|  | /* | 
|  | *  linux/arch/alpha/kernel/time.c | 
|  | * | 
|  | *  Copyright (C) 1991, 1992, 1995, 1999, 2000  Linus Torvalds | 
|  | * | 
|  | * This file contains the PC-specific time handling details: | 
|  | * reading the RTC at bootup, etc.. | 
|  | * 1994-07-02    Alan Modra | 
|  | *	fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime | 
|  | * 1995-03-26    Markus Kuhn | 
|  | *      fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887 | 
|  | *      precision CMOS clock update | 
|  | * 1997-09-10	Updated NTP code according to technical memorandum Jan '96 | 
|  | *		"A Kernel Model for Precision Timekeeping" by Dave Mills | 
|  | * 1997-01-09    Adrian Sun | 
|  | *      use interval timer if CONFIG_RTC=y | 
|  | * 1997-10-29    John Bowman (bowman@math.ualberta.ca) | 
|  | *      fixed tick loss calculation in timer_interrupt | 
|  | *      (round system clock to nearest tick instead of truncating) | 
|  | *      fixed algorithm in time_init for getting time from CMOS clock | 
|  | * 1999-04-16	Thorsten Kranzkowski (dl8bcu@gmx.net) | 
|  | *	fixed algorithm in do_gettimeofday() for calculating the precise time | 
|  | *	from processor cycle counter (now taking lost_ticks into account) | 
|  | * 2000-08-13	Jan-Benedict Glaw <jbglaw@lug-owl.de> | 
|  | * 	Fixed time_init to be aware of epoches != 1900. This prevents | 
|  | * 	booting up in 2048 for me;) Code is stolen from rtc.c. | 
|  | * 2003-06-03	R. Scott Bailey <scott.bailey@eds.com> | 
|  | *	Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM | 
|  | */ | 
|  | #include <linux/config.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/param.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/ioport.h> | 
|  | #include <linux/irq.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/bcd.h> | 
|  | #include <linux/profile.h> | 
|  |  | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/hwrpb.h> | 
|  | #include <asm/8253pit.h> | 
|  |  | 
|  | #include <linux/mc146818rtc.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/timex.h> | 
|  |  | 
|  | #include "proto.h" | 
|  | #include "irq_impl.h" | 
|  |  | 
|  | extern unsigned long wall_jiffies;	/* kernel/timer.c */ | 
|  |  | 
|  | static int set_rtc_mmss(unsigned long); | 
|  |  | 
|  | DEFINE_SPINLOCK(rtc_lock); | 
|  |  | 
|  | #define TICK_SIZE (tick_nsec / 1000) | 
|  |  | 
|  | /* | 
|  | * Shift amount by which scaled_ticks_per_cycle is scaled.  Shifting | 
|  | * by 48 gives us 16 bits for HZ while keeping the accuracy good even | 
|  | * for large CPU clock rates. | 
|  | */ | 
|  | #define FIX_SHIFT	48 | 
|  |  | 
|  | /* lump static variables together for more efficient access: */ | 
|  | static struct { | 
|  | /* cycle counter last time it got invoked */ | 
|  | __u32 last_time; | 
|  | /* ticks/cycle * 2^48 */ | 
|  | unsigned long scaled_ticks_per_cycle; | 
|  | /* last time the CMOS clock got updated */ | 
|  | time_t last_rtc_update; | 
|  | /* partial unused tick */ | 
|  | unsigned long partial_tick; | 
|  | } state; | 
|  |  | 
|  | unsigned long est_cycle_freq; | 
|  |  | 
|  |  | 
|  | static inline __u32 rpcc(void) | 
|  | { | 
|  | __u32 result; | 
|  | asm volatile ("rpcc %0" : "=r"(result)); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Scheduler clock - returns current time in nanosec units. | 
|  | * | 
|  | * Copied from ARM code for expediency... ;-} | 
|  | */ | 
