|  | /* | 
|  | * Procedures for maintaining information about logical memory blocks. | 
|  | * | 
|  | * Peter Bergner, IBM Corp.	June 2001. | 
|  | * Copyright (C) 2001 Peter Bergner. | 
|  | * | 
|  | *      This program is free software; you can redistribute it and/or | 
|  | *      modify it under the terms of the GNU General Public License | 
|  | *      as published by the Free Software Foundation; either version | 
|  | *      2 of the License, or (at your option) any later version. | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/poison.h> | 
|  | #include <linux/pfn.h> | 
|  | #include <linux/debugfs.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/memblock.h> | 
|  |  | 
|  | struct memblock memblock __initdata_memblock; | 
|  |  | 
|  | int memblock_debug __initdata_memblock; | 
|  | int memblock_can_resize __initdata_memblock; | 
|  | static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS + 1] __initdata_memblock; | 
|  | static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS + 1] __initdata_memblock; | 
|  |  | 
|  | /* inline so we don't get a warning when pr_debug is compiled out */ | 
|  | static inline const char *memblock_type_name(struct memblock_type *type) | 
|  | { | 
|  | if (type == &memblock.memory) | 
|  | return "memory"; | 
|  | else if (type == &memblock.reserved) | 
|  | return "reserved"; | 
|  | else | 
|  | return "unknown"; | 
|  | } | 
|  |  | 
|  | /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ | 
|  | static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) | 
|  | { | 
|  | return *size = min(*size, (phys_addr_t)ULLONG_MAX - base); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Address comparison utilities | 
|  | */ | 
|  |  | 
|  | static phys_addr_t __init_memblock memblock_align_down(phys_addr_t addr, phys_addr_t size) | 
|  | { | 
|  | return addr & ~(size - 1); | 
|  | } | 
|  |  | 
|  | static phys_addr_t __init_memblock memblock_align_up(phys_addr_t addr, phys_addr_t size) | 
|  | { | 
|  | return (addr + (size - 1)) & ~(size - 1); | 
|  | } | 
|  |  | 
|  | static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, | 
|  | phys_addr_t base2, phys_addr_t size2) | 
|  | { | 
|  | return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); | 
|  | } | 
|  |  | 
|  | long __init_memblock memblock_overlaps_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size) | 
|  | { | 
|  | unsigned long i; | 
|  |  | 
|  | for (i = 0; i < type->cnt; i++) { | 
|  | phys_addr_t rgnbase = type->regions[i].base; | 
|  | phys_addr_t rgnsize = type->regions[i].size; | 
|  | if (memblock_addrs_overlap(base, size, rgnbase, rgnsize)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return (i < type->cnt) ? i : -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find, allocate, deallocate or reserve unreserved regions. All allocations | 
|  | * are top-down. | 
|  | */ | 
|  |  | 
|  | static phys_addr_t __init_memblock memblock_find_region(phys_addr_t start, phys_addr_t end, | 
|  | phys_addr_t size, phys_addr_t align) | 
|  | { | 
|  | phys_addr_t base, res_base; | 
|  | long j; | 
|  |  | 
|  | /* In case, huge size is requested */ | 
|  | if (end < size) | 
|  | return MEMBLOCK_ERROR; | 
|  |  | 
|  | base = memblock_align_down((end - size), align); | 
|  |  | 
|  | /* Prevent allocations returning 0 as it's also used to | 
|  | * indicate an allocation failure | 
|  | */ | 
|  | if (start == 0) | 
|  | start = PAGE_SIZE; | 
|  |  | 
|  | while (start <= base) { | 
|  | j = memblock_overlaps_region(&memblock.reserved, base, size); | 
