFIG_X86_64 | 
|  | case PG_LEVEL_1G: | 
|  | psize = PUD_PAGE_SIZE; | 
|  | pmask = PUD_PAGE_MASK; | 
|  | break; | 
|  | #endif | 
|  | default: | 
|  | do_split = -EINVAL; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the number of pages, which fit into this large | 
|  | * page starting at address: | 
|  | */ | 
|  | nextpage_addr = (address + psize) & pmask; | 
|  | numpages = (nextpage_addr - address) >> PAGE_SHIFT; | 
|  | if (numpages < cpa->numpages) | 
|  | cpa->numpages = numpages; | 
|  |  | 
|  | /* | 
|  | * We are safe now. Check whether the new pgprot is the same: | 
|  | */ | 
|  | old_pte = *kpte; | 
|  | old_prot = new_prot = req_prot = pte_pgprot(old_pte); | 
|  |  | 
|  | pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr); | 
|  | pgprot_val(req_prot) |= pgprot_val(cpa->mask_set); | 
|  |  | 
|  | /* | 
|  | * old_pte points to the large page base address. So we need | 
|  | * to add the offset of the virtual address: | 
|  | */ | 
|  | pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT); | 
|  | cpa->pfn = pfn; | 
|  |  | 
|  | new_prot = static_protections(req_prot, address, pfn); | 
|  |  | 
|  | /* | 
|  | * We need to check the full range, whether | 
|  | * static_protection() requires a different pgprot for one of | 
|  | * the pages in the range we try to preserve: | 
|  | */ | 
|  | addr = address & pmask; | 
|  | pfn = pte_pfn(old_pte); | 
|  | for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) { | 
|  | pgprot_t chk_prot = static_protections(req_prot, addr, pfn); | 
|  |  | 
|  | if (pgprot_val(chk_prot) != pgprot_val(new_prot)) | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If there are no changes, return. maxpages has been updated | 
|  | * above: | 
|  | */ | 
|  | if (pgprot_val(new_prot) == pgprot_val(old_prot)) { | 
|  | do_split = 0; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to change the attributes. Check, whether we can | 
|  | * change the large page in one go. We request a split, when | 
|  | * the address is not aligned and the number of pages is | 
|  | * smaller than the number of pages in the large page. Note | 
|  | * that we limited the number of possible pages already to | 
|  | * the number of pages in the large page. | 
|  | */ | 
|  | if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) { | 
|  | /* | 
|  | * The address is aligned and the number of pages | 
|  | * covers the full page. | 
|  | */ | 
|  | new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot)); | 
|  | __set_pmd_pte(kpte, address, new_pte); | 
|  | cpa->flags |= CPA_FLUSHTLB; | 
|  | do_split = 0; | 
|  | } | 
|  |  | 
|  | out_unlock: | 
|  | spin_unlock_irqrestore(&pgd_lock, flags); | 
|  |  | 
|  | return do_split; | 
|  | } | 
|  |  | 
|  | static int split_large_page(pte_t *kpte, unsigned long address) | 
|  | { | 
|  | unsigned long flags, pfn, pfninc = 1; | 
|  | unsigned int i, level; | 
|  | pte_t *pbase, *tmp; | 
|  | pgprot_t ref_prot; | 
|  | struct page *base; | 
|  |  | 
|  | if (!debug_pagealloc) | 
|  | spin_unlock(&cpa_lock); | 
|  | base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0); | 
|  | if (!debug_pagealloc) | 
|  | spin_lock(&cpa_lock); | 
|  | if (!base) | 
|  | return -ENOMEM; | 
|  |  | 
|  | spin_lock_irqsave(&pgd_lock, flags); | 
|  | /* | 
|  | * Check for races, another CPU might have split this page | 
|  | * up for us already: | 
|  | */ | 
|  | tmp = lookup_address(address, &level); | 
|  | if (tmp != kpte) | 
|  | goto out_unlock; | 
|  |  | 
|  | pbase = (pte_t *)page_address(base); | 
|  | paravirt_alloc_pte(&init_mm, page_to_pfn(base)); | 
|  | ref_prot = pte_pgprot(pte_clrhuge(*kpte)); | 
|  | /* | 
