|  |  | 
|  | /* | 
|  | * Linux driver for Disk-On-Chip 2000 and Millennium | 
|  | * (c) 1999 Machine Vision Holdings, Inc. | 
|  | * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org> | 
|  | * | 
|  | * $Id: doc2000.c,v 1.67 2005/11/07 11:14:24 gleixner Exp $ | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <asm/errno.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <linux/miscdevice.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/bitops.h> | 
|  |  | 
|  | #include <linux/mtd/mtd.h> | 
|  | #include <linux/mtd/nand.h> | 
|  | #include <linux/mtd/doc2000.h> | 
|  |  | 
|  | #define DOC_SUPPORT_2000 | 
|  | #define DOC_SUPPORT_2000TSOP | 
|  | #define DOC_SUPPORT_MILLENNIUM | 
|  |  | 
|  | #ifdef DOC_SUPPORT_2000 | 
|  | #define DoC_is_2000(doc) (doc->ChipID == DOC_ChipID_Doc2k) | 
|  | #else | 
|  | #define DoC_is_2000(doc) (0) | 
|  | #endif | 
|  |  | 
|  | #if defined(DOC_SUPPORT_2000TSOP) || defined(DOC_SUPPORT_MILLENNIUM) | 
|  | #define DoC_is_Millennium(doc) (doc->ChipID == DOC_ChipID_DocMil) | 
|  | #else | 
|  | #define DoC_is_Millennium(doc) (0) | 
|  | #endif | 
|  |  | 
|  | /* #define ECC_DEBUG */ | 
|  |  | 
|  | /* I have no idea why some DoC chips can not use memcpy_from|to_io(). | 
|  | * This may be due to the different revisions of the ASIC controller built-in or | 
|  | * simplily a QA/Bug issue. Who knows ?? If you have trouble, please uncomment | 
|  | * this: | 
|  | #undef USE_MEMCPY | 
|  | */ | 
|  |  | 
|  | static int doc_read(struct mtd_info *mtd, loff_t from, size_t len, | 
|  | size_t *retlen, u_char *buf); | 
|  | static int doc_write(struct mtd_info *mtd, loff_t to, size_t len, | 
|  | size_t *retlen, const u_char *buf); | 
|  | static int doc_read_ecc(struct mtd_info *mtd, loff_t from, size_t len, | 
|  | size_t *retlen, u_char *buf, u_char *eccbuf, struct nand_oobinfo *oobsel); | 
|  | static int doc_write_ecc(struct mtd_info *mtd, loff_t to, size_t len, | 
|  | size_t *retlen, const u_char *buf, u_char *eccbuf, struct nand_oobinfo *oobsel); | 
|  | static int doc_writev_ecc(struct mtd_info *mtd, const struct kvec *vecs, | 
|  | unsigned long count, loff_t to, size_t *retlen, | 
|  | u_char *eccbuf, struct nand_oobinfo *oobsel); | 
|  | static int doc_read_oob(struct mtd_info *mtd, loff_t ofs, size_t len, | 
|  | size_t *retlen, u_char *buf); | 
|  | static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, size_t len, | 
|  | size_t *retlen, const u_char *buf); | 
|  | static int doc_write_oob_nolock(struct mtd_info *mtd, loff_t ofs, size_t len, | 
|  | size_t *retlen, const u_char *buf); | 
|  | static int doc_erase (struct mtd_info *mtd, struct erase_info *instr); | 
|  |  | 
|  | static struct mtd_info *doc2klist = NULL; | 
|  |  | 
|  | /* Perform the required delay cycles by reading from the appropriate register */ | 
|  | static void DoC_Delay(struct DiskOnChip *doc, unsigned short cycles) | 
|  | { | 
|  | volatile char dummy; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < cycles; i++) { | 
|  | if (DoC_is_Millennium(doc)) | 
|  | dummy = ReadDOC(doc->virtadr, NOP); | 
|  | else | 
|  | dummy = ReadDOC(doc->virtadr, DOCStatus); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */ | 
|  | static int _DoC_WaitReady(struct DiskOnChip *doc) | 
|  | { | 
|  | void __iomem *docptr = doc->virtadr; | 
|  | unsigned long timeo = jiffies + (HZ * 10); | 
|  |  | 
|  | DEBUG(MTD_DEBUG_LEVEL3, | 
|  | "_DoC_WaitReady called for out-of-line wait\n"); | 
|  |  | 
|  | /* Out-of-line routine to wait for chip response */ | 
|  | while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) { | 
|  | /* issue 2 read from NOP register after reading from CDSNControl register | 
|  | see Software Requirement 11.4 item 2. */ | 
|  | DoC_Delay(doc, 2); | 
|  |  | 
|  | if (time_after(jiffies, timeo)) { | 
|  | DEBUG(MTD_DEBUG_LEVEL2, "_DoC_WaitReady timed out.\n"); | 
|  | return -EIO; | 
|  | } | 
|  | udelay(1); | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int DoC_WaitReady(struct DiskOnChip *doc) | 
|  | { | 
|  | void __iomem *docptr = doc->virtadr; | 
|  |  | 
|  | /* This is inline, to optimise the common case, where it's ready instantly */ | 
|  | int ret = 0; | 
|  |  | 
|  | /* 4 read form NOP register should be issued in prior to the read from CDSNControl | 
|  | see Software Requirement 11.4 item 2. */ | 
|  | DoC_Delay(doc, 4); | 
|  |  | 
|  | if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) | 
|  | /* Call the out-of-line routine to wait */ | 
|  | ret = _DoC_WaitReady(doc); | 
|  |  | 
|  | /* issue 2 read from NOP register after reading from CDSNControl register | 
|  | see Software Requirement 11.4 item 2. */ | 
|  | DoC_Delay(doc, 2); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* DoC_Command: Send a flash command to the flash chip through the CDSN Slow IO register to | 
|  | bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is | 
|  | required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */ | 
|  |  | 
|  | static inline int DoC_Command(struct DiskOnChip *doc, unsigned char command, | 
|  | unsigned char xtraflags) | 
|  | { | 
|  | void __iomem *docptr = doc->virtadr; | 
|  |  | 
|  | if (DoC_is_2000(doc)) | 
|  | xtraflags |= CDSN_CTRL_FLASH_IO; | 
|  |  | 
|  | /* Assert the CLE (Command Latch Enable) line to the flash chip */ | 
|  | WriteDOC(xtraflags | CDSN_CTRL_CLE | CDSN_CTRL_CE, docptr, CDSNControl); | 
|  | DoC_Delay(doc, 4);	/* Software requirement 11.4.3 for Millennium */ | 