|  | if (j < 0) | 
|  | return base; | 
|  | res_base = memblock.reserved.regions[j].base; | 
|  | if (res_base < size) | 
|  | break; | 
|  | base = memblock_align_down(res_base - size, align); | 
|  | } | 
|  |  | 
|  | return MEMBLOCK_ERROR; | 
|  | } | 
|  |  | 
|  | static phys_addr_t __init_memblock memblock_find_base(phys_addr_t size, | 
|  | phys_addr_t align, phys_addr_t start, phys_addr_t end) | 
|  | { | 
|  | long i; | 
|  |  | 
|  | BUG_ON(0 == size); | 
|  |  | 
|  | /* Pump up max_addr */ | 
|  | if (end == MEMBLOCK_ALLOC_ACCESSIBLE) | 
|  | end = memblock.current_limit; | 
|  |  | 
|  | /* We do a top-down search, this tends to limit memory | 
|  | * fragmentation by keeping early boot allocs near the | 
|  | * top of memory | 
|  | */ | 
|  | for (i = memblock.memory.cnt - 1; i >= 0; i--) { | 
|  | phys_addr_t memblockbase = memblock.memory.regions[i].base; | 
|  | phys_addr_t memblocksize = memblock.memory.regions[i].size; | 
|  | phys_addr_t bottom, top, found; | 
|  |  | 
|  | if (memblocksize < size) | 
|  | continue; | 
|  | if ((memblockbase + memblocksize) <= start) | 
|  | break; | 
|  | bottom = max(memblockbase, start); | 
|  | top = min(memblockbase + memblocksize, end); | 
|  | if (bottom >= top) | 
|  | continue; | 
|  | found = memblock_find_region(bottom, top, size, align); | 
|  | if (found != MEMBLOCK_ERROR) | 
|  | return found; | 
|  | } | 
|  | return MEMBLOCK_ERROR; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find a free area with specified alignment in a specific range. | 
|  | */ | 
|  | u64 __init_memblock memblock_find_in_range(u64 start, u64 end, u64 size, u64 align) | 
|  | { | 
|  | return memblock_find_base(size, align, start, end); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free memblock.reserved.regions | 
|  | */ | 
|  | int __init_memblock memblock_free_reserved_regions(void) | 
|  | { | 
|  | if (memblock.reserved.regions == memblock_reserved_init_regions) | 
|  | return 0; | 
|  |  | 
|  | return memblock_free(__pa(memblock.reserved.regions), | 
|  | sizeof(struct memblock_region) * memblock.reserved.max); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reserve memblock.reserved.regions | 
|  | */ | 
|  | int __init_memblock memblock_reserve_reserved_regions(void) | 
|  | { | 
|  | if (memblock.reserved.regions == memblock_reserved_init_regions) | 
|  | return 0; | 
|  |  | 
|  | return memblock_reserve(__pa(memblock.reserved.regions), | 
|  | sizeof(struct memblock_region) * memblock.reserved.max); | 
|  | } | 
|  |  | 
|  | static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) | 
|  | { | 
|  | unsigned long i; | 
|  |  | 
|  | for (i = r; i < type->cnt - 1; i++) { | 
|  | type->regions[i].base = type->regions[i + 1].base; | 
|  | type->regions[i].size = type->regions[i + 1].size; | 
|  | } | 
|  | type->cnt--; | 
|  |  | 
|  | /* Special case for empty arrays */ | 
|  | if (type->cnt == 0) { | 
|  | type->cnt = 1; | 
|  | type->regions[0].base = 0; | 
|  | type->regions[0].size = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Defined below but needed now */ | 
|  | static long memblock_add_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size); | 
|  |  | 
|  | static int __init_memblock memblock_double_array(struct memblock_type *type) | 
|  | { | 
|  | struct memblock_region *new_array, *old_array; | 
|  | phys_addr_t old_size, new_size, addr; | 
|  | int use_slab = slab_is_available(); | 
|  |  | 
|  | /* We don't allow resizing until we know about the reserved regions | 
|  | * of memory that aren't suitable for allocation | 