|  | * If we ever want to utilize the PAT bit, we need to | 
|  | * update this function to make sure it's converted from | 
|  | * bit 12 to bit 7 when we cross from the 2MB level to | 
|  | * the 4K level: | 
|  | */ | 
|  | WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE); | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | if (level == PG_LEVEL_1G) { | 
|  | pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT; | 
|  | pgprot_val(ref_prot) |= _PAGE_PSE; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Get the target pfn from the original entry: | 
|  | */ | 
|  | pfn = pte_pfn(*kpte); | 
|  | for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc) | 
|  | set_pte(&pbase[i], pfn_pte(pfn, ref_prot)); | 
|  |  | 
|  | if (address >= (unsigned long)__va(0) && | 
|  | address < (unsigned long)__va(max_low_pfn_mapped << PAGE_SHIFT)) | 
|  | split_page_count(level); | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | if (address >= (unsigned long)__va(1UL<<32) && | 
|  | address < (unsigned long)__va(max_pfn_mapped << PAGE_SHIFT)) | 
|  | split_page_count(level); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Install the new, split up pagetable. | 
|  | * | 
|  | * We use the standard kernel pagetable protections for the new | 
|  | * pagetable protections, the actual ptes set above control the | 
|  | * primary protection behavior: | 
|  | */ | 
|  | __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE))); | 
|  |  | 
|  | /* | 
|  | * Intel Atom errata AAH41 workaround. | 
|  | * | 
|  | * The real fix should be in hw or in a microcode update, but | 
|  | * we also probabilistically try to reduce the window of having | 
|  | * a large TLB mixed with 4K TLBs while instruction fetches are | 
|  | * going on. | 
|  | */ | 
|  | __flush_tlb_all(); | 
|  |  | 
|  | base = NULL; | 
|  |  | 
|  | out_unlock: | 
|  | /* | 
|  | * If we dropped out via the lookup_address check under | 
|  | * pgd_lock then stick the page back into the pool: | 
|  | */ | 
|  | if (base) | 
|  | __free_page(base); | 
|  | spin_unlock_irqrestore(&pgd_lock, flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr, | 
|  | int primary) | 
|  | { | 
|  | /* | 
|  | * Ignore all non primary paths. | 
|  | */ | 
|  | if (!primary) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Ignore the NULL PTE for kernel identity mapping, as it is expected | 
|  | * to have holes. | 
|  | * Also set numpages to '1' indicating that we processed cpa req for | 
|  | * one virtual address page and its pfn. TBD: numpages can be set based | 
|  | * on the initial value and the level returned by lookup_address(). | 
|  | */ | 
|  | if (within(vaddr, PAGE_OFFSET, | 
|  | PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) { | 
|  | cpa->numpages = 1; | 
|  | cpa->pfn = __pa(vaddr) >> PAGE_SHIFT; | 
|  | return 0; | 
|  | } else { | 
|  | WARN(1, KERN_WARNING "CPA: called for zero pte. " | 
|  | "vaddr = %lx cpa->vaddr = %lx\n", vaddr, | 
|  | *cpa->vaddr); | 
|  |  | 
|  | return -EFAULT; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __change_page_attr(struct cpa_data *cpa, int primary) | 
|  | { | 
|  | unsigned long address; | 
|  | int do_split, err; | 
|  | unsigned int level; | 
|  | pte_t *kpte, old_pte; | 
|  |  | 
|  | if (cpa->flags & CPA_PAGES_ARRAY) { | 
|  | struct page *page = cpa->pages[cpa->curpage]; | 
|  | if (unlikely(PageHighMem(page))) | 
|  | return 0; | 
|  | address = (unsigned long)page_address(page); | 
|  | } else if (cpa->flags & CPA_ARRAY) | 
|  | address = cpa->vaddr[cpa->curpage]; | 
|  | else | 
|  | address = *cpa->vaddr; | 
|  | repeat: | 
|  | kpte = lookup_address(address, &level); | 
|  | if (!kpte) | 
|  | return __cpa_process_fault(cpa, address, primary); | 