|  |  | 
|  | if (DoC_is_Millennium(doc)) | 
|  | WriteDOC(command, docptr, CDSNSlowIO); | 
|  |  | 
|  | /* Send the command */ | 
|  | WriteDOC_(command, docptr, doc->ioreg); | 
|  | if (DoC_is_Millennium(doc)) | 
|  | WriteDOC(command, docptr, WritePipeTerm); | 
|  |  | 
|  | /* Lower the CLE line */ | 
|  | WriteDOC(xtraflags | CDSN_CTRL_CE, docptr, CDSNControl); | 
|  | DoC_Delay(doc, 4);	/* Software requirement 11.4.3 for Millennium */ | 
|  |  | 
|  | /* Wait for the chip to respond - Software requirement 11.4.1 (extended for any command) */ | 
|  | return DoC_WaitReady(doc); | 
|  | } | 
|  |  | 
|  | /* DoC_Address: Set the current address for the flash chip through the CDSN Slow IO register to | 
|  | bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is | 
|  | required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */ | 
|  |  | 
|  | static int DoC_Address(struct DiskOnChip *doc, int numbytes, unsigned long ofs, | 
|  | unsigned char xtraflags1, unsigned char xtraflags2) | 
|  | { | 
|  | int i; | 
|  | void __iomem *docptr = doc->virtadr; | 
|  |  | 
|  | if (DoC_is_2000(doc)) | 
|  | xtraflags1 |= CDSN_CTRL_FLASH_IO; | 
|  |  | 
|  | /* Assert the ALE (Address Latch Enable) line to the flash chip */ | 
|  | WriteDOC(xtraflags1 | CDSN_CTRL_ALE | CDSN_CTRL_CE, docptr, CDSNControl); | 
|  |  | 
|  | DoC_Delay(doc, 4);	/* Software requirement 11.4.3 for Millennium */ | 
|  |  | 
|  | /* Send the address */ | 
|  | /* Devices with 256-byte page are addressed as: | 
|  | Column (bits 0-7), Page (bits 8-15, 16-23, 24-31) | 
|  | * there is no device on the market with page256 | 
|  | and more than 24 bits. | 
|  | Devices with 512-byte page are addressed as: | 
|  | Column (bits 0-7), Page (bits 9-16, 17-24, 25-31) | 
|  | * 25-31 is sent only if the chip support it. | 
|  | * bit 8 changes the read command to be sent | 
|  | (NAND_CMD_READ0 or NAND_CMD_READ1). | 
|  | */ | 
|  |  | 
|  | if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE) { | 
|  | if (DoC_is_Millennium(doc)) | 
|  | WriteDOC(ofs & 0xff, docptr, CDSNSlowIO); | 
|  | WriteDOC_(ofs & 0xff, docptr, doc->ioreg); | 
|  | } | 
|  |  | 
|  | if (doc->page256) { | 
|  | ofs = ofs >> 8; | 
|  | } else { | 
|  | ofs = ofs >> 9; | 
|  | } | 
|  |  | 
|  | if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) { | 
|  | for (i = 0; i < doc->pageadrlen; i++, ofs = ofs >> 8) { | 
|  | if (DoC_is_Millennium(doc)) | 
|  | WriteDOC(ofs & 0xff, docptr, CDSNSlowIO); | 
|  | WriteDOC_(ofs & 0xff, docptr, doc->ioreg); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (DoC_is_Millennium(doc)) | 
|  | WriteDOC(ofs & 0xff, docptr, WritePipeTerm); | 
|  |  | 
|  | DoC_Delay(doc, 2);	/* Needed for some slow flash chips. mf. */ | 
|  |  | 
|  | /* FIXME: The SlowIO's for millennium could be replaced by | 
|  | a single WritePipeTerm here. mf. */ | 
|  |  | 
|  | /* Lower the ALE line */ | 
|  | WriteDOC(xtraflags1 | xtraflags2 | CDSN_CTRL_CE, docptr, | 
|  | CDSNControl); | 
|  |  | 
|  | DoC_Delay(doc, 4);	/* Software requirement 11.4.3 for Millennium */ | 
|  |  | 
|  | /* Wait for the chip to respond - Software requirement 11.4.1 */ | 
|  | return DoC_WaitReady(doc); | 
|  | } | 
|  |  | 
|  | /* Read a buffer from DoC, taking care of Millennium odditys */ | 
|  | static void DoC_ReadBuf(struct DiskOnChip *doc, u_char * buf, int len) | 
|  | { | 
|  | volatile int dummy; | 
|  | int modulus = 0xffff; | 
|  | void __iomem *docptr = doc->virtadr; | 
|  | int i; | 
|  |  | 
|  | if (len <= 0) | 
|  | return; | 
|  |  | 
|  | if (DoC_is_Millennium(doc)) { | 
|  | /* Read the data via the internal pipeline through CDSN IO register, | 
|  | see Pipelined Read Operations 11.3 */ | 
|  | dummy = ReadDOC(docptr, ReadPipeInit); | 
|  |  | 
|  | /* Millennium should use the LastDataRead register - Pipeline Reads */ | 
|  | len--; | 
|  |  | 
|  | /* This is needed for correctly ECC calculation */ | 
|  | modulus = 0xff; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < len; i++) | 
|  | buf[i] = ReadDOC_(docptr, doc->ioreg + (i & modulus)); | 
|  |  | 
|  | if (DoC_is_Millennium(doc)) { | 
|  | buf[i] = ReadDOC(docptr, LastDataRead); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Write a buffer to DoC, taking care of Millennium odditys */ | 
|  | static void DoC_WriteBuf(struct DiskOnChip *doc, const u_char * buf, int len) | 
|  | { | 
|  | void __iomem *docptr = doc->virtadr; | 
|  | int i; | 
|  |  | 
|  | if (len <= 0) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < len; i++) | 
|  | WriteDOC_(buf[i], docptr, doc->ioreg + i); | 
|  |  | 
|  | if (DoC_is_Millennium(doc)) { | 
|  | WriteDOC(0x00, docptr, WritePipeTerm); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* DoC_SelectChip: Select a given flash chip within the current floor */ | 
|  |  | 
|  | static inline int DoC_SelectChip(struct DiskOnChip *doc, int chip) | 
|  | { | 
|  | void __iomem *docptr = doc->virtadr; | 
|  |  | 
|  | /* Software requirement 11.4.4 before writing DeviceSelect */ | 
|  | /* Deassert the CE line to eliminate glitches on the FCE# outputs */ | 
|  | WriteDOC(CDSN_CTRL_WP, docptr, CDSNControl); | 
|  | DoC_Delay(doc, 4);	/* Software requirement 11.4.3 for Millennium */ | 
|  |  | 
|  | /* Select the individual flash chip requested */ | 
|  | WriteDOC(chip, docptr, CDSNDeviceSelect); | 
|  | DoC_Delay(doc, 4); | 
|  |  | 
|  | /* Reassert the CE line */ | 
