|  | #ifndef _LINUX_PAGEMAP_H | 
|  | #define _LINUX_PAGEMAP_H | 
|  |  | 
|  | /* | 
|  | * Copyright 1995 Linus Torvalds | 
|  | */ | 
|  | #include <linux/mm.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/hardirq.h> /* for in_interrupt() */ | 
|  | #include <linux/hugetlb_inline.h> | 
|  |  | 
|  | /* | 
|  | * Bits in mapping->flags.  The lower __GFP_BITS_SHIFT bits are the page | 
|  | * allocation mode flags. | 
|  | */ | 
|  | enum mapping_flags { | 
|  | AS_EIO		= __GFP_BITS_SHIFT + 0,	/* IO error on async write */ | 
|  | AS_ENOSPC	= __GFP_BITS_SHIFT + 1,	/* ENOSPC on async write */ | 
|  | AS_MM_ALL_LOCKS	= __GFP_BITS_SHIFT + 2,	/* under mm_take_all_locks() */ | 
|  | AS_UNEVICTABLE	= __GFP_BITS_SHIFT + 3,	/* e.g., ramdisk, SHM_LOCK */ | 
|  | }; | 
|  |  | 
|  | static inline void mapping_set_error(struct address_space *mapping, int error) | 
|  | { | 
|  | if (unlikely(error)) { | 
|  | if (error == -ENOSPC) | 
|  | set_bit(AS_ENOSPC, &mapping->flags); | 
|  | else | 
|  | set_bit(AS_EIO, &mapping->flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void mapping_set_unevictable(struct address_space *mapping) | 
|  | { | 
|  | set_bit(AS_UNEVICTABLE, &mapping->flags); | 
|  | } | 
|  |  | 
|  | static inline void mapping_clear_unevictable(struct address_space *mapping) | 
|  | { | 
|  | clear_bit(AS_UNEVICTABLE, &mapping->flags); | 
|  | } | 
|  |  | 
|  | static inline int mapping_unevictable(struct address_space *mapping) | 
|  | { | 
|  | if (mapping) | 
|  | return test_bit(AS_UNEVICTABLE, &mapping->flags); | 
|  | return !!mapping; | 
|  | } | 
|  |  | 
|  | static inline gfp_t mapping_gfp_mask(struct address_space * mapping) | 
|  | { | 
|  | return (__force gfp_t)mapping->flags & __GFP_BITS_MASK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is non-atomic.  Only to be used before the mapping is activated. | 
|  | * Probably needs a barrier... | 
|  | */ | 
|  | static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask) | 
|  | { | 
|  | m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) | | 
|  | (__force unsigned long)mask; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The page cache can done in larger chunks than | 
|  | * one page, because it allows for more efficient | 
|  | * throughput (it can then be mapped into user | 
|  | * space in smaller chunks for same flexibility). | 
|  | * | 
|  | * Or rather, it _will_ be done in larger chunks. | 
|  | */ | 
|  | #define PAGE_CACHE_SHIFT	PAGE_SHIFT | 
|  | #define PAGE_CACHE_SIZE		PAGE_SIZE | 
|  | #define PAGE_CACHE_MASK		PAGE_MASK | 
|  | #define PAGE_CACHE_ALIGN(addr)	(((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK) | 
|  |  | 
|  | #define page_cache_get(page)		get_page(page) | 
|  | #define page_cache_release(page)	put_page(page) | 
|  | void release_pages(struct page **pages, int nr, int cold); | 
|  |  | 
|  | /* | 
|  | * speculatively take a reference to a page. | 
|  | * If the page is free (_count == 0), then _count is untouched, and 0 | 
|  | * is returned. Otherwise, _count is incremented by 1 and 1 is returned. | 
|  | * | 
|  | * This function must be called inside the same rcu_read_lock() section as has | 
|  | * been used to lookup the page in the pagecache radix-tree (or page table): | 
|  | * this allows allocators to use a synchronize_rcu() to stabilize _count. | 
|  | * | 
|  | * Unless an RCU grace period has passed, the count of all pages coming out | 
|  | * of the allocator must be considered unstable. page_count may return higher | 
|  | * than expected, and put_page must be able to do the right thing when the | 
|  | * page has been finished with, no matter what it is subsequently allocated | 
|  | * for (because put_page is what is used here to drop an invalid speculative | 
|  | * reference). | 
|  | * | 
|  | * This is the interesting part of the lockless pagecache (and lockless | 
|  | * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page) | 
|  | * has the following pattern: | 
|  | * 1. find page in radix tree | 
|  | * 2. conditionally increment refcount | 
|  | * 3. check the page is still in pagecache (if no, goto 1) | 
|  | * | 
|  | * Remove-side that cares about stability of _count (eg. reclaim) has the | 
|  | * following (with tree_lock held for write): | 
|  | * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg) | 