|  |  | 
|  | old_pte = *kpte; | 
|  | if (!pte_val(old_pte)) | 
|  | return __cpa_process_fault(cpa, address, primary); | 
|  |  | 
|  | if (level == PG_LEVEL_4K) { | 
|  | pte_t new_pte; | 
|  | pgprot_t new_prot = pte_pgprot(old_pte); | 
|  | unsigned long pfn = pte_pfn(old_pte); | 
|  |  | 
|  | pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr); | 
|  | pgprot_val(new_prot) |= pgprot_val(cpa->mask_set); | 
|  |  | 
|  | new_prot = static_protections(new_prot, address, pfn); | 
|  |  | 
|  | /* | 
|  | * We need to keep the pfn from the existing PTE, | 
|  | * after all we're only going to change it's attributes | 
|  | * not the memory it points to | 
|  | */ | 
|  | new_pte = pfn_pte(pfn, canon_pgprot(new_prot)); | 
|  | cpa->pfn = pfn; | 
|  | /* | 
|  | * Do we really change anything ? | 
|  | */ | 
|  | if (pte_val(old_pte) != pte_val(new_pte)) { | 
|  | set_pte_atomic(kpte, new_pte); | 
|  | cpa->flags |= CPA_FLUSHTLB; | 
|  | } | 
|  | cpa->numpages = 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check, whether we can keep the large page intact | 
|  | * and just change the pte: | 
|  | */ | 
|  | do_split = try_preserve_large_page(kpte, address, cpa); | 
|  | /* | 
|  | * When the range fits into the existing large page, | 
|  | * return. cp->numpages and cpa->tlbflush have been updated in | 
|  | * try_large_page: | 
|  | */ | 
|  | if (do_split <= 0) | 
|  | return do_split; | 
|  |  | 
|  | /* | 
|  | * We have to split the large page: | 
|  | */ | 
|  | err = split_large_page(kpte, address); | 
|  | if (!err) { | 
|  | /* | 
|  | * Do a global flush tlb after splitting the large page | 
|  | * and before we do the actual change page attribute in the PTE. | 
|  | * | 
|  | * With out this, we violate the TLB application note, that says | 
|  | * "The TLBs may contain both ordinary and large-page | 
|  | *  translations for a 4-KByte range of linear addresses. This | 
|  | *  may occur if software modifies the paging structures so that | 
|  | *  the page size used for the address range changes. If the two | 
|  | *  translations differ with respect to page frame or attributes | 
|  | *  (e.g., permissions), processor behavior is undefined and may | 
|  | *  be implementation-specific." | 
|  | * | 
|  | * We do this global tlb flush inside the cpa_lock, so that we | 
|  | * don't allow any other cpu, with stale tlb entries change the | 
|  | * page attribute in parallel, that also falls into the | 
|  | * just split large page entry. | 
|  | */ | 
|  | flush_tlb_all(); | 
|  | goto repeat; | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias); | 
|  |  | 
|  | static int cpa_process_alias(struct cpa_data *cpa) | 
|  | { | 
|  | struct cpa_data alias_cpa; | 
|  | unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT); | 
|  | unsigned long vaddr; | 
|  | int ret; | 
|  |  | 
|  | if (cpa->pfn >= max_pfn_mapped) | 
|  | return 0; | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | if (cpa->pfn >= max_low_pfn_mapped && cpa->pfn < (1UL<<(32-PAGE_SHIFT))) | 
|  | return 0; | 
|  | #endif | 
|  | /* | 
|  | * No need to redo, when the primary call touched the direct | 
|  | * mapping already: | 
|  | */ | 
|  | if (cpa->flags & CPA_PAGES_ARRAY) { | 
|  | struct page *page = cpa->pages[cpa->curpage]; | 
|  | if (unlikely(PageHighMem(page))) | 
|  | return 0; | 
|  | vaddr = (unsigned long)page_address(page); | 
|  | } else if (cpa->flags & CPA_ARRAY) | 
|  | vaddr = cpa->vaddr[cpa->curpage]; | 
|  | else | 
|  | vaddr = *cpa->vaddr; | 
|  |  | 
|  | if (!(within(vaddr, PAGE_OFFSET, | 
|  | PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) { | 
|  |  | 
|  | alias_cpa = *cpa; | 