|  | WriteDOC(CDSN_CTRL_CE | CDSN_CTRL_FLASH_IO | CDSN_CTRL_WP, docptr, | 
|  | CDSNControl); | 
|  | DoC_Delay(doc, 4);	/* Software requirement 11.4.3 for Millennium */ | 
|  |  | 
|  | /* Wait for it to be ready */ | 
|  | return DoC_WaitReady(doc); | 
|  | } | 
|  |  | 
|  | /* DoC_SelectFloor: Select a given floor (bank of flash chips) */ | 
|  |  | 
|  | static inline int DoC_SelectFloor(struct DiskOnChip *doc, int floor) | 
|  | { | 
|  | void __iomem *docptr = doc->virtadr; | 
|  |  | 
|  | /* Select the floor (bank) of chips required */ | 
|  | WriteDOC(floor, docptr, FloorSelect); | 
|  |  | 
|  | /* Wait for the chip to be ready */ | 
|  | return DoC_WaitReady(doc); | 
|  | } | 
|  |  | 
|  | /* DoC_IdentChip: Identify a given NAND chip given {floor,chip} */ | 
|  |  | 
|  | static int DoC_IdentChip(struct DiskOnChip *doc, int floor, int chip) | 
|  | { | 
|  | int mfr, id, i, j; | 
|  | volatile char dummy; | 
|  |  | 
|  | /* Page in the required floor/chip */ | 
|  | DoC_SelectFloor(doc, floor); | 
|  | DoC_SelectChip(doc, chip); | 
|  |  | 
|  | /* Reset the chip */ | 
|  | if (DoC_Command(doc, NAND_CMD_RESET, CDSN_CTRL_WP)) { | 
|  | DEBUG(MTD_DEBUG_LEVEL2, | 
|  | "DoC_Command (reset) for %d,%d returned true\n", | 
|  | floor, chip); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Read the NAND chip ID: 1. Send ReadID command */ | 
|  | if (DoC_Command(doc, NAND_CMD_READID, CDSN_CTRL_WP)) { | 
|  | DEBUG(MTD_DEBUG_LEVEL2, | 
|  | "DoC_Command (ReadID) for %d,%d returned true\n", | 
|  | floor, chip); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Read the NAND chip ID: 2. Send address byte zero */ | 
|  | DoC_Address(doc, ADDR_COLUMN, 0, CDSN_CTRL_WP, 0); | 
|  |  | 
|  | /* Read the manufacturer and device id codes from the device */ | 
|  |  | 
|  | if (DoC_is_Millennium(doc)) { | 
|  | DoC_Delay(doc, 2); | 
|  | dummy = ReadDOC(doc->virtadr, ReadPipeInit); | 
|  | mfr = ReadDOC(doc->virtadr, LastDataRead); | 
|  |  | 
|  | DoC_Delay(doc, 2); | 
|  | dummy = ReadDOC(doc->virtadr, ReadPipeInit); | 
|  | id = ReadDOC(doc->virtadr, LastDataRead); | 
|  | } else { | 
|  | /* CDSN Slow IO register see Software Req 11.4 item 5. */ | 
|  | dummy = ReadDOC(doc->virtadr, CDSNSlowIO); | 
|  | DoC_Delay(doc, 2); | 
|  | mfr = ReadDOC_(doc->virtadr, doc->ioreg); | 
|  |  | 
|  | /* CDSN Slow IO register see Software Req 11.4 item 5. */ | 
|  | dummy = ReadDOC(doc->virtadr, CDSNSlowIO); | 
|  | DoC_Delay(doc, 2); | 
|  | id = ReadDOC_(doc->virtadr, doc->ioreg); | 
|  | } | 
|  |  | 
|  | /* No response - return failure */ | 
|  | if (mfr == 0xff || mfr == 0) | 
|  | return 0; | 
|  |  | 
|  | /* Check it's the same as the first chip we identified. | 
|  | * M-Systems say that any given DiskOnChip device should only | 
|  | * contain _one_ type of flash part, although that's not a | 
|  | * hardware restriction. */ | 
|  | if (doc->mfr) { | 
|  | if (doc->mfr == mfr && doc->id == id) | 
|  | return 1;	/* This is another the same the first */ | 
|  | else | 
|  | printk(KERN_WARNING | 
|  | "Flash chip at floor %d, chip %d is different:\n", | 
|  | floor, chip); | 
|  | } | 
|  |  | 
|  | /* Print and store the manufacturer and ID codes. */ | 
|  | for (i = 0; nand_flash_ids[i].name != NULL; i++) { | 
|  | if (id == nand_flash_ids[i].id) { | 
|  | /* Try to identify manufacturer */ | 
|  | for (j = 0; nand_manuf_ids[j].id != 0x0; j++) { | 
|  | if (nand_manuf_ids[j].id == mfr) | 
|  | break; | 
|  | } | 
|  | printk(KERN_INFO | 
|  | "Flash chip found: Manufacturer ID: %2.2X, " | 
|  | "Chip ID: %2.2X (%s:%s)\n", mfr, id, | 
|  | nand_manuf_ids[j].name, nand_flash_ids[i].name); | 
|  | if (!doc->mfr) { | 
|  | doc->mfr = mfr; | 
|  | doc->id = id; | 
|  | doc->chipshift = | 
|  | ffs((nand_flash_ids[i].chipsize << 20)) - 1; | 
|  | doc->page256 = (nand_flash_ids[i].pagesize == 256) ? 1 : 0; | 
|  | doc->pageadrlen = doc->chipshift > 25 ? 3 : 2; | 
|  | doc->erasesize = | 
|  | nand_flash_ids[i].erasesize; | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* We haven't fully identified the chip. Print as much as we know. */ | 
|  | printk(KERN_WARNING "Unknown flash chip found: %2.2X %2.2X\n", | 
|  | id, mfr); | 
|  |  | 
|  | printk(KERN_WARNING "Please report to dwmw2@infradead.org\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* DoC_ScanChips: Find all NAND chips present in a DiskOnChip, and identify them */ | 
|  |  | 
|  | static void DoC_ScanChips(struct DiskOnChip *this, int maxchips) | 
|  | { | 
|  | int floor, chip; | 
|  | int numchips[MAX_FLOORS]; | 
|  | int ret = 1; | 
|  |  | 
|  | this->numchips = 0; | 
|  | this->mfr = 0; | 
|  | this->id = 0; | 
|  |  | 
|  | /* For each floor, find the number of valid chips it contains */ | 
|  | for (floor = 0; floor < MAX_FLOORS; floor++) { | 
|  | ret = 1; | 
|  | numchips[floor] = 0; | 
|  | for (chip = 0; chip < maxchips && ret != 0; chip++) { | 
|  |  | 
|  | ret = DoC_IdentChip(this, floor, chip); | 
|  | if (ret) { | 
|  | numchips[floor]++; | 
|  | this->numchips++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If there are none at all that we recognise, bail */ | 
|  | if (!this->numchips) { | 
|  | printk(KERN_NOTICE "No flash chips recognised.\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Allocate an array to hold the information for each chip */ | 
|  | this->chips = kmalloc(sizeof(struct Nand) * this->numchips, GFP_KERNEL); | 
|  | if (!this->chips) { | 