|  | unsigned long long sched_clock(void) | 
|  | { | 
|  | return (unsigned long long)jiffies * (1000000000 / HZ); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * timer_interrupt() needs to keep up the real-time clock, | 
|  | * as well as call the "do_timer()" routine every clocktick | 
|  | */ | 
|  | irqreturn_t timer_interrupt(int irq, void *dev, struct pt_regs * regs) | 
|  | { | 
|  | unsigned long delta; | 
|  | __u32 now; | 
|  | long nticks; | 
|  |  | 
|  | #ifndef CONFIG_SMP | 
|  | /* Not SMP, do kernel PC profiling here.  */ | 
|  | profile_tick(CPU_PROFILING, regs); | 
|  | #endif | 
|  |  | 
|  | write_seqlock(&xtime_lock); | 
|  |  | 
|  | /* | 
|  | * Calculate how many ticks have passed since the last update, | 
|  | * including any previous partial leftover.  Save any resulting | 
|  | * fraction for the next pass. | 
|  | */ | 
|  | now = rpcc(); | 
|  | delta = now - state.last_time; | 
|  | state.last_time = now; | 
|  | delta = delta * state.scaled_ticks_per_cycle + state.partial_tick; | 
|  | state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1); | 
|  | nticks = delta >> FIX_SHIFT; | 
|  |  | 
|  | while (nticks > 0) { | 
|  | do_timer(regs); | 
|  | #ifndef CONFIG_SMP | 
|  | update_process_times(user_mode(regs)); | 
|  | #endif | 
|  | nticks--; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we have an externally synchronized Linux clock, then update | 
|  | * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be | 
|  | * called as close as possible to 500 ms before the new second starts. | 
|  | */ | 
|  | if (ntp_synced() | 
|  | && xtime.tv_sec > state.last_rtc_update + 660 | 
|  | && xtime.tv_nsec >= 500000 - ((unsigned) TICK_SIZE) / 2 | 
|  | && xtime.tv_nsec <= 500000 + ((unsigned) TICK_SIZE) / 2) { | 
|  | int tmp = set_rtc_mmss(xtime.tv_sec); | 
|  | state.last_rtc_update = xtime.tv_sec - (tmp ? 600 : 0); | 
|  | } | 
|  |  | 
|  | write_sequnlock(&xtime_lock); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | void | 
|  | common_init_rtc(void) | 
|  | { | 
|  | unsigned char x; | 
|  |  | 
|  | /* Reset periodic interrupt frequency.  */ | 
|  | x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f; | 
|  | /* Test includes known working values on various platforms | 
|  | where 0x26 is wrong; we refuse to change those. */ | 
|  | if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) { | 
|  | printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x); | 
|  | CMOS_WRITE(0x26, RTC_FREQ_SELECT); | 
|  | } | 
|  |  | 
|  | /* Turn on periodic interrupts.  */ | 
|  | x = CMOS_READ(RTC_CONTROL); | 
|  | if (!(x & RTC_PIE)) { | 
|  | printk("Turning on RTC interrupts.\n"); | 
|  | x |= RTC_PIE; | 
|  | x &= ~(RTC_AIE | RTC_UIE); | 
|  | CMOS_WRITE(x, RTC_CONTROL); | 
|  | } | 
|  | (void) CMOS_READ(RTC_INTR_FLAGS); | 
|  |  | 
|  | outb(0x36, 0x43);	/* pit counter 0: system timer */ | 
|  | outb(0x00, 0x40); | 
|  | outb(0x00, 0x40); | 
|  |  | 
|  | outb(0xb6, 0x43);	/* pit counter 2: speaker */ | 
|  | outb(0x31, 0x42); | 
|  | outb(0x13, 0x42); | 
|  |  | 
|  | init_rtc_irq(); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Validate a computed cycle counter result against the known bounds for | 
|  | the given processor core.  There's too much brokenness in the way of | 
|  | timing hardware for any one method to work everywhere.  :-( | 
|  |  | 
|  | Return 0 if the result cannot be trusted, otherwise return the argument.  */ | 