|  | alias_cpa.vaddr = &laddr; | 
|  | alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY); | 
|  |  | 
|  | ret = __change_page_attr_set_clr(&alias_cpa, 0); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | /* | 
|  | * If the primary call didn't touch the high mapping already | 
|  | * and the physical address is inside the kernel map, we need | 
|  | * to touch the high mapped kernel as well: | 
|  | */ | 
|  | if (!within(vaddr, (unsigned long)_text, _brk_end) && | 
|  | within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) { | 
|  | unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) + | 
|  | __START_KERNEL_map - phys_base; | 
|  | alias_cpa = *cpa; | 
|  | alias_cpa.vaddr = &temp_cpa_vaddr; | 
|  | alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY); | 
|  |  | 
|  | /* | 
|  | * The high mapping range is imprecise, so ignore the | 
|  | * return value. | 
|  | */ | 
|  | __change_page_attr_set_clr(&alias_cpa, 0); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias) | 
|  | { | 
|  | int ret, numpages = cpa->numpages; | 
|  |  | 
|  | while (numpages) { | 
|  | /* | 
|  | * Store the remaining nr of pages for the large page | 
|  | * preservation check. | 
|  | */ | 
|  | cpa->numpages = numpages; | 
|  | /* for array changes, we can't use large page */ | 
|  | if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY)) | 
|  | cpa->numpages = 1; | 
|  |  | 
|  | if (!debug_pagealloc) | 
|  | spin_lock(&cpa_lock); | 
|  | ret = __change_page_attr(cpa, checkalias); | 
|  | if (!debug_pagealloc) | 
|  | spin_unlock(&cpa_lock); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (checkalias) { | 
|  | ret = cpa_process_alias(cpa); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Adjust the number of pages with the result of the | 
|  | * CPA operation. Either a large page has been | 
|  | * preserved or a single page update happened. | 
|  | */ | 
|  | BUG_ON(cpa->numpages > numpages); | 
|  | numpages -= cpa->numpages; | 
|  | if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) | 
|  | cpa->curpage++; | 
|  | else | 
|  | *cpa->vaddr += cpa->numpages * PAGE_SIZE; | 
|  |  | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int cache_attr(pgprot_t attr) | 
|  | { | 
|  | return pgprot_val(attr) & | 
|  | (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD); | 
|  | } | 
|  |  | 
|  | static int change_page_attr_set_clr(unsigned long *addr, int numpages, | 
|  | pgprot_t mask_set, pgprot_t mask_clr, | 
|  | int force_split, int in_flag, | 
|  | struct page **pages) | 
|  | { | 
|  | struct cpa_data cpa; | 
|  | int ret, cache, checkalias; | 
|  | unsigned long baddr = 0; | 
|  |  | 
|  | /* | 
|  | * Check, if we are requested to change a not supported | 
|  | * feature: | 
|  | */ | 
|  | mask_set = canon_pgprot(mask_set); | 
|  | mask_clr = canon_pgprot(mask_clr); | 
|  | if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split) | 
|  | return 0; | 
|  |  | 
|  | /* Ensure we are PAGE_SIZE aligned */ | 
|  | if (in_flag & CPA_ARRAY) { | 
|  | int i; | 
|  | for (i = 0; i < numpages; i++) { | 
|  | if (addr[i] & ~PAGE_MASK) { | 
|  | addr[i] &= PAGE_MASK; | 
|  | WARN_ON_ONCE(1); | 
|  | } | 
|  | } | 
|  | } else if (!(in_flag & CPA_PAGES_ARRAY)) { | 
|  | /* | 
|  | * in_flag of CPA_PAGES_ARRAY implies it is aligned. | 
|  | * No need to cehck in that case | 
|  | */ | 
|  | if (*addr & ~PAGE_MASK) { | 
|  | *addr &= PAGE_MASK; | 
|  | /* | 
|  | * People should not be passing in unaligned addresses: | 
|  | */ | 
|  | WARN_ON_ONCE(1); | 
|  | } | 
|  | /* | 
|  | * Save address for cache flush. *addr is modified in the call | 
|  | * to __change_page_attr_set_clr() below. | 
|  | */ | 
