| /* | 
 |  * linux/kernel/time/tick-common.c | 
 |  * | 
 |  * This file contains the base functions to manage periodic tick | 
 |  * related events. | 
 |  * | 
 |  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> | 
 |  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar | 
 |  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner | 
 |  * | 
 |  * This code is licenced under the GPL version 2. For details see | 
 |  * kernel-base/COPYING. | 
 |  */ | 
 | #include <linux/cpu.h> | 
 | #include <linux/err.h> | 
 | #include <linux/hrtimer.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/percpu.h> | 
 | #include <linux/profile.h> | 
 | #include <linux/sched.h> | 
 |  | 
 | #include <asm/irq_regs.h> | 
 |  | 
 | #include "tick-internal.h" | 
 |  | 
 | /* | 
 |  * Tick devices | 
 |  */ | 
 | DEFINE_PER_CPU(struct tick_device, tick_cpu_device); | 
 | /* | 
 |  * Tick next event: keeps track of the tick time | 
 |  */ | 
 | ktime_t tick_next_period; | 
 | ktime_t tick_period; | 
 | int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT; | 
 | static DEFINE_RAW_SPINLOCK(tick_device_lock); | 
 |  | 
 | /* | 
 |  * Debugging: see timer_list.c | 
 |  */ | 
 | struct tick_device *tick_get_device(int cpu) | 
 | { | 
 | 	return &per_cpu(tick_cpu_device, cpu); | 
 | } | 
 |  | 
 | /** | 
 |  * tick_is_oneshot_available - check for a oneshot capable event device | 
 |  */ | 
 | int tick_is_oneshot_available(void) | 
 | { | 
 | 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); | 
 |  | 
 | 	if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT)) | 
 | 		return 0; | 
 | 	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) | 
 | 		return 1; | 
 | 	return tick_broadcast_oneshot_available(); | 
 | } | 
 |  | 
 | /* | 
 |  * Periodic tick | 
 |  */ | 
 | static void tick_periodic(int cpu) | 
 | { | 
 | 	if (tick_do_timer_cpu == cpu) { | 
 | 		write_seqlock(&xtime_lock); | 
 |  | 
 | 		/* Keep track of the next tick event */ | 
 | 		tick_next_period = ktime_add(tick_next_period, tick_period); | 
 |  | 
 | 		do_timer(1); | 
 | 		write_sequnlock(&xtime_lock); | 
 | 	} | 
 |  | 
 | 	update_process_times(user_mode(get_irq_regs())); | 
 | 	profile_tick(CPU_PROFILING); | 
 | } | 
 |  | 
 | /* | 
 |  * Event handler for periodic ticks | 
 |  */ | 
 | void tick_handle_periodic(struct clock_event_device *dev) | 
 | { | 
 | 	int cpu = smp_processor_id(); | 
 | 	ktime_t next; | 
 |  | 
 | 	tick_periodic(cpu); | 
 |  | 
 | 	if (dev->mode != CLOCK_EVT_MODE_ONESHOT) | 
 | 		return; | 
 | 	/* | 
 | 	 * Setup the next period for devices, which do not have | 
 | 	 * periodic mode: | 
 | 	 */ | 
 | 	next = ktime_add(dev->next_event, tick_period); | 
 | 	for (;;) { | 
 | 		if (!clockevents_program_event(dev, next, ktime_get())) | 
 | 			return; | 
 | 		/* | 
 | 		 * Have to be careful here. If we're in oneshot mode, | 
 | 		 * before we call tick_periodic() in a loop, we need | 
 | 		 * to be sure we're using a real hardware clocksource. | 
 | 		 * Otherwise we could get trapped in an infinite | 
 | 		 * loop, as the tick_periodic() increments jiffies, | 