|  |  | 
|  | static unsigned long __init | 
|  | validate_cc_value(unsigned long cc) | 
|  | { | 
|  | static struct bounds { | 
|  | unsigned int min, max; | 
|  | } cpu_hz[] __initdata = { | 
|  | [EV3_CPU]    = {   50000000,  200000000 },	/* guess */ | 
|  | [EV4_CPU]    = {  100000000,  300000000 }, | 
|  | [LCA4_CPU]   = {  100000000,  300000000 },	/* guess */ | 
|  | [EV45_CPU]   = {  200000000,  300000000 }, | 
|  | [EV5_CPU]    = {  250000000,  433000000 }, | 
|  | [EV56_CPU]   = {  333000000,  667000000 }, | 
|  | [PCA56_CPU]  = {  400000000,  600000000 },	/* guess */ | 
|  | [PCA57_CPU]  = {  500000000,  600000000 },	/* guess */ | 
|  | [EV6_CPU]    = {  466000000,  600000000 }, | 
|  | [EV67_CPU]   = {  600000000,  750000000 }, | 
|  | [EV68AL_CPU] = {  750000000,  940000000 }, | 
|  | [EV68CB_CPU] = { 1000000000, 1333333333 }, | 
|  | /* None of the following are shipping as of 2001-11-01.  */ | 
|  | [EV68CX_CPU] = { 1000000000, 1700000000 },	/* guess */ | 
|  | [EV69_CPU]   = { 1000000000, 1700000000 },	/* guess */ | 
|  | [EV7_CPU]    = {  800000000, 1400000000 },	/* guess */ | 
|  | [EV79_CPU]   = { 1000000000, 2000000000 },	/* guess */ | 
|  | }; | 
|  |  | 
|  | /* Allow for some drift in the crystal.  10MHz is more than enough.  */ | 
|  | const unsigned int deviation = 10000000; | 
|  |  | 
|  | struct percpu_struct *cpu; | 
|  | unsigned int index; | 
|  |  | 
|  | cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset); | 
|  | index = cpu->type & 0xffffffff; | 
|  |  | 
|  | /* If index out of bounds, no way to validate.  */ | 
|  | if (index >= sizeof(cpu_hz)/sizeof(cpu_hz[0])) | 
|  | return cc; | 
|  |  | 
|  | /* If index contains no data, no way to validate.  */ | 
|  | if (cpu_hz[index].max == 0) | 
|  | return cc; | 
|  |  | 
|  | if (cc < cpu_hz[index].min - deviation | 
|  | || cc > cpu_hz[index].max + deviation) | 
|  | return 0; | 
|  |  | 
|  | return cc; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from | 
|  | * arch/i386/time.c. | 
|  | */ | 
|  |  | 
|  | #define CALIBRATE_LATCH	0xffff | 
|  | #define TIMEOUT_COUNT	0x100000 | 
|  |  | 
|  | static unsigned long __init | 
|  | calibrate_cc_with_pit(void) | 
|  | { | 
|  | int cc, count = 0; | 
|  |  | 
|  | /* Set the Gate high, disable speaker */ | 
|  | outb((inb(0x61) & ~0x02) | 0x01, 0x61); | 
|  |  | 
|  | /* | 
|  | * Now let's take care of CTC channel 2 | 
|  | * | 
|  | * Set the Gate high, program CTC channel 2 for mode 0, | 
|  | * (interrupt on terminal count mode), binary count, | 
|  | * load 5 * LATCH count, (LSB and MSB) to begin countdown. | 
|  | */ | 
|  | outb(0xb0, 0x43);		/* binary, mode 0, LSB/MSB, Ch 2 */ | 
|  | outb(CALIBRATE_LATCH & 0xff, 0x42);	/* LSB of count */ | 
|  | outb(CALIBRATE_LATCH >> 8, 0x42);	/* MSB of count */ | 
|  |  | 
|  | cc = rpcc(); | 
|  | do { | 
|  | count++; | 
|  | } while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT); | 
|  | cc = rpcc() - cc; | 
|  |  | 
|  | /* Error: ECTCNEVERSET or ECPUTOOFAST.  */ | 
|  | if (count <= 1 || count == TIMEOUT_COUNT) | 
|  | return 0; | 
|  |  | 
|  | return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1); | 
|  | } | 
|  |  | 
|  | /* The Linux interpretation of the CMOS clock register contents: | 
|  | When the Update-In-Progress (UIP) flag goes from 1 to 0, the | 
|  | RTC registers show the second which has precisely just started. | 