|  | baddr = *addr; | 
|  | } | 
|  |  | 
|  | /* Must avoid aliasing mappings in the highmem code */ | 
|  | kmap_flush_unused(); | 
|  |  | 
|  | vm_unmap_aliases(); | 
|  |  | 
|  | cpa.vaddr = addr; | 
|  | cpa.pages = pages; | 
|  | cpa.numpages = numpages; | 
|  | cpa.mask_set = mask_set; | 
|  | cpa.mask_clr = mask_clr; | 
|  | cpa.flags = 0; | 
|  | cpa.curpage = 0; | 
|  | cpa.force_split = force_split; | 
|  |  | 
|  | if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY)) | 
|  | cpa.flags |= in_flag; | 
|  |  | 
|  | /* No alias checking for _NX bit modifications */ | 
|  | checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX; | 
|  |  | 
|  | ret = __change_page_attr_set_clr(&cpa, checkalias); | 
|  |  | 
|  | /* | 
|  | * Check whether we really changed something: | 
|  | */ | 
|  | if (!(cpa.flags & CPA_FLUSHTLB)) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * No need to flush, when we did not set any of the caching | 
|  | * attributes: | 
|  | */ | 
|  | cache = cache_attr(mask_set); | 
|  |  | 
|  | /* | 
|  | * On success we use clflush, when the CPU supports it to | 
|  | * avoid the wbindv. If the CPU does not support it and in the | 
|  | * error case we fall back to cpa_flush_all (which uses | 
|  | * wbindv): | 
|  | */ | 
|  | if (!ret && cpu_has_clflush) { | 
|  | if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) { | 
|  | cpa_flush_array(addr, numpages, cache, | 
|  | cpa.flags, pages); | 
|  | } else | 
|  | cpa_flush_range(baddr, numpages, cache); | 
|  | } else | 
|  | cpa_flush_all(cache); | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline int change_page_attr_set(unsigned long *addr, int numpages, | 
|  | pgprot_t mask, int array) | 
|  | { | 
|  | return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0, | 
|  | (array ? CPA_ARRAY : 0), NULL); | 
|  | } | 
|  |  | 
|  | static inline int change_page_attr_clear(unsigned long *addr, int numpages, | 
|  | pgprot_t mask, int array) | 
|  | { | 
|  | return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0, | 
|  | (array ? CPA_ARRAY : 0), NULL); | 
|  | } | 
|  |  | 
|  | static inline int cpa_set_pages_array(struct page **pages, int numpages, | 
|  | pgprot_t mask) | 
|  | { | 
|  | return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0, | 
|  | CPA_PAGES_ARRAY, pages); | 
|  | } | 
|  |  | 
|  | static inline int cpa_clear_pages_array(struct page **pages, int numpages, | 
|  | pgprot_t mask) | 
|  | { | 
|  | return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0, | 
|  | CPA_PAGES_ARRAY, pages); | 
|  | } | 
|  |  | 
|  | int _set_memory_uc(unsigned long addr, int numpages) | 
|  | { | 
|  | /* | 
|  | * for now UC MINUS. see comments in ioremap_nocache() | 
|  | */ | 
|  | return change_page_attr_set(&addr, numpages, | 
|  | __pgprot(_PAGE_CACHE_UC_MINUS), 0); | 
|  | } | 
|  |  | 
|  | int set_memory_uc(unsigned long addr, int numpages) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * for now UC MINUS. see comments in ioremap_nocache() | 
|  | */ | 
|  | ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE, | 
|  | _PAGE_CACHE_UC_MINUS, NULL); | 
|  | if (ret) | 
|  | goto out_err; | 
|  |  | 
|  | ret = _set_memory_uc(addr, numpages); | 
|  | if (ret) | 
|  | goto out_free; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_free: | 
|  | free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); | 
|  | out_err: | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(set_memory_uc); | 
|  |  | 
|  | int _set_memory_array(unsigned long *addr, int addrinarray, | 
|  | unsigned long new_type) | 
|  | { | 
|  | int i, j; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * for now UC MINUS. see comments in ioremap_nocache() | 