|  | * B. remove page from pagecache | 
|  | * C. free the page | 
|  | * | 
|  | * There are 2 critical interleavings that matter: | 
|  | * - 2 runs before A: in this case, A sees elevated refcount and bails out | 
|  | * - A runs before 2: in this case, 2 sees zero refcount and retries; | 
|  | *   subsequently, B will complete and 1 will find no page, causing the | 
|  | *   lookup to return NULL. | 
|  | * | 
|  | * It is possible that between 1 and 2, the page is removed then the exact same | 
|  | * page is inserted into the same position in pagecache. That's OK: the | 
|  | * old find_get_page using tree_lock could equally have run before or after | 
|  | * such a re-insertion, depending on order that locks are granted. | 
|  | * | 
|  | * Lookups racing against pagecache insertion isn't a big problem: either 1 | 
|  | * will find the page or it will not. Likewise, the old find_get_page could run | 
|  | * either before the insertion or afterwards, depending on timing. | 
|  | */ | 
|  | static inline int page_cache_get_speculative(struct page *page) | 
|  | { | 
|  | VM_BUG_ON(in_interrupt()); | 
|  |  | 
|  | #if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU) | 
|  | # ifdef CONFIG_PREEMPT | 
|  | VM_BUG_ON(!in_atomic()); | 
|  | # endif | 
|  | /* | 
|  | * Preempt must be disabled here - we rely on rcu_read_lock doing | 
|  | * this for us. | 
|  | * | 
|  | * Pagecache won't be truncated from interrupt context, so if we have | 
|  | * found a page in the radix tree here, we have pinned its refcount by | 
|  | * disabling preempt, and hence no need for the "speculative get" that | 
|  | * SMP requires. | 
|  | */ | 
|  | VM_BUG_ON(page_count(page) == 0); | 
|  | atomic_inc(&page->_count); | 
|  |  | 
|  | #else | 
|  | if (unlikely(!get_page_unless_zero(page))) { | 
|  | /* | 
|  | * Either the page has been freed, or will be freed. | 
|  | * In either case, retry here and the caller should | 
|  | * do the right thing (see comments above). | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  | VM_BUG_ON(PageTail(page)); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Same as above, but add instead of inc (could just be merged) | 
|  | */ | 
|  | static inline int page_cache_add_speculative(struct page *page, int count) | 
|  | { | 
|  | VM_BUG_ON(in_interrupt()); | 
|  |  | 
|  | #if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU) | 
|  | # ifdef CONFIG_PREEMPT | 
|  | VM_BUG_ON(!in_atomic()); | 
|  | # endif | 
|  | VM_BUG_ON(page_count(page) == 0); | 
|  | atomic_add(count, &page->_count); | 
|  |  | 
|  | #else | 
|  | if (unlikely(!atomic_add_unless(&page->_count, count, 0))) | 
|  | return 0; | 
|  | #endif | 
|  | VM_BUG_ON(PageCompound(page) && page != compound_head(page)); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static inline int page_freeze_refs(struct page *page, int count) | 
|  | { | 
|  | return likely(atomic_cmpxchg(&page->_count, count, 0) == count); | 
|  | } | 
|  |  | 
|  | static inline void page_unfreeze_refs(struct page *page, int count) | 
|  | { | 
|  | VM_BUG_ON(page_count(page) != 0); | 
|  | VM_BUG_ON(count == 0); | 
|  |  | 
|  | atomic_set(&page->_count, count); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | extern struct page *__page_cache_alloc(gfp_t gfp); | 
|  | #else | 
|  | static inline struct page *__page_cache_alloc(gfp_t gfp) | 
|  | { | 
|  | return alloc_pages(gfp, 0); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static inline struct page *page_cache_alloc(struct address_space *x) | 
|  | { | 
|  | return __page_cache_alloc(mapping_gfp_mask(x)); | 
|  | } | 
|  |  | 
|  | static inline struct page *page_cache_alloc_cold(struct address_space *x) | 
|  | { | 
|  | return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD); | 
|  | } | 
|  |  | 
|  | static inline struct page *page_cache_alloc_readahead(struct address_space *x) | 
|  | { | 
|  | return __page_cache_alloc(mapping_gfp_mask(x) | | 
|  | __GFP_COLD | __GFP_NORETRY | __GFP_NOWARN); | 
|  | } | 
|  |  | 
|  | typedef int filler_t(void *, struct page *); | 
|  |  | 
|  | extern struct page * find_get_page(struct address_space *mapping, | 
|  | pgoff_t index); | 
|  | extern struct page * find_lock_page(struct address_space *mapping, | 
|  | pgoff_t index); | 