|  | Let's hope other operating systems interpret the RTC the same way.  */ | 
|  |  | 
|  | static unsigned long __init | 
|  | rpcc_after_update_in_progress(void) | 
|  | { | 
|  | do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)); | 
|  | do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP); | 
|  |  | 
|  | return rpcc(); | 
|  | } | 
|  |  | 
|  | void __init | 
|  | time_init(void) | 
|  | { | 
|  | unsigned int year, mon, day, hour, min, sec, cc1, cc2, epoch; | 
|  | unsigned long cycle_freq, tolerance; | 
|  | long diff; | 
|  |  | 
|  | /* Calibrate CPU clock -- attempt #1.  */ | 
|  | if (!est_cycle_freq) | 
|  | est_cycle_freq = validate_cc_value(calibrate_cc_with_pit()); | 
|  |  | 
|  | cc1 = rpcc_after_update_in_progress(); | 
|  |  | 
|  | /* Calibrate CPU clock -- attempt #2.  */ | 
|  | if (!est_cycle_freq) { | 
|  | cc2 = rpcc_after_update_in_progress(); | 
|  | est_cycle_freq = validate_cc_value(cc2 - cc1); | 
|  | cc1 = cc2; | 
|  | } | 
|  |  | 
|  | cycle_freq = hwrpb->cycle_freq; | 
|  | if (est_cycle_freq) { | 
|  | /* If the given value is within 250 PPM of what we calculated, | 
|  | accept it.  Otherwise, use what we found.  */ | 
|  | tolerance = cycle_freq / 4000; | 
|  | diff = cycle_freq - est_cycle_freq; | 
|  | if (diff < 0) | 
|  | diff = -diff; | 
|  | if ((unsigned long)diff > tolerance) { | 
|  | cycle_freq = est_cycle_freq; | 
|  | printk("HWRPB cycle frequency bogus.  " | 
|  | "Estimated %lu Hz\n", cycle_freq); | 
|  | } else { | 
|  | est_cycle_freq = 0; | 
|  | } | 
|  | } else if (! validate_cc_value (cycle_freq)) { | 
|  | printk("HWRPB cycle frequency bogus, " | 
|  | "and unable to estimate a proper value!\n"); | 
|  | } | 
|  |  | 
|  | /* From John Bowman <bowman@math.ualberta.ca>: allow the values | 
|  | to settle, as the Update-In-Progress bit going low isn't good | 
|  | enough on some hardware.  2ms is our guess; we haven't found | 
|  | bogomips yet, but this is close on a 500Mhz box.  */ | 
|  | __delay(1000000); | 
|  |  | 
|  | sec = CMOS_READ(RTC_SECONDS); | 
|  | min = CMOS_READ(RTC_MINUTES); | 
|  | hour = CMOS_READ(RTC_HOURS); | 
|  | day = CMOS_READ(RTC_DAY_OF_MONTH); | 
|  | mon = CMOS_READ(RTC_MONTH); | 
|  | year = CMOS_READ(RTC_YEAR); | 
|  |  | 
|  | if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { | 
|  | BCD_TO_BIN(sec); | 
|  | BCD_TO_BIN(min); | 
|  | BCD_TO_BIN(hour); | 
|  | BCD_TO_BIN(day); | 
|  | BCD_TO_BIN(mon); | 
|  | BCD_TO_BIN(year); | 
|  | } | 
|  |  | 
|  | /* PC-like is standard; used for year >= 70 */ | 
|  | epoch = 1900; | 
|  | if (year < 20) | 
|  | epoch = 2000; | 
|  | else if (year >= 20 && year < 48) | 
|  | /* NT epoch */ | 
|  | epoch = 1980; | 
|  | else if (year >= 48 && year < 70) | 
|  | /* Digital UNIX epoch */ | 
|  | epoch = 1952; | 
|  |  | 
|  | printk(KERN_INFO "Using epoch = %d\n", epoch); | 
|  |  | 
|  | if ((year += epoch) < 1970) | 
|  | year += 100; | 
|  |  | 
|  | xtime.tv_sec = mktime(year, mon, day, hour, min, sec); | 
|  | xtime.tv_nsec = 0; | 
|  |  | 
|  | wall_to_monotonic.tv_sec -= xtime.tv_sec; | 
|  | wall_to_monotonic.tv_nsec = 0; | 
|  |  | 
|  | if (HZ > (1<<16)) { | 
|  | extern void __you_loose (void); | 
|  | __you_loose(); | 
|  | } | 
|  |  | 
|  | state.last_time = cc1; | 
|  | state.scaled_ticks_per_cycle | 
|  | = ((unsigned long) HZ << FIX_SHIFT) / cycle_freq; | 
|  | state.last_rtc_update = 0; | 