|  | */ | 
|  | for (i = 0; i < addrinarray; i++) { | 
|  | ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE, | 
|  | new_type, NULL); | 
|  | if (ret) | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | ret = change_page_attr_set(addr, addrinarray, | 
|  | __pgprot(_PAGE_CACHE_UC_MINUS), 1); | 
|  |  | 
|  | if (!ret && new_type == _PAGE_CACHE_WC) | 
|  | ret = change_page_attr_set_clr(addr, addrinarray, | 
|  | __pgprot(_PAGE_CACHE_WC), | 
|  | __pgprot(_PAGE_CACHE_MASK), | 
|  | 0, CPA_ARRAY, NULL); | 
|  | if (ret) | 
|  | goto out_free; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_free: | 
|  | for (j = 0; j < i; j++) | 
|  | free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int set_memory_array_uc(unsigned long *addr, int addrinarray) | 
|  | { | 
|  | return _set_memory_array(addr, addrinarray, _PAGE_CACHE_UC_MINUS); | 
|  | } | 
|  | EXPORT_SYMBOL(set_memory_array_uc); | 
|  |  | 
|  | int set_memory_array_wc(unsigned long *addr, int addrinarray) | 
|  | { | 
|  | return _set_memory_array(addr, addrinarray, _PAGE_CACHE_WC); | 
|  | } | 
|  | EXPORT_SYMBOL(set_memory_array_wc); | 
|  |  | 
|  | int _set_memory_wc(unsigned long addr, int numpages) | 
|  | { | 
|  | int ret; | 
|  | unsigned long addr_copy = addr; | 
|  |  | 
|  | ret = change_page_attr_set(&addr, numpages, | 
|  | __pgprot(_PAGE_CACHE_UC_MINUS), 0); | 
|  | if (!ret) { | 
|  | ret = change_page_attr_set_clr(&addr_copy, numpages, | 
|  | __pgprot(_PAGE_CACHE_WC), | 
|  | __pgprot(_PAGE_CACHE_MASK), | 
|  | 0, 0, NULL); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int set_memory_wc(unsigned long addr, int numpages) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (!pat_enabled) | 
|  | return set_memory_uc(addr, numpages); | 
|  |  | 
|  | ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE, | 
|  | _PAGE_CACHE_WC, NULL); | 
|  | if (ret) | 
|  | goto out_err; | 
|  |  | 
|  | ret = _set_memory_wc(addr, numpages); | 
|  | if (ret) | 
|  | goto out_free; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_free: | 
|  | free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); | 
|  | out_err: | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(set_memory_wc); | 
|  |  | 
|  | int _set_memory_wb(unsigned long addr, int numpages) | 
|  | { | 
|  | return change_page_attr_clear(&addr, numpages, | 
|  | __pgprot(_PAGE_CACHE_MASK), 0); | 
|  | } | 
|  |  | 
|  | int set_memory_wb(unsigned long addr, int numpages) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = _set_memory_wb(addr, numpages); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(set_memory_wb); | 
|  |  | 
|  | int set_memory_array_wb(unsigned long *addr, int addrinarray) | 
|  | { | 
|  | int i; | 
|  | int ret; | 
|  |  | 
|  | ret = change_page_attr_clear(addr, addrinarray, | 
|  | __pgprot(_PAGE_CACHE_MASK), 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | for (i = 0; i < addrinarray; i++) | 
|  | free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(set_memory_array_wb); | 
|  |  | 
|  | int set_memory_x(unsigned long addr, int numpages) | 
|  | { | 
|  | if (!(__supported_pte_mask & _PAGE_NX)) | 
|  | return 0; | 
|  |  | 
|  | return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0); | 
|  | } | 
|  | EXPORT_SYMBOL(set_memory_x); | 
|  |  | 
|  | int set_memory_nx(unsigned long addr, int numpages) | 
|  | { | 
|  | if (!(__supported_pte_mask & _PAGE_NX)) | 
|  | return 0; | 
|  |  | 
|  | return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0); | 
|  | } | 
|  | EXPORT_SYMBOL(set_memory_nx); | 
|  |  | 
|  | int set_memory_ro(unsigned long addr, int numpages) | 
|  | { | 