 | 		 * when then will increment time, posibly causing | 
 | 		 * the loop to trigger again and again. | 
 | 		 */ | 
 | 		if (timekeeping_valid_for_hres()) | 
 | 			tick_periodic(cpu); | 
 | 		next = ktime_add(next, tick_period); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Setup the device for a periodic tick | 
 |  */ | 
 | void tick_setup_periodic(struct clock_event_device *dev, int broadcast) | 
 | { | 
 | 	tick_set_periodic_handler(dev, broadcast); | 
 |  | 
 | 	/* Broadcast setup ? */ | 
 | 	if (!tick_device_is_functional(dev)) | 
 | 		return; | 
 |  | 
 | 	if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) && | 
 | 	    !tick_broadcast_oneshot_active()) { | 
 | 		clockevents_set_mode(dev, CLOCK_EVT_MODE_PERIODIC); | 
 | 	} else { | 
 | 		unsigned long seq; | 
 | 		ktime_t next; | 
 |  | 
 | 		do { | 
 | 			seq = read_seqbegin(&xtime_lock); | 
 | 			next = tick_next_period; | 
 | 		} while (read_seqretry(&xtime_lock, seq)); | 
 |  | 
 | 		clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT); | 
 |  | 
 | 		for (;;) { | 
 | 			if (!clockevents_program_event(dev, next, ktime_get())) | 
 | 				return; | 
 | 			next = ktime_add(next, tick_period); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Setup the tick device | 
 |  */ | 
 | static void tick_setup_device(struct tick_device *td, | 
 | 			      struct clock_event_device *newdev, int cpu, | 
 | 			      const struct cpumask *cpumask) | 
 | { | 
 | 	ktime_t next_event; | 
 | 	void (*handler)(struct clock_event_device *) = NULL; | 
 |  | 
 | 	/* | 
 | 	 * First device setup ? | 
 | 	 */ | 
 | 	if (!td->evtdev) { | 
 | 		/* | 
 | 		 * If no cpu took the do_timer update, assign it to | 
 | 		 * this cpu: | 
 | 		 */ | 
 | 		if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) { | 
 | 			tick_do_timer_cpu = cpu; | 
 | 			tick_next_period = ktime_get(); | 
 | 			tick_period = ktime_set(0, NSEC_PER_SEC / HZ); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Startup in periodic mode first. | 
 | 		 */ | 
 | 		td->mode = TICKDEV_MODE_PERIODIC; | 
 | 	} else { | 
 | 		handler = td->evtdev->event_handler; | 
 | 		next_event = td->evtdev->next_event; | 
 | 		td->evtdev->event_handler = clockevents_handle_noop; | 
 | 	} | 
 |  | 
 | 	td->evtdev = newdev; | 
 |  | 
 | 	/* | 
 | 	 * When the device is not per cpu, pin the interrupt to the | 
 | 	 * current cpu: | 
 | 	 */ | 
 | 	if (!cpumask_equal(newdev->cpumask, cpumask)) | 
 | 		irq_set_affinity(newdev->irq, cpumask); | 
 |  | 
 | 	/* | 
 | 	 * When global broadcasting is active, check if the current | 
 | 	 * device is registered as a placeholder for broadcast mode. | 
 | 	 * This allows us to handle this x86 misfeature in a generic | 
 | 	 * way. | 
 | 	 */ | 
 | 	if (tick_device_uses_broadcast(newdev, cpu)) | 
 | 		return; | 
 |  | 
 | 	if (td->mode == TICKDEV_MODE_PERIODIC) | 
 | 		tick_setup_periodic(newdev, 0); | 
 | 	else | 
 | 		tick_setup_oneshot(newdev, handler, next_event); | 
 | } | 
 |  | 
 | /* | 
 |  * Check, if the new registered device should be used. | 
 |  */ | 