|  | state.partial_tick = 0L; | 
|  |  | 
|  | /* Startup the timer source. */ | 
|  | alpha_mv.init_rtc(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Use the cycle counter to estimate an displacement from the last time | 
|  | * tick.  Unfortunately the Alpha designers made only the low 32-bits of | 
|  | * the cycle counter active, so we overflow on 8.2 seconds on a 500MHz | 
|  | * part.  So we can't do the "find absolute time in terms of cycles" thing | 
|  | * that the other ports do. | 
|  | */ | 
|  | void | 
|  | do_gettimeofday(struct timeval *tv) | 
|  | { | 
|  | unsigned long flags; | 
|  | unsigned long sec, usec, lost, seq; | 
|  | unsigned long delta_cycles, delta_usec, partial_tick; | 
|  |  | 
|  | do { | 
|  | seq = read_seqbegin_irqsave(&xtime_lock, flags); | 
|  |  | 
|  | delta_cycles = rpcc() - state.last_time; | 
|  | sec = xtime.tv_sec; | 
|  | usec = (xtime.tv_nsec / 1000); | 
|  | partial_tick = state.partial_tick; | 
|  | lost = jiffies - wall_jiffies; | 
|  |  | 
|  | } while (read_seqretry_irqrestore(&xtime_lock, seq, flags)); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* Until and unless we figure out how to get cpu cycle counters | 
|  | in sync and keep them there, we can't use the rpcc tricks.  */ | 
|  | delta_usec = lost * (1000000 / HZ); | 
|  | #else | 
|  | /* | 
|  | * usec = cycles * ticks_per_cycle * 2**48 * 1e6 / (2**48 * ticks) | 
|  | *	= cycles * (s_t_p_c) * 1e6 / (2**48 * ticks) | 
|  | *	= cycles * (s_t_p_c) * 15625 / (2**42 * ticks) | 
|  | * | 
|  | * which, given a 600MHz cycle and a 1024Hz tick, has a | 
|  | * dynamic range of about 1.7e17, which is less than the | 
|  | * 1.8e19 in an unsigned long, so we are safe from overflow. | 
|  | * | 
|  | * Round, but with .5 up always, since .5 to even is harder | 
|  | * with no clear gain. | 
|  | */ | 
|  |  | 
|  | delta_usec = (delta_cycles * state.scaled_ticks_per_cycle | 
|  | + partial_tick | 
|  | + (lost << FIX_SHIFT)) * 15625; | 
|  | delta_usec = ((delta_usec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2; | 
|  | #endif | 
|  |  | 
|  | usec += delta_usec; | 
|  | if (usec >= 1000000) { | 
|  | sec += 1; | 
|  | usec -= 1000000; | 
|  | } | 
|  |  | 
|  | tv->tv_sec = sec; | 
|  | tv->tv_usec = usec; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(do_gettimeofday); | 
|  |  | 
|  | int | 
|  | do_settimeofday(struct timespec *tv) | 
|  | { | 
|  | time_t wtm_sec, sec = tv->tv_sec; | 
|  | long wtm_nsec, nsec = tv->tv_nsec; | 
|  | unsigned long delta_nsec; | 
|  |  | 
|  | if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) | 
|  | return -EINVAL; | 
|  |  | 
|  | write_seqlock_irq(&xtime_lock); | 
|  |  | 
|  | /* The offset that is added into time in do_gettimeofday above | 
|  | must be subtracted out here to keep a coherent view of the | 
|  | time.  Without this, a full-tick error is possible.  */ | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | delta_nsec = (jiffies - wall_jiffies) * (NSEC_PER_SEC / HZ); | 
|  | #else | 
|  | delta_nsec = rpcc() - state.last_time; | 
|  | delta_nsec = (delta_nsec * state.scaled_ticks_per_cycle | 
|  | + state.partial_tick | 
|  | + ((jiffies - wall_jiffies) << FIX_SHIFT)) * 15625; | 
|  | delta_nsec = ((delta_nsec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2; | 
|  | delta_nsec *= 1000; | 
|  | #endif | 
|  |  | 
|  | nsec -= delta_nsec; | 
|  |  | 