|  | */ | 
|  | if (!memblock_can_resize) | 
|  | return -1; | 
|  |  | 
|  | /* Calculate new doubled size */ | 
|  | old_size = type->max * sizeof(struct memblock_region); | 
|  | new_size = old_size << 1; | 
|  |  | 
|  | /* Try to find some space for it. | 
|  | * | 
|  | * WARNING: We assume that either slab_is_available() and we use it or | 
|  | * we use MEMBLOCK for allocations. That means that this is unsafe to use | 
|  | * when bootmem is currently active (unless bootmem itself is implemented | 
|  | * on top of MEMBLOCK which isn't the case yet) | 
|  | * | 
|  | * This should however not be an issue for now, as we currently only | 
|  | * call into MEMBLOCK while it's still active, or much later when slab is | 
|  | * active for memory hotplug operations | 
|  | */ | 
|  | if (use_slab) { | 
|  | new_array = kmalloc(new_size, GFP_KERNEL); | 
|  | addr = new_array == NULL ? MEMBLOCK_ERROR : __pa(new_array); | 
|  | } else | 
|  | addr = memblock_find_base(new_size, sizeof(phys_addr_t), 0, MEMBLOCK_ALLOC_ACCESSIBLE); | 
|  | if (addr == MEMBLOCK_ERROR) { | 
|  | pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", | 
|  | memblock_type_name(type), type->max, type->max * 2); | 
|  | return -1; | 
|  | } | 
|  | new_array = __va(addr); | 
|  |  | 
|  | memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]", | 
|  | memblock_type_name(type), type->max * 2, (u64)addr, (u64)addr + new_size - 1); | 
|  |  | 
|  | /* Found space, we now need to move the array over before | 
|  | * we add the reserved region since it may be our reserved | 
|  | * array itself that is full. | 
|  | */ | 
|  | memcpy(new_array, type->regions, old_size); | 
|  | memset(new_array + type->max, 0, old_size); | 
|  | old_array = type->regions; | 
|  | type->regions = new_array; | 
|  | type->max <<= 1; | 
|  |  | 
|  | /* If we use SLAB that's it, we are done */ | 
|  | if (use_slab) | 
|  | return 0; | 
|  |  | 
|  | /* Add the new reserved region now. Should not fail ! */ | 
|  | BUG_ON(memblock_add_region(&memblock.reserved, addr, new_size)); | 
|  |  | 
|  | /* If the array wasn't our static init one, then free it. We only do | 
|  | * that before SLAB is available as later on, we don't know whether | 
|  | * to use kfree or free_bootmem_pages(). Shouldn't be a big deal | 
|  | * anyways | 
|  | */ | 
|  | if (old_array != memblock_memory_init_regions && | 
|  | old_array != memblock_reserved_init_regions) | 
|  | memblock_free(__pa(old_array), old_size); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | extern int __init_memblock __weak memblock_memory_can_coalesce(phys_addr_t addr1, phys_addr_t size1, | 
|  | phys_addr_t addr2, phys_addr_t size2) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static long __init_memblock memblock_add_region(struct memblock_type *type, | 
|  | phys_addr_t base, phys_addr_t size) | 
|  | { | 
|  | phys_addr_t end = base + memblock_cap_size(base, &size); | 
|  | int i, slot = -1; | 
|  |  | 
|  | /* First try and coalesce this MEMBLOCK with others */ | 
|  | for (i = 0; i < type->cnt; i++) { | 
|  | struct memblock_region *rgn = &type->regions[i]; | 
|  | phys_addr_t rend = rgn->base + rgn->size; | 
|  |  | 
|  | /* Exit if there's no possible hits */ | 
|  | if (rgn->base > end || rgn->size == 0) | 
|  | break; | 
|  |  | 
|  | /* Check if we are fully enclosed within an existing | 
|  | * block | 
|  | */ | 
|  | if (rgn->base <= base && rend >= end) | 
|  | return 0; | 
|  |  | 
|  | /* Check if we overlap or are adjacent with the bottom | 
|  | * of a block. | 