 | static int tick_check_new_device(struct clock_event_device *newdev) | 
 | { | 
 | 	struct clock_event_device *curdev; | 
 | 	struct tick_device *td; | 
 | 	int cpu, ret = NOTIFY_OK; | 
 | 	unsigned long flags; | 
 |  | 
 | 	raw_spin_lock_irqsave(&tick_device_lock, flags); | 
 |  | 
 | 	cpu = smp_processor_id(); | 
 | 	if (!cpumask_test_cpu(cpu, newdev->cpumask)) | 
 | 		goto out_bc; | 
 |  | 
 | 	td = &per_cpu(tick_cpu_device, cpu); | 
 | 	curdev = td->evtdev; | 
 |  | 
 | 	/* cpu local device ? */ | 
 | 	if (!cpumask_equal(newdev->cpumask, cpumask_of(cpu))) { | 
 |  | 
 | 		/* | 
 | 		 * If the cpu affinity of the device interrupt can not | 
 | 		 * be set, ignore it. | 
 | 		 */ | 
 | 		if (!irq_can_set_affinity(newdev->irq)) | 
 | 			goto out_bc; | 
 |  | 
 | 		/* | 
 | 		 * If we have a cpu local device already, do not replace it | 
 | 		 * by a non cpu local device | 
 | 		 */ | 
 | 		if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu))) | 
 | 			goto out_bc; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If we have an active device, then check the rating and the oneshot | 
 | 	 * feature. | 
 | 	 */ | 
 | 	if (curdev) { | 
 | 		/* | 
 | 		 * Prefer one shot capable devices ! | 
 | 		 */ | 
 | 		if ((curdev->features & CLOCK_EVT_FEAT_ONESHOT) && | 
 | 		    !(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) | 
 | 			goto out_bc; | 
 | 		/* | 
 | 		 * Check the rating | 
 | 		 */ | 
 | 		if (curdev->rating >= newdev->rating) | 
 | 			goto out_bc; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Replace the eventually existing device by the new | 
 | 	 * device. If the current device is the broadcast device, do | 
 | 	 * not give it back to the clockevents layer ! | 
 | 	 */ | 
 | 	if (tick_is_broadcast_device(curdev)) { | 
 | 		clockevents_shutdown(curdev); | 
 | 		curdev = NULL; | 
 | 	} | 
 | 	clockevents_exchange_device(curdev, newdev); | 
 | 	tick_setup_device(td, newdev, cpu, cpumask_of(cpu)); | 
 | 	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT) | 
 | 		tick_oneshot_notify(); | 
 |  | 
 | 	raw_spin_unlock_irqrestore(&tick_device_lock, flags); | 
 | 	return NOTIFY_STOP; | 
 |  | 
 | out_bc: | 
 | 	/* | 
 | 	 * Can the new device be used as a broadcast device ? | 
 | 	 */ | 
 | 	if (tick_check_broadcast_device(newdev)) | 
 | 		ret = NOTIFY_STOP; | 
 |  | 
 | 	raw_spin_unlock_irqrestore(&tick_device_lock, flags); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Transfer the do_timer job away from a dying cpu. | 
 |  * | 
 |  * Called with interrupts disabled. | 
 |  */ | 
 | static void tick_handover_do_timer(int *cpup) | 
 | { | 
 | 	if (*cpup == tick_do_timer_cpu) { | 
 | 		int cpu = cpumask_first(cpu_online_mask); | 
 |  | 
 | 		tick_do_timer_cpu = (cpu < nr_cpu_ids) ? cpu : | 
 | 			TICK_DO_TIMER_NONE; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Shutdown an event device on a given cpu: | 
 |  * | 
 |  * This is called on a life CPU, when a CPU is dead. So we cannot | 
 |  * access the hardware device itself. | 
 |  * We just set the mode and remove it from the lists. | 
 |  */ | 