|  | extern struct page * find_or_create_page(struct address_space *mapping, | 
|  | pgoff_t index, gfp_t gfp_mask); | 
|  | unsigned find_get_pages(struct address_space *mapping, pgoff_t start, | 
|  | unsigned int nr_pages, struct page **pages); | 
|  | unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start, | 
|  | unsigned int nr_pages, struct page **pages); | 
|  | unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, | 
|  | int tag, unsigned int nr_pages, struct page **pages); | 
|  |  | 
|  | struct page *grab_cache_page_write_begin(struct address_space *mapping, | 
|  | pgoff_t index, unsigned flags); | 
|  |  | 
|  | /* | 
|  | * Returns locked page at given index in given cache, creating it if needed. | 
|  | */ | 
|  | static inline struct page *grab_cache_page(struct address_space *mapping, | 
|  | pgoff_t index) | 
|  | { | 
|  | return find_or_create_page(mapping, index, mapping_gfp_mask(mapping)); | 
|  | } | 
|  |  | 
|  | extern struct page * grab_cache_page_nowait(struct address_space *mapping, | 
|  | pgoff_t index); | 
|  | extern struct page * read_cache_page_async(struct address_space *mapping, | 
|  | pgoff_t index, filler_t *filler, | 
|  | void *data); | 
|  | extern struct page * read_cache_page(struct address_space *mapping, | 
|  | pgoff_t index, filler_t *filler, | 
|  | void *data); | 
|  | extern struct page * read_cache_page_gfp(struct address_space *mapping, | 
|  | pgoff_t index, gfp_t gfp_mask); | 
|  | extern int read_cache_pages(struct address_space *mapping, | 
|  | struct list_head *pages, filler_t *filler, void *data); | 
|  |  | 
|  | static inline struct page *read_mapping_page_async( | 
|  | struct address_space *mapping, | 
|  | pgoff_t index, void *data) | 
|  | { | 
|  | filler_t *filler = (filler_t *)mapping->a_ops->readpage; | 
|  | return read_cache_page_async(mapping, index, filler, data); | 
|  | } | 
|  |  | 
|  | static inline struct page *read_mapping_page(struct address_space *mapping, | 
|  | pgoff_t index, void *data) | 
|  | { | 
|  | filler_t *filler = (filler_t *)mapping->a_ops->readpage; | 
|  | return read_cache_page(mapping, index, filler, data); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return byte-offset into filesystem object for page. | 
|  | */ | 
|  | static inline loff_t page_offset(struct page *page) | 
|  | { | 
|  | return ((loff_t)page->index) << PAGE_CACHE_SHIFT; | 
|  | } | 
|  |  | 
|  | extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma, | 
|  | unsigned long address); | 
|  |  | 
|  | static inline pgoff_t linear_page_index(struct vm_area_struct *vma, | 
|  | unsigned long address) | 
|  | { | 
|  | pgoff_t pgoff; | 
|  | if (unlikely(is_vm_hugetlb_page(vma))) | 
|  | return linear_hugepage_index(vma, address); | 
|  | pgoff = (address - vma->vm_start) >> PAGE_SHIFT; | 
|  | pgoff += vma->vm_pgoff; | 
|  | return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | extern void __lock_page(struct page *page); | 
|  | extern int __lock_page_killable(struct page *page); | 
|  | extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm, | 
|  | unsigned int flags); | 
|  | extern void unlock_page(struct page *page); | 
|  |  | 
|  | static inline void __set_page_locked(struct page *page) | 
|  | { | 
|  | __set_bit(PG_locked, &page->flags); | 
|  | } | 
|  |  | 
|  | static inline void __clear_page_locked(struct page *page) | 
|  | { | 
|  | __clear_bit(PG_locked, &page->flags); | 
|  | } | 
|  |  | 
|  | static inline int trylock_page(struct page *page) | 
|  | { | 
|  | return (likely(!test_and_set_bit_lock(PG_locked, &page->flags))); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * lock_page may only be called if we have the page's inode pinned. | 
|  | */ | 
|  | static inline void lock_page(struct page *page) | 
|  | { | 
|  | might_sleep(); | 
|  | if (!trylock_page(page)) | 
|  | __lock_page(page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * lock_page_killable is like lock_page but can be interrupted by fatal | 
|  | * signals.  It returns 0 if it locked the page and -EINTR if it was | 
|  | * killed while waiting. | 
|  | */ | 
|  | static inline int lock_page_killable(struct page *page) | 
|  | { | 
|  | might_sleep(); | 
|  | if (!trylock_page(page)) | 
|  | return __lock_page_killable(page); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * lock_page_or_retry - Lock the page, unless this would block and the | 