|  | */ | 
|  | if (base < rgn->base && end >= rgn->base) { | 
|  | /* If we can't coalesce, create a new block */ | 
|  | if (!memblock_memory_can_coalesce(base, size, | 
|  | rgn->base, | 
|  | rgn->size)) { | 
|  | /* Overlap & can't coalesce are mutually | 
|  | * exclusive, if you do that, be prepared | 
|  | * for trouble | 
|  | */ | 
|  | WARN_ON(end != rgn->base); | 
|  | goto new_block; | 
|  | } | 
|  | /* We extend the bottom of the block down to our | 
|  | * base | 
|  | */ | 
|  | rgn->base = base; | 
|  | rgn->size = rend - base; | 
|  |  | 
|  | /* Return if we have nothing else to allocate | 
|  | * (fully coalesced) | 
|  | */ | 
|  | if (rend >= end) | 
|  | return 0; | 
|  |  | 
|  | /* We continue processing from the end of the | 
|  | * coalesced block. | 
|  | */ | 
|  | base = rend; | 
|  | size = end - base; | 
|  | } | 
|  |  | 
|  | /* Now check if we overlap or are adjacent with the | 
|  | * top of a block | 
|  | */ | 
|  | if (base <= rend && end >= rend) { | 
|  | /* If we can't coalesce, create a new block */ | 
|  | if (!memblock_memory_can_coalesce(rgn->base, | 
|  | rgn->size, | 
|  | base, size)) { | 
|  | /* Overlap & can't coalesce are mutually | 
|  | * exclusive, if you do that, be prepared | 
|  | * for trouble | 
|  | */ | 
|  | WARN_ON(rend != base); | 
|  | goto new_block; | 
|  | } | 
|  | /* We adjust our base down to enclose the | 
|  | * original block and destroy it. It will be | 
|  | * part of our new allocation. Since we've | 
|  | * freed an entry, we know we won't fail | 
|  | * to allocate one later, so we won't risk | 
|  | * losing the original block allocation. | 
|  | */ | 
|  | size += (base - rgn->base); | 
|  | base = rgn->base; | 
|  | memblock_remove_region(type, i--); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If the array is empty, special case, replace the fake | 
|  | * filler region and return | 
|  | */ | 
|  | if ((type->cnt == 1) && (type->regions[0].size == 0)) { | 
|  | type->regions[0].base = base; | 
|  | type->regions[0].size = size; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | new_block: | 
|  | /* If we are out of space, we fail. It's too late to resize the array | 
|  | * but then this shouldn't have happened in the first place. | 
|  | */ | 
|  | if (WARN_ON(type->cnt >= type->max)) | 
|  | return -1; | 
|  |  | 
|  | /* Couldn't coalesce the MEMBLOCK, so add it to the sorted table. */ | 
|  | for (i = type->cnt - 1; i >= 0; i--) { | 
|  | if (base < type->regions[i].base) { | 
|  | type->regions[i+1].base = type->regions[i].base; | 
|  | type->regions[i+1].size = type->regions[i].size; | 
|  | } else { | 
|  | type->regions[i+1].base = base; | 
|  | type->regions[i+1].size = size; | 
|  | slot = i + 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (base < type->regions[0].base) { | 
|  | type->regions[0].base = base; | 
|  | type->regions[0].size = size; | 
|  | slot = 0; | 
|  | } | 
|  | type->cnt++; | 
|  |  | 
|  | /* The array is full ? Try to resize it. If that fails, we undo | 
|  | * our allocation and return an error | 
|  | */ | 
|  | if (type->cnt == type->max && memblock_double_array(type)) { | 
|  | BUG_ON(slot < 0); | 
|  | memblock_remove_region(type, slot); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | long __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) | 
|  | { | 
|  | return memblock_add_region(&memblock.memory, base, size); | 
|  |  | 
|  | } | 
|  |  | 
|  | static long __init_memblock __memblock_remove(struct memblock_type *type, | 
|  | phys_addr_t base, phys_addr_t size) | 