|  | printk(KERN_NOTICE "No memory for allocating chip info structures\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  |  | 
|  | /* Fill out the chip array with {floor, chipno} for each | 
|  | * detected chip in the device. */ | 
|  | for (floor = 0; floor < MAX_FLOORS; floor++) { | 
|  | for (chip = 0; chip < numchips[floor]; chip++) { | 
|  | this->chips[ret].floor = floor; | 
|  | this->chips[ret].chip = chip; | 
|  | this->chips[ret].curadr = 0; | 
|  | this->chips[ret].curmode = 0x50; | 
|  | ret++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Calculate and print the total size of the device */ | 
|  | this->totlen = this->numchips * (1 << this->chipshift); | 
|  |  | 
|  | printk(KERN_INFO "%d flash chips found. Total DiskOnChip size: %ld MiB\n", | 
|  | this->numchips, this->totlen >> 20); | 
|  | } | 
|  |  | 
|  | static int DoC2k_is_alias(struct DiskOnChip *doc1, struct DiskOnChip *doc2) | 
|  | { | 
|  | int tmp1, tmp2, retval; | 
|  | if (doc1->physadr == doc2->physadr) | 
|  | return 1; | 
|  |  | 
|  | /* Use the alias resolution register which was set aside for this | 
|  | * purpose. If it's value is the same on both chips, they might | 
|  | * be the same chip, and we write to one and check for a change in | 
|  | * the other. It's unclear if this register is usuable in the | 
|  | * DoC 2000 (it's in the Millennium docs), but it seems to work. */ | 
|  | tmp1 = ReadDOC(doc1->virtadr, AliasResolution); | 
|  | tmp2 = ReadDOC(doc2->virtadr, AliasResolution); | 
|  | if (tmp1 != tmp2) | 
|  | return 0; | 
|  |  | 
|  | WriteDOC((tmp1 + 1) % 0xff, doc1->virtadr, AliasResolution); | 
|  | tmp2 = ReadDOC(doc2->virtadr, AliasResolution); | 
|  | if (tmp2 == (tmp1 + 1) % 0xff) | 
|  | retval = 1; | 
|  | else | 
|  | retval = 0; | 
|  |  | 
|  | /* Restore register contents.  May not be necessary, but do it just to | 
|  | * be safe. */ | 
|  | WriteDOC(tmp1, doc1->virtadr, AliasResolution); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static const char im_name[] = "DoC2k_init"; | 
|  |  | 
|  | /* This routine is made available to other mtd code via | 
|  | * inter_module_register.  It must only be accessed through | 
|  | * inter_module_get which will bump the use count of this module.  The | 
|  | * addresses passed back in mtd are valid as long as the use count of | 
|  | * this module is non-zero, i.e. between inter_module_get and | 
|  | * inter_module_put.  Keith Owens <kaos@ocs.com.au> 29 Oct 2000. | 
|  | */ | 
|  | static void DoC2k_init(struct mtd_info *mtd) | 
|  | { | 
|  | struct DiskOnChip *this = mtd->priv; | 
|  | struct DiskOnChip *old = NULL; | 
|  | int maxchips; | 
|  |  | 
|  | /* We must avoid being called twice for the same device. */ | 
|  |  | 
|  | if (doc2klist) | 
|  | old = doc2klist->priv; | 
|  |  | 
|  | while (old) { | 
|  | if (DoC2k_is_alias(old, this)) { | 
|  | printk(KERN_NOTICE | 
|  | "Ignoring DiskOnChip 2000 at 0x%lX - already configured\n", | 
|  | this->physadr); | 
|  | iounmap(this->virtadr); | 
|  | kfree(mtd); | 
|  | return; | 
|  | } | 
|  | if (old->nextdoc) | 
|  | old = old->nextdoc->priv; | 
|  | else | 
|  | old = NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | switch (this->ChipID) { | 
|  | case DOC_ChipID_Doc2kTSOP: | 
|  | mtd->name = "DiskOnChip 2000 TSOP"; | 
|  | this->ioreg = DoC_Mil_CDSN_IO; | 
|  | /* Pretend it's a Millennium */ | 
|  | this->ChipID = DOC_ChipID_DocMil; | 
|  | maxchips = MAX_CHIPS; | 
|  | break; | 
|  | case DOC_ChipID_Doc2k: | 
|  | mtd->name = "DiskOnChip 2000"; | 
|  | this->ioreg = DoC_2k_CDSN_IO; | 
|  | maxchips = MAX_CHIPS; | 
|  | break; | 
|  | case DOC_ChipID_DocMil: | 
|  | mtd->name = "DiskOnChip Millennium"; | 
|  | this->ioreg = DoC_Mil_CDSN_IO; | 
|  | maxchips = MAX_CHIPS_MIL; | 
|  | break; | 
|  | default: | 
|  | printk("Unknown ChipID 0x%02x\n", this->ChipID); | 
|  | kfree(mtd); | 
|  | iounmap(this->virtadr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | printk(KERN_NOTICE "%s found at address 0x%lX\n", mtd->name, | 
|  | this->physadr); | 
|  |  | 
|  | mtd->type = MTD_NANDFLASH; | 
|  | mtd->flags = MTD_CAP_NANDFLASH; | 
|  | mtd->ecctype = MTD_ECC_RS_DiskOnChip; | 
|  | mtd->size = 0; | 
|  | mtd->erasesize = 0; | 
|  | mtd->oobblock = 512; | 
|  | mtd->oobsize = 16; | 
|  | mtd->owner = THIS_MODULE; | 
|  | mtd->erase = doc_erase; | 
|  | mtd->point = NULL; | 
|  | mtd->unpoint = NULL; | 
|  | mtd->read = doc_read; | 
|  | mtd->write = doc_write; | 
|  | mtd->read_ecc = doc_read_ecc; | 
|  | mtd->write_ecc = doc_write_ecc; | 
|  | mtd->writev_ecc = doc_writev_ecc; | 
|  | mtd->read_oob = doc_read_oob; | 
|  | mtd->write_oob = doc_write_oob; | 
|  | mtd->sync = NULL; | 
|  |  | 
|  | this->totlen = 0; | 
|  | this->numchips = 0; | 
|  |  | 
|  | this->curfloor = -1; | 
|  | this->curchip = -1; | 
|  | init_MUTEX(&this->lock); | 
|  |  | 
|  | /* Ident all the chips present. */ | 
|  | DoC_ScanChips(this, maxchips); | 
|  |  | 
|  | if (!this->totlen) { | 
|  | kfree(mtd); | 
|  | iounmap(this->virtadr); | 
|  | } else { | 
|  | this->nextdoc = doc2klist; | 
|  | doc2klist = mtd; | 
|  | mtd->size = this->totlen; | 
|  | mtd->erasesize = this->erasesize; | 
|  | add_mtd_device(mtd); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int doc_read(struct mtd_info *mtd, loff_t from, size_t len, | 
|  | size_t * retlen, u_char * buf) | 
|  | { | 
|  | /* Just a special case of doc_read_ecc */ | 
|  | return doc_read_ecc(mtd, from, len, retlen, buf, NULL, NULL); | 