|  | return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(set_memory_ro); | 
|  |  | 
|  | int set_memory_rw(unsigned long addr, int numpages) | 
|  | { | 
|  | return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(set_memory_rw); | 
|  |  | 
|  | int set_memory_np(unsigned long addr, int numpages) | 
|  | { | 
|  | return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0); | 
|  | } | 
|  |  | 
|  | int set_memory_4k(unsigned long addr, int numpages) | 
|  | { | 
|  | return change_page_attr_set_clr(&addr, numpages, __pgprot(0), | 
|  | __pgprot(0), 1, 0, NULL); | 
|  | } | 
|  |  | 
|  | int set_pages_uc(struct page *page, int numpages) | 
|  | { | 
|  | unsigned long addr = (unsigned long)page_address(page); | 
|  |  | 
|  | return set_memory_uc(addr, numpages); | 
|  | } | 
|  | EXPORT_SYMBOL(set_pages_uc); | 
|  |  | 
|  | static int _set_pages_array(struct page **pages, int addrinarray, | 
|  | unsigned long new_type) | 
|  | { | 
|  | unsigned long start; | 
|  | unsigned long end; | 
|  | int i; | 
|  | int free_idx; | 
|  | int ret; | 
|  |  | 
|  | for (i = 0; i < addrinarray; i++) { | 
|  | if (PageHighMem(pages[i])) | 
|  | continue; | 
|  | start = page_to_pfn(pages[i]) << PAGE_SHIFT; | 
|  | end = start + PAGE_SIZE; | 
|  | if (reserve_memtype(start, end, new_type, NULL)) | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | ret = cpa_set_pages_array(pages, addrinarray, | 
|  | __pgprot(_PAGE_CACHE_UC_MINUS)); | 
|  | if (!ret && new_type == _PAGE_CACHE_WC) | 
|  | ret = change_page_attr_set_clr(NULL, addrinarray, | 
|  | __pgprot(_PAGE_CACHE_WC), | 
|  | __pgprot(_PAGE_CACHE_MASK), | 
|  | 0, CPA_PAGES_ARRAY, pages); | 
|  | if (ret) | 
|  | goto err_out; | 
|  | return 0; /* Success */ | 
|  | err_out: | 
|  | free_idx = i; | 
|  | for (i = 0; i < free_idx; i++) { | 
|  | if (PageHighMem(pages[i])) | 
|  | continue; | 
|  | start = page_to_pfn(pages[i]) << PAGE_SHIFT; | 
|  | end = start + PAGE_SIZE; | 
|  | free_memtype(start, end); | 
|  | } | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | int set_pages_array_uc(struct page **pages, int addrinarray) | 
|  | { | 
|  | return _set_pages_array(pages, addrinarray, _PAGE_CACHE_UC_MINUS); | 
|  | } | 
|  | EXPORT_SYMBOL(set_pages_array_uc); | 
|  |  | 
|  | int set_pages_array_wc(struct page **pages, int addrinarray) | 
|  | { | 
|  | return _set_pages_array(pages, addrinarray, _PAGE_CACHE_WC); | 
|  | } | 
|  | EXPORT_SYMBOL(set_pages_array_wc); | 
|  |  | 
|  | int set_pages_wb(struct page *page, int numpages) | 
|  | { | 
|  | unsigned long addr = (unsigned long)page_address(page); | 
|  |  | 
|  | return set_memory_wb(addr, numpages); | 
|  | } | 
|  | EXPORT_SYMBOL(set_pages_wb); | 
|  |  | 
|  | int set_pages_array_wb(struct page **pages, int addrinarray) | 
|  | { | 
|  | int retval; | 
|  | unsigned long start; | 
|  | unsigned long end; | 
|  | int i; | 
|  |  | 
|  | retval = cpa_clear_pages_array(pages, addrinarray, | 
|  | __pgprot(_PAGE_CACHE_MASK)); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | for (i = 0; i < addrinarray; i++) { | 
|  | if (PageHighMem(pages[i])) | 
|  | continue; | 
|  | start = page_to_pfn(pages[i]) << PAGE_SHIFT; | 
|  | end = start + PAGE_SIZE; | 
|  | free_memtype(start, end); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(set_pages_array_wb); | 
|  |  | 
|  | int set_pages_x(struct page *page, int numpages) | 
|  | { | 
|  | unsigned long addr = (unsigned long)page_address(page); | 
|  |  | 
|  | return set_memory_x(addr, numpages); | 
|  | } | 
|  | EXPORT_SYMBOL(set_pages_x); | 
|  |  | 
|  | int set_pages_nx(struct page *page, int numpages) | 
|  | { | 
|  | unsigned long addr = (unsigned long)page_address(page); | 
|  |  | 