|  | { | 
|  | phys_addr_t end = base + memblock_cap_size(base, &size); | 
|  | int i; | 
|  |  | 
|  | /* Walk through the array for collisions */ | 
|  | for (i = 0; i < type->cnt; i++) { | 
|  | struct memblock_region *rgn = &type->regions[i]; | 
|  | phys_addr_t rend = rgn->base + rgn->size; | 
|  |  | 
|  | /* Nothing more to do, exit */ | 
|  | if (rgn->base > end || rgn->size == 0) | 
|  | break; | 
|  |  | 
|  | /* If we fully enclose the block, drop it */ | 
|  | if (base <= rgn->base && end >= rend) { | 
|  | memblock_remove_region(type, i--); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* If we are fully enclosed within a block | 
|  | * then we need to split it and we are done | 
|  | */ | 
|  | if (base > rgn->base && end < rend) { | 
|  | rgn->size = base - rgn->base; | 
|  | if (!memblock_add_region(type, end, rend - end)) | 
|  | return 0; | 
|  | /* Failure to split is bad, we at least | 
|  | * restore the block before erroring | 
|  | */ | 
|  | rgn->size = rend - rgn->base; | 
|  | WARN_ON(1); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Check if we need to trim the bottom of a block */ | 
|  | if (rgn->base < end && rend > end) { | 
|  | rgn->size -= end - rgn->base; | 
|  | rgn->base = end; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* And check if we need to trim the top of a block */ | 
|  | if (base < rend) | 
|  | rgn->size -= rend - base; | 
|  |  | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | long __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) | 
|  | { | 
|  | return __memblock_remove(&memblock.memory, base, size); | 
|  | } | 
|  |  | 
|  | long __init_memblock memblock_free(phys_addr_t base, phys_addr_t size) | 
|  | { | 
|  | return __memblock_remove(&memblock.reserved, base, size); | 
|  | } | 
|  |  | 
|  | long __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) | 
|  | { | 
|  | struct memblock_type *_rgn = &memblock.reserved; | 
|  |  | 
|  | BUG_ON(0 == size); | 
|  |  | 
|  | return memblock_add_region(_rgn, base, size); | 
|  | } | 
|  |  | 
|  | phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) | 
|  | { | 
|  | phys_addr_t found; | 
|  |  | 
|  | /* We align the size to limit fragmentation. Without this, a lot of | 
|  | * small allocs quickly eat up the whole reserve array on sparc | 
|  | */ | 
|  | size = memblock_align_up(size, align); | 
|  |  | 
|  | found = memblock_find_base(size, align, 0, max_addr); | 
|  | if (found != MEMBLOCK_ERROR && | 
|  | !memblock_add_region(&memblock.reserved, found, size)) | 
|  | return found; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) | 
|  | { | 
|  | phys_addr_t alloc; | 
|  |  | 
|  | alloc = __memblock_alloc_base(size, align, max_addr); | 
|  |  | 
|  | if (alloc == 0) | 
|  | panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n", | 
|  | (unsigned long long) size, (unsigned long long) max_addr); | 
|  |  | 
|  | return alloc; | 
|  | } | 
|  |  | 
|  | phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align) | 
|  | { | 
|  | return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Additional node-local allocators. Search for node memory is bottom up | 
|  | * and walks memblock regions within that node bottom-up as well, but allocation | 
|  | * within an memblock region is top-down. XXX I plan to fix that at some stage | 
|  | * | 
|  | * WARNING: Only available after early_node_map[] has been populated, | 
|  | * on some architectures, that is after all the calls to add_active_range() | 
|  | * have been done to populate it. | 