|  | wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); | 
|  | wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec); | 
|  |  | 
|  | set_normalized_timespec(&xtime, sec, nsec); | 
|  | set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); | 
|  |  | 
|  | ntp_clear(); | 
|  |  | 
|  | write_sequnlock_irq(&xtime_lock); | 
|  | clock_was_set(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(do_settimeofday); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * In order to set the CMOS clock precisely, set_rtc_mmss has to be | 
|  | * called 500 ms after the second nowtime has started, because when | 
|  | * nowtime is written into the registers of the CMOS clock, it will | 
|  | * jump to the next second precisely 500 ms later. Check the Motorola | 
|  | * MC146818A or Dallas DS12887 data sheet for details. | 
|  | * | 
|  | * BUG: This routine does not handle hour overflow properly; it just | 
|  | *      sets the minutes. Usually you won't notice until after reboot! | 
|  | */ | 
|  |  | 
|  |  | 
|  | static int | 
|  | set_rtc_mmss(unsigned long nowtime) | 
|  | { | 
|  | int retval = 0; | 
|  | int real_seconds, real_minutes, cmos_minutes; | 
|  | unsigned char save_control, save_freq_select; | 
|  |  | 
|  | /* irq are locally disabled here */ | 
|  | spin_lock(&rtc_lock); | 
|  | /* Tell the clock it's being set */ | 
|  | save_control = CMOS_READ(RTC_CONTROL); | 
|  | CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL); | 
|  |  | 
|  | /* Stop and reset prescaler */ | 
|  | save_freq_select = CMOS_READ(RTC_FREQ_SELECT); | 
|  | CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT); | 
|  |  | 
|  | cmos_minutes = CMOS_READ(RTC_MINUTES); | 
|  | if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) | 
|  | BCD_TO_BIN(cmos_minutes); | 
|  |  | 
|  | /* | 
|  | * since we're only adjusting minutes and seconds, | 
|  | * don't interfere with hour overflow. This avoids | 
|  | * messing with unknown time zones but requires your | 
|  | * RTC not to be off by more than 15 minutes | 
|  | */ | 
|  | real_seconds = nowtime % 60; | 
|  | real_minutes = nowtime / 60; | 
|  | if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) { | 
|  | /* correct for half hour time zone */ | 
|  | real_minutes += 30; | 
|  | } | 
|  | real_minutes %= 60; | 
|  |  | 
|  | if (abs(real_minutes - cmos_minutes) < 30) { | 
|  | if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { | 
|  | BIN_TO_BCD(real_seconds); | 
|  | BIN_TO_BCD(real_minutes); | 
|  | } | 
|  | CMOS_WRITE(real_seconds,RTC_SECONDS); | 
|  | CMOS_WRITE(real_minutes,RTC_MINUTES); | 
|  | } else { | 
|  | printk(KERN_WARNING | 
|  | "set_rtc_mmss: can't update from %d to %d\n", | 
|  | cmos_minutes, real_minutes); | 
|  | retval = -1; | 
|  | } | 
|  |  | 
|  | /* The following flags have to be released exactly in this order, | 
|  | * otherwise the DS12887 (popular MC146818A clone with integrated | 
|  | * battery and quartz) will not reset the oscillator and will not | 
|  | * update precisely 500 ms later. You won't find this mentioned in | 
|  | * the Dallas Semiconductor data sheets, but who believes data | 
|  | * sheets anyway ...                           -- Markus Kuhn | 
|  | */ | 
|  | CMOS_WRITE(save_control, RTC_CONTROL); | 
|  | CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT); | 
|  | spin_unlock(&rtc_lock); | 
|  |  | 
|  | return retval; | 
|  | } |