|  | } | 
|  |  | 
|  | static int doc_read_ecc(struct mtd_info *mtd, loff_t from, size_t len, | 
|  | size_t * retlen, u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel) | 
|  | { | 
|  | struct DiskOnChip *this = mtd->priv; | 
|  | void __iomem *docptr = this->virtadr; | 
|  | struct Nand *mychip; | 
|  | unsigned char syndrome[6]; | 
|  | volatile char dummy; | 
|  | int i, len256 = 0, ret=0; | 
|  | size_t left = len; | 
|  |  | 
|  | /* Don't allow read past end of device */ | 
|  | if (from >= this->totlen) | 
|  | return -EINVAL; | 
|  |  | 
|  | down(&this->lock); | 
|  |  | 
|  | *retlen = 0; | 
|  | while (left) { | 
|  | len = left; | 
|  |  | 
|  | /* Don't allow a single read to cross a 512-byte block boundary */ | 
|  | if (from + len > ((from | 0x1ff) + 1)) | 
|  | len = ((from | 0x1ff) + 1) - from; | 
|  |  | 
|  | /* The ECC will not be calculated correctly if less than 512 is read */ | 
|  | if (len != 0x200 && eccbuf) | 
|  | printk(KERN_WARNING | 
|  | "ECC needs a full sector read (adr: %lx size %lx)\n", | 
|  | (long) from, (long) len); | 
|  |  | 
|  | /* printk("DoC_Read (adr: %lx size %lx)\n", (long) from, (long) len); */ | 
|  |  | 
|  |  | 
|  | /* Find the chip which is to be used and select it */ | 
|  | mychip = &this->chips[from >> (this->chipshift)]; | 
|  |  | 
|  | if (this->curfloor != mychip->floor) { | 
|  | DoC_SelectFloor(this, mychip->floor); | 
|  | DoC_SelectChip(this, mychip->chip); | 
|  | } else if (this->curchip != mychip->chip) { | 
|  | DoC_SelectChip(this, mychip->chip); | 
|  | } | 
|  |  | 
|  | this->curfloor = mychip->floor; | 
|  | this->curchip = mychip->chip; | 
|  |  | 
|  | DoC_Command(this, | 
|  | (!this->page256 | 
|  | && (from & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0, | 
|  | CDSN_CTRL_WP); | 
|  | DoC_Address(this, ADDR_COLUMN_PAGE, from, CDSN_CTRL_WP, | 
|  | CDSN_CTRL_ECC_IO); | 
|  |  | 
|  | if (eccbuf) { | 
|  | /* Prime the ECC engine */ | 
|  | WriteDOC(DOC_ECC_RESET, docptr, ECCConf); | 
|  | WriteDOC(DOC_ECC_EN, docptr, ECCConf); | 
|  | } else { | 
|  | /* disable the ECC engine */ | 
|  | WriteDOC(DOC_ECC_RESET, docptr, ECCConf); | 
|  | WriteDOC(DOC_ECC_DIS, docptr, ECCConf); | 
|  | } | 
|  |  | 
|  | /* treat crossing 256-byte sector for 2M x 8bits devices */ | 
|  | if (this->page256 && from + len > (from | 0xff) + 1) { | 
|  | len256 = (from | 0xff) + 1 - from; | 
|  | DoC_ReadBuf(this, buf, len256); | 
|  |  | 
|  | DoC_Command(this, NAND_CMD_READ0, CDSN_CTRL_WP); | 
|  | DoC_Address(this, ADDR_COLUMN_PAGE, from + len256, | 
|  | CDSN_CTRL_WP, CDSN_CTRL_ECC_IO); | 
|  | } | 
|  |  | 
|  | DoC_ReadBuf(this, &buf[len256], len - len256); | 
|  |  | 
|  | /* Let the caller know we completed it */ | 
|  | *retlen += len; | 
|  |  | 
|  | if (eccbuf) { | 
|  | /* Read the ECC data through the DiskOnChip ECC logic */ | 
|  | /* Note: this will work even with 2M x 8bit devices as   */ | 
|  | /*       they have 8 bytes of OOB per 256 page. mf.      */ | 
|  | DoC_ReadBuf(this, eccbuf, 6); | 
|  |  | 
|  | /* Flush the pipeline */ | 
|  | if (DoC_is_Millennium(this)) { | 
|  | dummy = ReadDOC(docptr, ECCConf); | 
|  | dummy = ReadDOC(docptr, ECCConf); | 
|  | i = ReadDOC(docptr, ECCConf); | 
|  | } else { | 
|  | dummy = ReadDOC(docptr, 2k_ECCStatus); | 
|  | dummy = ReadDOC(docptr, 2k_ECCStatus); | 
|  | i = ReadDOC(docptr, 2k_ECCStatus); | 
|  | } | 
|  |  | 
|  | /* Check the ECC Status */ | 
|  | if (i & 0x80) { | 
|  | int nb_errors; | 
|  | /* There was an ECC error */ | 
|  | #ifdef ECC_DEBUG | 
|  | printk(KERN_ERR "DiskOnChip ECC Error: Read at %lx\n", (long)from); | 
|  | #endif | 
|  | /* Read the ECC syndrom through the DiskOnChip ECC logic. | 
|  | These syndrome will be all ZERO when there is no error */ | 
|  | for (i = 0; i < 6; i++) { | 
|  | syndrome[i] = | 
|  | ReadDOC(docptr, ECCSyndrome0 + i); | 
|  | } | 
|  | nb_errors = doc_decode_ecc(buf, syndrome); | 
|  |  | 
|  | #ifdef ECC_DEBUG | 
|  | printk(KERN_ERR "Errors corrected: %x\n", nb_errors); | 
|  | #endif | 
|  | if (nb_errors < 0) { | 
|  | /* We return error, but have actually done the read. Not that | 
|  | this can be told to user-space, via sys_read(), but at least | 
|  | MTD-aware stuff can know about it by checking *retlen */ | 
|  | ret = -EIO; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef PSYCHO_DEBUG | 
|  | printk(KERN_DEBUG "ECC DATA at %lxB: %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n", | 
|  | (long)from, eccbuf[0], eccbuf[1], eccbuf[2], | 
|  | eccbuf[3], eccbuf[4], eccbuf[5]); | 
|  | #endif | 
|  |  | 
|  | /* disable the ECC engine */ | 
|  | WriteDOC(DOC_ECC_DIS, docptr , ECCConf); | 
|  | } | 
|  |  | 
|  | /* according to 11.4.1, we need to wait for the busy line | 
|  | * drop if we read to the end of the page.  */ | 
|  | if(0 == ((from + len) & 0x1ff)) | 
|  | { | 
|  | DoC_WaitReady(this); | 
|  | } | 
|  |  | 
|  | from += len; | 
|  | left -= len; | 
|  | buf += len; | 
|  | } | 
|  |  | 
|  | up(&this->lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int doc_write(struct mtd_info *mtd, loff_t to, size_t len, | 
|  | size_t * retlen, const u_char * buf) | 
|  | { | 
|  | char eccbuf[6]; | 
|  | return doc_write_ecc(mtd, to, len, retlen, buf, eccbuf, NULL); | 
|  | } | 
|  |  | 
|  | static int doc_write_ecc(struct mtd_info *mtd, loff_t to, size_t len, | 
|  | size_t * retlen, const u_char * buf, | 
|  | u_char * eccbuf, struct nand_oobinfo *oobsel) | 