|  | */ | 
|  |  | 
|  | phys_addr_t __weak __init memblock_nid_range(phys_addr_t start, phys_addr_t end, int *nid) | 
|  | { | 
|  | #ifdef CONFIG_ARCH_POPULATES_NODE_MAP | 
|  | /* | 
|  | * This code originates from sparc which really wants use to walk by addresses | 
|  | * and returns the nid. This is not very convenient for early_pfn_map[] users | 
|  | * as the map isn't sorted yet, and it really wants to be walked by nid. | 
|  | * | 
|  | * For now, I implement the inefficient method below which walks the early | 
|  | * map multiple times. Eventually we may want to use an ARCH config option | 
|  | * to implement a completely different method for both case. | 
|  | */ | 
|  | unsigned long start_pfn, end_pfn; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < MAX_NUMNODES; i++) { | 
|  | get_pfn_range_for_nid(i, &start_pfn, &end_pfn); | 
|  | if (start < PFN_PHYS(start_pfn) || start >= PFN_PHYS(end_pfn)) | 
|  | continue; | 
|  | *nid = i; | 
|  | return min(end, PFN_PHYS(end_pfn)); | 
|  | } | 
|  | #endif | 
|  | *nid = 0; | 
|  |  | 
|  | return end; | 
|  | } | 
|  |  | 
|  | static phys_addr_t __init memblock_alloc_nid_region(struct memblock_region *mp, | 
|  | phys_addr_t size, | 
|  | phys_addr_t align, int nid) | 
|  | { | 
|  | phys_addr_t start, end; | 
|  |  | 
|  | start = mp->base; | 
|  | end = start + mp->size; | 
|  |  | 
|  | start = memblock_align_up(start, align); | 
|  | while (start < end) { | 
|  | phys_addr_t this_end; | 
|  | int this_nid; | 
|  |  | 
|  | this_end = memblock_nid_range(start, end, &this_nid); | 
|  | if (this_nid == nid) { | 
|  | phys_addr_t ret = memblock_find_region(start, this_end, size, align); | 
|  | if (ret != MEMBLOCK_ERROR && | 
|  | !memblock_add_region(&memblock.reserved, ret, size)) | 
|  | return ret; | 
|  | } | 
|  | start = this_end; | 
|  | } | 
|  |  | 
|  | return MEMBLOCK_ERROR; | 
|  | } | 
|  |  | 
|  | phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid) | 
|  | { | 
|  | struct memblock_type *mem = &memblock.memory; | 
|  | int i; | 
|  |  | 
|  | BUG_ON(0 == size); | 
|  |  | 
|  | /* We align the size to limit fragmentation. Without this, a lot of | 
|  | * small allocs quickly eat up the whole reserve array on sparc | 
|  | */ | 
|  | size = memblock_align_up(size, align); | 
|  |  | 
|  | /* We do a bottom-up search for a region with the right | 
|  | * nid since that's easier considering how memblock_nid_range() | 
|  | * works | 
|  | */ | 
|  | for (i = 0; i < mem->cnt; i++) { | 
|  | phys_addr_t ret = memblock_alloc_nid_region(&mem->regions[i], | 
|  | size, align, nid); | 
|  | if (ret != MEMBLOCK_ERROR) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) | 
|  | { | 
|  | phys_addr_t res = memblock_alloc_nid(size, align, nid); | 
|  |  | 
|  | if (res) | 
|  | return res; | 
|  | return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ANYWHERE); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Remaining API functions | 
|  | */ | 
|  |  | 
|  | /* You must call memblock_analyze() before this. */ | 
|  | phys_addr_t __init memblock_phys_mem_size(void) | 
|  | { | 
|  | return memblock.memory_size; | 
|  | } | 
|  |  | 
|  | phys_addr_t __init_memblock memblock_end_of_DRAM(void) | 
|  | { | 
|  | int idx = memblock.memory.cnt - 1; | 
|  |  | 
|  | return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); | 
|  | } | 
|  |  | 
|  | /* You must call memblock_analyze() after this. */ | 
|  | void __init memblock_enforce_memory_limit(phys_addr_t memory_limit) | 
|  | { | 
|  | unsigned long i; | 