 | static void tick_shutdown(unsigned int *cpup) | 
 | { | 
 | 	struct tick_device *td = &per_cpu(tick_cpu_device, *cpup); | 
 | 	struct clock_event_device *dev = td->evtdev; | 
 | 	unsigned long flags; | 
 |  | 
 | 	raw_spin_lock_irqsave(&tick_device_lock, flags); | 
 | 	td->mode = TICKDEV_MODE_PERIODIC; | 
 | 	if (dev) { | 
 | 		/* | 
 | 		 * Prevent that the clock events layer tries to call | 
 | 		 * the set mode function! | 
 | 		 */ | 
 | 		dev->mode = CLOCK_EVT_MODE_UNUSED; | 
 | 		clockevents_exchange_device(dev, NULL); | 
 | 		td->evtdev = NULL; | 
 | 	} | 
 | 	raw_spin_unlock_irqrestore(&tick_device_lock, flags); | 
 | } | 
 |  | 
 | static void tick_suspend(void) | 
 | { | 
 | 	struct tick_device *td = &__get_cpu_var(tick_cpu_device); | 
 | 	unsigned long flags; | 
 |  | 
 | 	raw_spin_lock_irqsave(&tick_device_lock, flags); | 
 | 	clockevents_shutdown(td->evtdev); | 
 | 	raw_spin_unlock_irqrestore(&tick_device_lock, flags); | 
 | } | 
 |  | 
 | static void tick_resume(void) | 
 | { | 
 | 	struct tick_device *td = &__get_cpu_var(tick_cpu_device); | 
 | 	unsigned long flags; | 
 | 	int broadcast = tick_resume_broadcast(); | 
 |  | 
 | 	raw_spin_lock_irqsave(&tick_device_lock, flags); | 
 | 	clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_RESUME); | 
 |  | 
 | 	if (!broadcast) { | 
 | 		if (td->mode == TICKDEV_MODE_PERIODIC) | 
 | 			tick_setup_periodic(td->evtdev, 0); | 
 | 		else | 
 | 			tick_resume_oneshot(); | 
 | 	} | 
 | 	raw_spin_unlock_irqrestore(&tick_device_lock, flags); | 
 | } | 
 |  | 
 | /* | 
 |  * Notification about clock event devices | 
 |  */ | 
 | static int tick_notify(struct notifier_block *nb, unsigned long reason, | 
 | 			       void *dev) | 
 | { | 
 | 	switch (reason) { | 
 |  | 
 | 	case CLOCK_EVT_NOTIFY_ADD: | 
 | 		return tick_check_new_device(dev); | 
 |  | 
 | 	case CLOCK_EVT_NOTIFY_BROADCAST_ON: | 
 | 	case CLOCK_EVT_NOTIFY_BROADCAST_OFF: | 
 | 	case CLOCK_EVT_NOTIFY_BROADCAST_FORCE: | 
 | 		tick_broadcast_on_off(reason, dev); | 
 | 		break; | 
 |  | 
 | 	case CLOCK_EVT_NOTIFY_BROADCAST_ENTER: | 
 | 	case CLOCK_EVT_NOTIFY_BROADCAST_EXIT: | 
 | 		tick_broadcast_oneshot_control(reason); | 
 | 		break; | 
 |  | 
 | 	case CLOCK_EVT_NOTIFY_CPU_DYING: | 
 | 		tick_handover_do_timer(dev); | 
 | 		break; | 
 |  | 
 | 	case CLOCK_EVT_NOTIFY_CPU_DEAD: | 
 | 		tick_shutdown_broadcast_oneshot(dev); | 
 | 		tick_shutdown_broadcast(dev); | 
 | 		tick_shutdown(dev); | 
 | 		break; | 
 |  | 
 | 	case CLOCK_EVT_NOTIFY_SUSPEND: | 
 | 		tick_suspend(); | 
 | 		tick_suspend_broadcast(); | 
 | 		break; | 
 |  | 
 | 	case CLOCK_EVT_NOTIFY_RESUME: | 
 | 		tick_resume(); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return NOTIFY_OK; | 
 | } | 
 |  | 
 | static struct notifier_block tick_notifier = { | 
 | 	.notifier_call = tick_notify, | 
 | }; | 
 |  | 
 | /** | 
 |  * tick_init - initialize the tick control | 
 |  * | 
 |  * Register the notifier with the clockevents framework | 
 |  */ | 
 | void __init tick_init(void) | 
 | { | 
 | 	clockevents_register_notifier(&tick_notifier); | 
 | } |