|  | { | 
|  | struct DiskOnChip *this = mtd->priv; | 
|  | int di; /* Yes, DI is a hangover from when I was disassembling the binary driver */ | 
|  | void __iomem *docptr = this->virtadr; | 
|  | volatile char dummy; | 
|  | int len256 = 0; | 
|  | struct Nand *mychip; | 
|  | size_t left = len; | 
|  | int status; | 
|  |  | 
|  | /* Don't allow write past end of device */ | 
|  | if (to >= this->totlen) | 
|  | return -EINVAL; | 
|  |  | 
|  | down(&this->lock); | 
|  |  | 
|  | *retlen = 0; | 
|  | while (left) { | 
|  | len = left; | 
|  |  | 
|  | /* Don't allow a single write to cross a 512-byte block boundary */ | 
|  | if (to + len > ((to | 0x1ff) + 1)) | 
|  | len = ((to | 0x1ff) + 1) - to; | 
|  |  | 
|  | /* The ECC will not be calculated correctly if less than 512 is written */ | 
|  | /* DBB- | 
|  | if (len != 0x200 && eccbuf) | 
|  | printk(KERN_WARNING | 
|  | "ECC needs a full sector write (adr: %lx size %lx)\n", | 
|  | (long) to, (long) len); | 
|  | -DBB */ | 
|  |  | 
|  | /* printk("DoC_Write (adr: %lx size %lx)\n", (long) to, (long) len); */ | 
|  |  | 
|  | /* Find the chip which is to be used and select it */ | 
|  | mychip = &this->chips[to >> (this->chipshift)]; | 
|  |  | 
|  | if (this->curfloor != mychip->floor) { | 
|  | DoC_SelectFloor(this, mychip->floor); | 
|  | DoC_SelectChip(this, mychip->chip); | 
|  | } else if (this->curchip != mychip->chip) { | 
|  | DoC_SelectChip(this, mychip->chip); | 
|  | } | 
|  |  | 
|  | this->curfloor = mychip->floor; | 
|  | this->curchip = mychip->chip; | 
|  |  | 
|  | /* Set device to main plane of flash */ | 
|  | DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP); | 
|  | DoC_Command(this, | 
|  | (!this->page256 | 
|  | && (to & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0, | 
|  | CDSN_CTRL_WP); | 
|  |  | 
|  | DoC_Command(this, NAND_CMD_SEQIN, 0); | 
|  | DoC_Address(this, ADDR_COLUMN_PAGE, to, 0, CDSN_CTRL_ECC_IO); | 
|  |  | 
|  | if (eccbuf) { | 
|  | /* Prime the ECC engine */ | 
|  | WriteDOC(DOC_ECC_RESET, docptr, ECCConf); | 
|  | WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf); | 
|  | } else { | 
|  | /* disable the ECC engine */ | 
|  | WriteDOC(DOC_ECC_RESET, docptr, ECCConf); | 
|  | WriteDOC(DOC_ECC_DIS, docptr, ECCConf); | 
|  | } | 
|  |  | 
|  | /* treat crossing 256-byte sector for 2M x 8bits devices */ | 
|  | if (this->page256 && to + len > (to | 0xff) + 1) { | 
|  | len256 = (to | 0xff) + 1 - to; | 
|  | DoC_WriteBuf(this, buf, len256); | 
|  |  | 
|  | DoC_Command(this, NAND_CMD_PAGEPROG, 0); | 
|  |  | 
|  | DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP); | 
|  | /* There's an implicit DoC_WaitReady() in DoC_Command */ | 
|  |  | 
|  | dummy = ReadDOC(docptr, CDSNSlowIO); | 
|  | DoC_Delay(this, 2); | 
|  |  | 
|  | if (ReadDOC_(docptr, this->ioreg) & 1) { | 
|  | printk(KERN_ERR "Error programming flash\n"); | 
|  | /* Error in programming */ | 
|  | *retlen = 0; | 
|  | up(&this->lock); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | DoC_Command(this, NAND_CMD_SEQIN, 0); | 
|  | DoC_Address(this, ADDR_COLUMN_PAGE, to + len256, 0, | 
|  | CDSN_CTRL_ECC_IO); | 
|  | } | 
|  |  | 
|  | DoC_WriteBuf(this, &buf[len256], len - len256); | 
|  |  | 
|  | if (eccbuf) { | 
|  | WriteDOC(CDSN_CTRL_ECC_IO | CDSN_CTRL_CE, docptr, | 
|  | CDSNControl); | 
|  |  | 
|  | if (DoC_is_Millennium(this)) { | 
|  | WriteDOC(0, docptr, NOP); | 
|  | WriteDOC(0, docptr, NOP); | 
|  | WriteDOC(0, docptr, NOP); | 
|  | } else { | 
|  | WriteDOC_(0, docptr, this->ioreg); | 
|  | WriteDOC_(0, docptr, this->ioreg); | 
|  | WriteDOC_(0, docptr, this->ioreg); | 
|  | } | 
|  |  | 
|  | WriteDOC(CDSN_CTRL_ECC_IO | CDSN_CTRL_FLASH_IO | CDSN_CTRL_CE, docptr, | 
|  | CDSNControl); | 
|  |  | 
|  | /* Read the ECC data through the DiskOnChip ECC logic */ | 
|  | for (di = 0; di < 6; di++) { | 
|  | eccbuf[di] = ReadDOC(docptr, ECCSyndrome0 + di); | 
|  | } | 
|  |  | 
|  | /* Reset the ECC engine */ | 
|  | WriteDOC(DOC_ECC_DIS, docptr, ECCConf); | 
|  |  | 
|  | #ifdef PSYCHO_DEBUG | 
|  | printk | 
|  | ("OOB data at %lx is %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n", | 
|  | (long) to, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3], | 
|  | eccbuf[4], eccbuf[5]); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | DoC_Command(this, NAND_CMD_PAGEPROG, 0); | 
|  |  | 
|  | DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP); | 
|  | /* There's an implicit DoC_WaitReady() in DoC_Command */ | 
|  |  | 
|  | if (DoC_is_Millennium(this)) { | 
|  | ReadDOC(docptr, ReadPipeInit); | 
|  | status = ReadDOC(docptr, LastDataRead); | 
|  | } else { | 
|  | dummy = ReadDOC(docptr, CDSNSlowIO); | 
|  | DoC_Delay(this, 2); | 
|  | status = ReadDOC_(docptr, this->ioreg); | 
|  | } | 
|  |  | 
|  | if (status & 1) { | 
|  | printk(KERN_ERR "Error programming flash\n"); | 
|  | /* Error in programming */ | 
|  | *retlen = 0; | 
|  | up(&this->lock); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* Let the caller know we completed it */ | 
|  | *retlen += len; | 
|  |  | 
|  | if (eccbuf) { | 
|  | unsigned char x[8]; | 
|  | size_t dummy; | 
|  | int ret; | 
|  |  | 
|  | /* Write the ECC data to flash */ | 
|  | for (di=0; di<6; di++) | 
|  | x[di] = eccbuf[di]; | 
|  |  | 
|  | x[6]=0x55; | 
|  | x[7]=0x55; | 
|  |  | 
|  | ret = doc_write_oob_nolock(mtd, to, 8, &dummy, x); | 
|  | if (ret) { | 