|  | phys_addr_t limit; | 
|  | struct memblock_region *p; | 
|  |  | 
|  | if (!memory_limit) | 
|  | return; | 
|  |  | 
|  | /* Truncate the memblock regions to satisfy the memory limit. */ | 
|  | limit = memory_limit; | 
|  | for (i = 0; i < memblock.memory.cnt; i++) { | 
|  | if (limit > memblock.memory.regions[i].size) { | 
|  | limit -= memblock.memory.regions[i].size; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | memblock.memory.regions[i].size = limit; | 
|  | memblock.memory.cnt = i + 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | memory_limit = memblock_end_of_DRAM(); | 
|  |  | 
|  | /* And truncate any reserves above the limit also. */ | 
|  | for (i = 0; i < memblock.reserved.cnt; i++) { | 
|  | p = &memblock.reserved.regions[i]; | 
|  |  | 
|  | if (p->base > memory_limit) | 
|  | p->size = 0; | 
|  | else if ((p->base + p->size) > memory_limit) | 
|  | p->size = memory_limit - p->base; | 
|  |  | 
|  | if (p->size == 0) { | 
|  | memblock_remove_region(&memblock.reserved, i); | 
|  | i--; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) | 
|  | { | 
|  | unsigned int left = 0, right = type->cnt; | 
|  |  | 
|  | do { | 
|  | unsigned int mid = (right + left) / 2; | 
|  |  | 
|  | if (addr < type->regions[mid].base) | 
|  | right = mid; | 
|  | else if (addr >= (type->regions[mid].base + | 
|  | type->regions[mid].size)) | 
|  | left = mid + 1; | 
|  | else | 
|  | return mid; | 
|  | } while (left < right); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | int __init memblock_is_reserved(phys_addr_t addr) | 
|  | { | 
|  | return memblock_search(&memblock.reserved, addr) != -1; | 
|  | } | 
|  |  | 
|  | int __init_memblock memblock_is_memory(phys_addr_t addr) | 
|  | { | 
|  | return memblock_search(&memblock.memory, addr) != -1; | 
|  | } | 
|  |  | 
|  | int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) | 
|  | { | 
|  | int idx = memblock_search(&memblock.memory, base); | 
|  | phys_addr_t end = base + memblock_cap_size(base, &size); | 
|  |  | 
|  | if (idx == -1) | 
|  | return 0; | 
|  | return memblock.memory.regions[idx].base <= base && | 
|  | (memblock.memory.regions[idx].base + | 
|  | memblock.memory.regions[idx].size) >= end; | 
|  | } | 
|  |  | 
|  | int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) | 
|  | { | 
|  | memblock_cap_size(base, &size); | 
|  | return memblock_overlaps_region(&memblock.reserved, base, size) >= 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | void __init_memblock memblock_set_current_limit(phys_addr_t limit) | 
|  | { | 
|  | memblock.current_limit = limit; | 
|  | } | 
|  |  | 
|  | static void __init_memblock memblock_dump(struct memblock_type *region, char *name) | 
|  | { | 
|  | unsigned long long base, size; | 
|  | int i; | 
|  |  | 
|  | pr_info(" %s.cnt  = 0x%lx\n", name, region->cnt); | 
|  |  | 
|  | for (i = 0; i < region->cnt; i++) { | 
|  | base = region->regions[i].base; | 
|  | size = region->regions[i].size; | 
|  |  | 
|  | pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes\n", | 
|  | name, i, base, base + size - 1, size); | 
|  | } | 
|  | } | 
|  |  | 
|  | void __init_memblock memblock_dump_all(void) | 
|  | { | 
|  | if (!memblock_debug) | 
|  | return; | 
|  |  | 
|  | pr_info("MEMBLOCK configuration:\n"); | 
|  | pr_info(" memory size = 0x%llx\n", (unsigned long long)memblock.memory_size); | 
|  |  | 
|  | memblock_dump(&memblock.memory, "memory"); | 
|  | memblock_dump(&memblock.reserved, "reserved"); | 
|  | } | 
|  |  | 