|  | return set_memory_nx(addr, numpages); | 
|  | } | 
|  | EXPORT_SYMBOL(set_pages_nx); | 
|  |  | 
|  | int set_pages_ro(struct page *page, int numpages) | 
|  | { | 
|  | unsigned long addr = (unsigned long)page_address(page); | 
|  |  | 
|  | return set_memory_ro(addr, numpages); | 
|  | } | 
|  |  | 
|  | int set_pages_rw(struct page *page, int numpages) | 
|  | { | 
|  | unsigned long addr = (unsigned long)page_address(page); | 
|  |  | 
|  | return set_memory_rw(addr, numpages); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_PAGEALLOC | 
|  |  | 
|  | static int __set_pages_p(struct page *page, int numpages) | 
|  | { | 
|  | unsigned long tempaddr = (unsigned long) page_address(page); | 
|  | struct cpa_data cpa = { .vaddr = &tempaddr, | 
|  | .numpages = numpages, | 
|  | .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW), | 
|  | .mask_clr = __pgprot(0), | 
|  | .flags = 0}; | 
|  |  | 
|  | /* | 
|  | * No alias checking needed for setting present flag. otherwise, | 
|  | * we may need to break large pages for 64-bit kernel text | 
|  | * mappings (this adds to complexity if we want to do this from | 
|  | * atomic context especially). Let's keep it simple! | 
|  | */ | 
|  | return __change_page_attr_set_clr(&cpa, 0); | 
|  | } | 
|  |  | 
|  | static int __set_pages_np(struct page *page, int numpages) | 
|  | { | 
|  | unsigned long tempaddr = (unsigned long) page_address(page); | 
|  | struct cpa_data cpa = { .vaddr = &tempaddr, | 
|  | .numpages = numpages, | 
|  | .mask_set = __pgprot(0), | 
|  | .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW), | 
|  | .flags = 0}; | 
|  |  | 
|  | /* | 
|  | * No alias checking needed for setting not present flag. otherwise, | 
|  | * we may need to break large pages for 64-bit kernel text | 
|  | * mappings (this adds to complexity if we want to do this from | 
|  | * atomic context especially). Let's keep it simple! | 
|  | */ | 
|  | return __change_page_attr_set_clr(&cpa, 0); | 
|  | } | 
|  |  | 
|  | void kernel_map_pages(struct page *page, int numpages, int enable) | 
|  | { | 
|  | if (PageHighMem(page)) | 
|  | return; | 
|  | if (!enable) { | 
|  | debug_check_no_locks_freed(page_address(page), | 
|  | numpages * PAGE_SIZE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If page allocator is not up yet then do not call c_p_a(): | 
|  | */ | 
|  | if (!debug_pagealloc_enabled) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * The return value is ignored as the calls cannot fail. | 
|  | * Large pages for identity mappings are not used at boot time | 
|  | * and hence no memory allocations during large page split. | 
|  | */ | 
|  | if (enable) | 
|  | __set_pages_p(page, numpages); | 
|  | else | 
|  | __set_pages_np(page, numpages); | 
|  |  | 
|  | /* | 
|  | * We should perform an IPI and flush all tlbs, | 
|  | * but that can deadlock->flush only current cpu: | 
|  | */ | 
|  | __flush_tlb_all(); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HIBERNATION | 
|  |  | 
|  | bool kernel_page_present(struct page *page) | 
|  | { | 
|  | unsigned int level; | 
|  | pte_t *pte; | 
|  |  | 
|  | if (PageHighMem(page)) | 
|  | return false; | 
|  |  | 
|  | pte = lookup_address((unsigned long)page_address(page), &level); | 
|  | return (pte_val(*pte) & _PAGE_PRESENT); | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_HIBERNATION */ | 
|  |  | 
|  | #endif /* CONFIG_DEBUG_PAGEALLOC */ | 
|  |  | 
|  | /* | 
|  | * The testcases use internal knowledge of the implementation that shouldn't | 
|  | * be exposed to the rest of the kernel. Include these directly here. | 
|  | */ | 
|  | #ifdef CONFIG_CPA_DEBUG | 
|  | #include "pageattr-test.c" | 
|  | #endif |