|  | up(&this->lock); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | to += len; | 
|  | left -= len; | 
|  | buf += len; | 
|  | } | 
|  |  | 
|  | up(&this->lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int doc_writev_ecc(struct mtd_info *mtd, const struct kvec *vecs, | 
|  | unsigned long count, loff_t to, size_t *retlen, | 
|  | u_char *eccbuf, struct nand_oobinfo *oobsel) | 
|  | { | 
|  | static char static_buf[512]; | 
|  | static DECLARE_MUTEX(writev_buf_sem); | 
|  |  | 
|  | size_t totretlen = 0; | 
|  | size_t thisvecofs = 0; | 
|  | int ret= 0; | 
|  |  | 
|  | down(&writev_buf_sem); | 
|  |  | 
|  | while(count) { | 
|  | size_t thislen, thisretlen; | 
|  | unsigned char *buf; | 
|  |  | 
|  | buf = vecs->iov_base + thisvecofs; | 
|  | thislen = vecs->iov_len - thisvecofs; | 
|  |  | 
|  |  | 
|  | if (thislen >= 512) { | 
|  | thislen = thislen & ~(512-1); | 
|  | thisvecofs += thislen; | 
|  | } else { | 
|  | /* Not enough to fill a page. Copy into buf */ | 
|  | memcpy(static_buf, buf, thislen); | 
|  | buf = &static_buf[thislen]; | 
|  |  | 
|  | while(count && thislen < 512) { | 
|  | vecs++; | 
|  | count--; | 
|  | thisvecofs = min((512-thislen), vecs->iov_len); | 
|  | memcpy(buf, vecs->iov_base, thisvecofs); | 
|  | thislen += thisvecofs; | 
|  | buf += thisvecofs; | 
|  | } | 
|  | buf = static_buf; | 
|  | } | 
|  | if (count && thisvecofs == vecs->iov_len) { | 
|  | thisvecofs = 0; | 
|  | vecs++; | 
|  | count--; | 
|  | } | 
|  | ret = doc_write_ecc(mtd, to, thislen, &thisretlen, buf, eccbuf, oobsel); | 
|  |  | 
|  | totretlen += thisretlen; | 
|  |  | 
|  | if (ret || thisretlen != thislen) | 
|  | break; | 
|  |  | 
|  | to += thislen; | 
|  | } | 
|  |  | 
|  | up(&writev_buf_sem); | 
|  | *retlen = totretlen; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int doc_read_oob(struct mtd_info *mtd, loff_t ofs, size_t len, | 
|  | size_t * retlen, u_char * buf) | 
|  | { | 
|  | struct DiskOnChip *this = mtd->priv; | 
|  | int len256 = 0, ret; | 
|  | struct Nand *mychip; | 
|  |  | 
|  | down(&this->lock); | 
|  |  | 
|  | mychip = &this->chips[ofs >> this->chipshift]; | 
|  |  | 
|  | if (this->curfloor != mychip->floor) { | 
|  | DoC_SelectFloor(this, mychip->floor); | 
|  | DoC_SelectChip(this, mychip->chip); | 
|  | } else if (this->curchip != mychip->chip) { | 
|  | DoC_SelectChip(this, mychip->chip); | 
|  | } | 
|  | this->curfloor = mychip->floor; | 
|  | this->curchip = mychip->chip; | 
|  |  | 
|  | /* update address for 2M x 8bit devices. OOB starts on the second */ | 
|  | /* page to maintain compatibility with doc_read_ecc. */ | 
|  | if (this->page256) { | 
|  | if (!(ofs & 0x8)) | 
|  | ofs += 0x100; | 
|  | else | 
|  | ofs -= 0x8; | 
|  | } | 
|  |  | 
|  | DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP); | 
|  | DoC_Address(this, ADDR_COLUMN_PAGE, ofs, CDSN_CTRL_WP, 0); | 
|  |  | 
|  | /* treat crossing 8-byte OOB data for 2M x 8bit devices */ | 
|  | /* Note: datasheet says it should automaticaly wrap to the */ | 
|  | /*       next OOB block, but it didn't work here. mf.      */ | 
|  | if (this->page256 && ofs + len > (ofs | 0x7) + 1) { | 
|  | len256 = (ofs | 0x7) + 1 - ofs; | 
|  | DoC_ReadBuf(this, buf, len256); | 
|  |  | 
|  | DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP); | 
|  | DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff), | 
|  | CDSN_CTRL_WP, 0); | 
|  | } | 
|  |  | 
|  | DoC_ReadBuf(this, &buf[len256], len - len256); | 
|  |  | 
|  | *retlen = len; | 
|  | /* Reading the full OOB data drops us off of the end of the page, | 
|  | * causing the flash device to go into busy mode, so we need | 
|  | * to wait until ready 11.4.1 and Toshiba TC58256FT docs */ | 
|  |  | 
|  | ret = DoC_WaitReady(this); | 
|  |  | 
|  | up(&this->lock); | 
|  | return ret; | 
|  |  | 
|  | } | 
|  |  | 
|  | static int doc_write_oob_nolock(struct mtd_info *mtd, loff_t ofs, size_t len, | 
|  | size_t * retlen, const u_char * buf) | 
|  | { | 
|  | struct DiskOnChip *this = mtd->priv; | 
|  | int len256 = 0; | 
|  | void __iomem *docptr = this->virtadr; | 
|  | struct Nand *mychip = &this->chips[ofs >> this->chipshift]; | 
|  | volatile int dummy; | 
|  | int status; | 
|  |  | 
|  | //      printk("doc_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n",(long)ofs, len, | 
|  | //   buf[0], buf[1], buf[2], buf[3], buf[8], buf[9], buf[14],buf[15]); | 
|  |  | 
|  | /* Find the chip which is to be used and select it */ | 
|  | if (this->curfloor != mychip->floor) { | 
|  | DoC_SelectFloor(this, mychip->floor); | 
|  | DoC_SelectChip(this, mychip->chip); | 
|  | } else if (this->curchip != mychip->chip) { | 
|  | DoC_SelectChip(this, mychip->chip); | 
|  | } | 
|  | this->curfloor = mychip->floor; | 
|  | this->curchip = mychip->chip; | 
|  |  | 
|  | /* disable the ECC engine */ | 
|  | WriteDOC (DOC_ECC_RESET, docptr, ECCConf); | 
|  | WriteDOC (DOC_ECC_DIS, docptr, ECCConf); | 
|  |  | 
|  | /* Reset the chip, see Software Requirement 11.4 item 1. */ | 
|  | DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP); | 
|  |  | 
|  | /* issue the Read2 command to set the pointer to the Spare Data Area. */ | 
|  | DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP); | 
|  |  | 
|  | /* update address for 2M x 8bit devices. OOB starts on the second */ | 
|  | /* page to maintain compatibility with doc_read_ecc. */ | 
|  | if (this->page256) { | 
|  | if (!(ofs & 0x8)) | 
|  | ofs += 0x100; | 
|  | else | 