|  | void __init memblock_analyze(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* Check marker in the unused last array entry */ | 
|  | WARN_ON(memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS].base | 
|  | != (phys_addr_t)RED_INACTIVE); | 
|  | WARN_ON(memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS].base | 
|  | != (phys_addr_t)RED_INACTIVE); | 
|  |  | 
|  | memblock.memory_size = 0; | 
|  |  | 
|  | for (i = 0; i < memblock.memory.cnt; i++) | 
|  | memblock.memory_size += memblock.memory.regions[i].size; | 
|  |  | 
|  | /* We allow resizing from there */ | 
|  | memblock_can_resize = 1; | 
|  | } | 
|  |  | 
|  | void __init memblock_init(void) | 
|  | { | 
|  | static int init_done __initdata = 0; | 
|  |  | 
|  | if (init_done) | 
|  | return; | 
|  | init_done = 1; | 
|  |  | 
|  | /* Hookup the initial arrays */ | 
|  | memblock.memory.regions	= memblock_memory_init_regions; | 
|  | memblock.memory.max		= INIT_MEMBLOCK_REGIONS; | 
|  | memblock.reserved.regions	= memblock_reserved_init_regions; | 
|  | memblock.reserved.max	= INIT_MEMBLOCK_REGIONS; | 
|  |  | 
|  | /* Write a marker in the unused last array entry */ | 
|  | memblock.memory.regions[INIT_MEMBLOCK_REGIONS].base = (phys_addr_t)RED_INACTIVE; | 
|  | memblock.reserved.regions[INIT_MEMBLOCK_REGIONS].base = (phys_addr_t)RED_INACTIVE; | 
|  |  | 
|  | /* Create a dummy zero size MEMBLOCK which will get coalesced away later. | 
|  | * This simplifies the memblock_add() code below... | 
|  | */ | 
|  | memblock.memory.regions[0].base = 0; | 
|  | memblock.memory.regions[0].size = 0; | 
|  | memblock.memory.cnt = 1; | 
|  |  | 
|  | /* Ditto. */ | 
|  | memblock.reserved.regions[0].base = 0; | 
|  | memblock.reserved.regions[0].size = 0; | 
|  | memblock.reserved.cnt = 1; | 
|  |  | 
|  | memblock.current_limit = MEMBLOCK_ALLOC_ANYWHERE; | 
|  | } | 
|  |  | 
|  | static int __init early_memblock(char *p) | 
|  | { | 
|  | if (p && strstr(p, "debug")) | 
|  | memblock_debug = 1; | 
|  | return 0; | 
|  | } | 
|  | early_param("memblock", early_memblock); | 
|  |  | 
|  | #if defined(CONFIG_DEBUG_FS) && !defined(ARCH_DISCARD_MEMBLOCK) | 
|  |  | 
|  | static int memblock_debug_show(struct seq_file *m, void *private) | 
|  | { | 
|  | struct memblock_type *type = m->private; | 
|  | struct memblock_region *reg; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < type->cnt; i++) { | 
|  | reg = &type->regions[i]; | 
|  | seq_printf(m, "%4d: ", i); | 
|  | if (sizeof(phys_addr_t) == 4) | 
|  | seq_printf(m, "0x%08lx..0x%08lx\n", | 
|  | (unsigned long)reg->base, | 
|  | (unsigned long)(reg->base + reg->size - 1)); | 
|  | else | 
|  | seq_printf(m, "0x%016llx..0x%016llx\n", | 
|  | (unsigned long long)reg->base, | 
|  | (unsigned long long)(reg->base + reg->size - 1)); | 
|  |  | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int memblock_debug_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return single_open(file, memblock_debug_show, inode->i_private); | 
|  | } | 
|  |  | 
|  | static const struct file_operations memblock_debug_fops = { | 
|  | .open = memblock_debug_open, | 
|  | .read = seq_read, | 
|  | .llseek = seq_lseek, | 
|  | .release = single_release, | 
|  | }; | 
|  |  | 
|  | static int __init memblock_init_debugfs(void) | 
|  | { | 
|  | struct dentry *root = debugfs_create_dir("memblock", NULL); | 
|  | if (!root) | 
|  | return -ENXIO; | 
|  | debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops); | 
|  | debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | __initcall(memblock_init_debugfs); | 
|  |  | 
|  | #endif /* CONFIG_DEBUG_FS */ |