|  | * caller indicated that it can handle a retry. | 
|  | */ | 
|  | static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm, | 
|  | unsigned int flags) | 
|  | { | 
|  | might_sleep(); | 
|  | return trylock_page(page) || __lock_page_or_retry(page, mm, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is exported only for wait_on_page_locked/wait_on_page_writeback. | 
|  | * Never use this directly! | 
|  | */ | 
|  | extern void wait_on_page_bit(struct page *page, int bit_nr); | 
|  |  | 
|  | extern int wait_on_page_bit_killable(struct page *page, int bit_nr); | 
|  |  | 
|  | static inline int wait_on_page_locked_killable(struct page *page) | 
|  | { | 
|  | if (PageLocked(page)) | 
|  | return wait_on_page_bit_killable(page, PG_locked); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wait for a page to be unlocked. | 
|  | * | 
|  | * This must be called with the caller "holding" the page, | 
|  | * ie with increased "page->count" so that the page won't | 
|  | * go away during the wait.. | 
|  | */ | 
|  | static inline void wait_on_page_locked(struct page *page) | 
|  | { | 
|  | if (PageLocked(page)) | 
|  | wait_on_page_bit(page, PG_locked); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wait for a page to complete writeback | 
|  | */ | 
|  | static inline void wait_on_page_writeback(struct page *page) | 
|  | { | 
|  | if (PageWriteback(page)) | 
|  | wait_on_page_bit(page, PG_writeback); | 
|  | } | 
|  |  | 
|  | extern void end_page_writeback(struct page *page); | 
|  |  | 
|  | /* | 
|  | * Add an arbitrary waiter to a page's wait queue | 
|  | */ | 
|  | extern void add_page_wait_queue(struct page *page, wait_queue_t *waiter); | 
|  |  | 
|  | /* | 
|  | * Fault a userspace page into pagetables.  Return non-zero on a fault. | 
|  | * | 
|  | * This assumes that two userspace pages are always sufficient.  That's | 
|  | * not true if PAGE_CACHE_SIZE > PAGE_SIZE. | 
|  | */ | 
|  | static inline int fault_in_pages_writeable(char __user *uaddr, int size) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (unlikely(size == 0)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Writing zeroes into userspace here is OK, because we know that if | 
|  | * the zero gets there, we'll be overwriting it. | 
|  | */ | 
|  | ret = __put_user(0, uaddr); | 
|  | if (ret == 0) { | 
|  | char __user *end = uaddr + size - 1; | 
|  |  | 
|  | /* | 
|  | * If the page was already mapped, this will get a cache miss | 
|  | * for sure, so try to avoid doing it. | 
|  | */ | 
|  | if (((unsigned long)uaddr & PAGE_MASK) != | 
|  | ((unsigned long)end & PAGE_MASK)) | 
|  | ret = __put_user(0, end); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline int fault_in_pages_readable(const char __user *uaddr, int size) | 
|  | { | 
|  | volatile char c; | 
|  | int ret; | 
|  |  | 
|  | if (unlikely(size == 0)) | 
|  | return 0; | 
|  |  | 
|  | ret = __get_user(c, uaddr); | 
|  | if (ret == 0) { | 
|  | const char __user *end = uaddr + size - 1; | 
|  |  | 
|  | if (((unsigned long)uaddr & PAGE_MASK) != | 
|  | ((unsigned long)end & PAGE_MASK)) { | 
|  | ret = __get_user(c, end); | 
|  | (void)c; | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int add_to_page_cache_locked(struct page *page, struct address_space *mapping, | 
|  | pgoff_t index, gfp_t gfp_mask); | 
|  | int add_to_page_cache_lru(struct page *page, struct address_space *mapping, | 
|  | pgoff_t index, gfp_t gfp_mask); | 
|  | extern void delete_from_page_cache(struct page *page); | 
|  | extern void __delete_from_page_cache(struct page *page); | 
|  | int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask); | 
|  |  | 
|  | /* | 
|  | * Like add_to_page_cache_locked, but used to add newly allocated pages: | 
|  | * the page is new, so we can just run __set_page_locked() against it. | 
|  | */ | 
|  | static inline int add_to_page_cache(struct page *page, | 
|  | struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask) | 
|  | { | 
|  | int error; | 
|  |  | 
|  | __set_page_locked(page); | 
|  | error = add_to_page_cache_locked(page, mapping, offset, gfp_mask); | 
|  | if (unlikely(error)) | 
|  | __clear_page_locked(page); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | #endif /* _LINUX_PAGEMAP_H */ |