|  | ofs -= 0x8; | 
|  | } | 
|  |  | 
|  | /* issue the Serial Data In command to initial the Page Program process */ | 
|  | DoC_Command(this, NAND_CMD_SEQIN, 0); | 
|  | DoC_Address(this, ADDR_COLUMN_PAGE, ofs, 0, 0); | 
|  |  | 
|  | /* treat crossing 8-byte OOB data for 2M x 8bit devices */ | 
|  | /* Note: datasheet says it should automaticaly wrap to the */ | 
|  | /*       next OOB block, but it didn't work here. mf.      */ | 
|  | if (this->page256 && ofs + len > (ofs | 0x7) + 1) { | 
|  | len256 = (ofs | 0x7) + 1 - ofs; | 
|  | DoC_WriteBuf(this, buf, len256); | 
|  |  | 
|  | DoC_Command(this, NAND_CMD_PAGEPROG, 0); | 
|  | DoC_Command(this, NAND_CMD_STATUS, 0); | 
|  | /* DoC_WaitReady() is implicit in DoC_Command */ | 
|  |  | 
|  | if (DoC_is_Millennium(this)) { | 
|  | ReadDOC(docptr, ReadPipeInit); | 
|  | status = ReadDOC(docptr, LastDataRead); | 
|  | } else { | 
|  | dummy = ReadDOC(docptr, CDSNSlowIO); | 
|  | DoC_Delay(this, 2); | 
|  | status = ReadDOC_(docptr, this->ioreg); | 
|  | } | 
|  |  | 
|  | if (status & 1) { | 
|  | printk(KERN_ERR "Error programming oob data\n"); | 
|  | /* There was an error */ | 
|  | *retlen = 0; | 
|  | return -EIO; | 
|  | } | 
|  | DoC_Command(this, NAND_CMD_SEQIN, 0); | 
|  | DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff), 0, 0); | 
|  | } | 
|  |  | 
|  | DoC_WriteBuf(this, &buf[len256], len - len256); | 
|  |  | 
|  | DoC_Command(this, NAND_CMD_PAGEPROG, 0); | 
|  | DoC_Command(this, NAND_CMD_STATUS, 0); | 
|  | /* DoC_WaitReady() is implicit in DoC_Command */ | 
|  |  | 
|  | if (DoC_is_Millennium(this)) { | 
|  | ReadDOC(docptr, ReadPipeInit); | 
|  | status = ReadDOC(docptr, LastDataRead); | 
|  | } else { | 
|  | dummy = ReadDOC(docptr, CDSNSlowIO); | 
|  | DoC_Delay(this, 2); | 
|  | status = ReadDOC_(docptr, this->ioreg); | 
|  | } | 
|  |  | 
|  | if (status & 1) { | 
|  | printk(KERN_ERR "Error programming oob data\n"); | 
|  | /* There was an error */ | 
|  | *retlen = 0; | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | *retlen = len; | 
|  | return 0; | 
|  |  | 
|  | } | 
|  |  | 
|  | static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, size_t len, | 
|  | size_t * retlen, const u_char * buf) | 
|  | { | 
|  | struct DiskOnChip *this = mtd->priv; | 
|  | int ret; | 
|  |  | 
|  | down(&this->lock); | 
|  | ret = doc_write_oob_nolock(mtd, ofs, len, retlen, buf); | 
|  |  | 
|  | up(&this->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int doc_erase(struct mtd_info *mtd, struct erase_info *instr) | 
|  | { | 
|  | struct DiskOnChip *this = mtd->priv; | 
|  | __u32 ofs = instr->addr; | 
|  | __u32 len = instr->len; | 
|  | volatile int dummy; | 
|  | void __iomem *docptr = this->virtadr; | 
|  | struct Nand *mychip; | 
|  | int status; | 
|  |  | 
|  | down(&this->lock); | 
|  |  | 
|  | if (ofs & (mtd->erasesize-1) || len & (mtd->erasesize-1)) { | 
|  | up(&this->lock); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | instr->state = MTD_ERASING; | 
|  |  | 
|  | /* FIXME: Do this in the background. Use timers or schedule_task() */ | 
|  | while(len) { | 
|  | mychip = &this->chips[ofs >> this->chipshift]; | 
|  |  | 
|  | if (this->curfloor != mychip->floor) { | 
|  | DoC_SelectFloor(this, mychip->floor); | 
|  | DoC_SelectChip(this, mychip->chip); | 
|  | } else if (this->curchip != mychip->chip) { | 
|  | DoC_SelectChip(this, mychip->chip); | 
|  | } | 
|  | this->curfloor = mychip->floor; | 
|  | this->curchip = mychip->chip; | 
|  |  | 
|  | DoC_Command(this, NAND_CMD_ERASE1, 0); | 
|  | DoC_Address(this, ADDR_PAGE, ofs, 0, 0); | 
|  | DoC_Command(this, NAND_CMD_ERASE2, 0); | 
|  |  | 
|  | DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP); | 
|  |  | 
|  | if (DoC_is_Millennium(this)) { | 
|  | ReadDOC(docptr, ReadPipeInit); | 
|  | status = ReadDOC(docptr, LastDataRead); | 
|  | } else { | 
|  | dummy = ReadDOC(docptr, CDSNSlowIO); | 
|  | DoC_Delay(this, 2); | 
|  | status = ReadDOC_(docptr, this->ioreg); | 
|  | } | 
|  |  | 
|  | if (status & 1) { | 
|  | printk(KERN_ERR "Error erasing at 0x%x\n", ofs); | 
|  | /* There was an error */ | 
|  | instr->state = MTD_ERASE_FAILED; | 
|  | goto callback; | 
|  | } | 
|  | ofs += mtd->erasesize; | 
|  | len -= mtd->erasesize; | 
|  | } | 
|  | instr->state = MTD_ERASE_DONE; | 
|  |  | 
|  | callback: | 
|  | mtd_erase_callback(instr); | 
|  |  | 
|  | up(&this->lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /**************************************************************************** | 
|  | * | 
|  | * Module stuff | 
|  | * | 
|  | ****************************************************************************/ | 
|  |  | 
|  | static int __init init_doc2000(void) | 
|  | { | 
|  | inter_module_register(im_name, THIS_MODULE, &DoC2k_init); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __exit cleanup_doc2000(void) | 
|  | { | 
|  | struct mtd_info *mtd; | 
|  | struct DiskOnChip *this; | 
|  |  | 
|  | while ((mtd = doc2klist)) { | 
|  | this = mtd->priv; | 
|  | doc2klist = this->nextdoc; | 
|  |  | 
|  | del_mtd_device(mtd); | 
|  |  | 
|  | iounmap(this->virtadr); | 
|  | kfree(this->chips); | 
|  | kfree(mtd); | 
|  | } | 
|  | inter_module_unregister(im_name); | 
|  | } | 
|  |  | 
|  | module_exit(cleanup_doc2000); | 
|  | module_init(init_doc2000); | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al."); | 
|  | MODULE_DESCRIPTION("MTD driver for DiskOnChip 2000 and Millennium"); | 
|  |  |