|  | /* | 
|  | * 6pack.c	This module implements the 6pack protocol for kernel-based | 
|  | *		devices like TTY. It interfaces between a raw TTY and the | 
|  | *		kernel's AX.25 protocol layers. | 
|  | * | 
|  | * Authors:	Andreas Könsgen <ajk@iehk.rwth-aachen.de> | 
|  | *              Ralf Baechle DL5RB <ralf@linux-mips.org> | 
|  | * | 
|  | * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by | 
|  | * | 
|  | *		Laurence Culhane, <loz@holmes.demon.co.uk> | 
|  | *		Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org> | 
|  | */ | 
|  |  | 
|  | #include <linux/config.h> | 
|  | #include <linux/module.h> | 
|  | #include <asm/system.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/in.h> | 
|  | #include <linux/tty.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/netdevice.h> | 
|  | #include <linux/timer.h> | 
|  | #include <net/ax25.h> | 
|  | #include <linux/etherdevice.h> | 
|  | #include <linux/skbuff.h> | 
|  | #include <linux/rtnetlink.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/if_arp.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/ip.h> | 
|  | #include <linux/tcp.h> | 
|  | #include <asm/semaphore.h> | 
|  | #include <asm/atomic.h> | 
|  |  | 
|  | #define SIXPACK_VERSION    "Revision: 0.3.0" | 
|  |  | 
|  | /* sixpack priority commands */ | 
|  | #define SIXP_SEOF		0x40	/* start and end of a 6pack frame */ | 
|  | #define SIXP_TX_URUN		0x48	/* transmit overrun */ | 
|  | #define SIXP_RX_ORUN		0x50	/* receive overrun */ | 
|  | #define SIXP_RX_BUF_OVL		0x58	/* receive buffer overflow */ | 
|  |  | 
|  | #define SIXP_CHKSUM		0xFF	/* valid checksum of a 6pack frame */ | 
|  |  | 
|  | /* masks to get certain bits out of the status bytes sent by the TNC */ | 
|  |  | 
|  | #define SIXP_CMD_MASK		0xC0 | 
|  | #define SIXP_CHN_MASK		0x07 | 
|  | #define SIXP_PRIO_CMD_MASK	0x80 | 
|  | #define SIXP_STD_CMD_MASK	0x40 | 
|  | #define SIXP_PRIO_DATA_MASK	0x38 | 
|  | #define SIXP_TX_MASK		0x20 | 
|  | #define SIXP_RX_MASK		0x10 | 
|  | #define SIXP_RX_DCD_MASK	0x18 | 
|  | #define SIXP_LEDS_ON		0x78 | 
|  | #define SIXP_LEDS_OFF		0x60 | 
|  | #define SIXP_CON		0x08 | 
|  | #define SIXP_STA		0x10 | 
|  |  | 
|  | #define SIXP_FOUND_TNC		0xe9 | 
|  | #define SIXP_CON_ON		0x68 | 
|  | #define SIXP_DCD_MASK		0x08 | 
|  | #define SIXP_DAMA_OFF		0 | 
|  |  | 
|  | /* default level 2 parameters */ | 
|  | #define SIXP_TXDELAY			(HZ/4)	/* in 1 s */ | 
|  | #define SIXP_PERSIST			50	/* in 256ths */ | 
|  | #define SIXP_SLOTTIME			(HZ/10)	/* in 1 s */ | 
|  | #define SIXP_INIT_RESYNC_TIMEOUT	(3*HZ/2) /* in 1 s */ | 
|  | #define SIXP_RESYNC_TIMEOUT		5*HZ	/* in 1 s */ | 
|  |  | 
|  | /* 6pack configuration. */ | 
|  | #define SIXP_NRUNIT			31      /* MAX number of 6pack channels */ | 
|  | #define SIXP_MTU			256	/* Default MTU */ | 
|  |  | 
|  | enum sixpack_flags { | 
|  | SIXPF_ERROR,	/* Parity, etc. error	*/ | 
|  | }; | 
|  |  | 
|  | struct sixpack { | 
|  | /* Various fields. */ | 
|  | struct tty_struct	*tty;		/* ptr to TTY structure	*/ | 
|  | struct net_device	*dev;		/* easy for intr handling  */ | 
|  |  | 
|  | /* These are pointers to the malloc()ed frame buffers. */ | 
|  | unsigned char		*rbuff;		/* receiver buffer	*/ | 
|  | int			rcount;         /* received chars counter  */ | 
|  | unsigned char		*xbuff;		/* transmitter buffer	*/ | 
|  | unsigned char		*xhead;         /* next byte to XMIT */ | 
|  | int			xleft;          /* bytes left in XMIT queue  */ | 
|  |  | 
|  | unsigned char		raw_buf[4]; | 
|  | unsigned char		cooked_buf[400]; | 
|  |  | 
|  | unsigned int		rx_count; | 
|  | unsigned int		rx_count_cooked; | 
|  |  | 
|  | /* 6pack interface statistics. */ | 
|  | struct net_device_stats stats; | 
|  |  | 
|  | int			mtu;		/* Our mtu (to spot changes!) */ | 
|  | int			buffsize;       /* Max buffers sizes */ | 
|  |  | 
|  | unsigned long		flags;		/* Flag values/ mode etc */ | 
|  | unsigned char		mode;		/* 6pack mode */ | 
|  |  | 
|  | /* 6pack stuff */ | 
|  | unsigned char		tx_delay; | 
|  | unsigned char		persistence; | 
|  | unsigned char		slottime; | 
|  | unsigned char		duplex; | 
|  | unsigned char		led_state; | 
|  | unsigned char		status; | 
|  | unsigned char		status1; | 
|  | unsigned char		status2; | 
|  | unsigned char		tx_enable; | 
|  | unsigned char		tnc_state; | 
|  |  | 
|  | struct timer_list	tx_t; | 
|  | struct timer_list	resync_t; | 
|  | atomic_t		refcnt; | 
|  | struct semaphore	dead_sem; | 
|  | spinlock_t		lock; | 
|  | }; | 
|  |  | 
|  | #define AX25_6PACK_HEADER_LEN 0 | 
|  |  | 
|  | static void sixpack_decode(struct sixpack *, unsigned char[], int); | 
|  | static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char); | 
|  |  | 
|  | /* | 
|  | * Perform the persistence/slottime algorithm for CSMA access. If the | 
|  | * persistence check was successful, write the data to the serial driver. | 
|  | * Note that in case of DAMA operation, the data is not sent here. | 
|  | */ | 
|  |  | 
|  | static void sp_xmit_on_air(unsigned long channel) | 
|  | { | 
|  | struct sixpack *sp = (struct sixpack *) channel; | 
|  | int actual, when = sp->slottime; | 
|  | static unsigned char random; | 
|  |  | 
|  | random = random * 17 + 41; | 
|  |  | 
|  | if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) { | 
|  | sp->led_state = 0x70; | 
|  | sp->tty->driver->write(sp->tty, &sp->led_state, 1); | 
|  | sp->tx_enable = 1; | 
|  | actual = sp->tty->driver->write(sp->tty, sp->xbuff, sp->status2); | 
|  | sp->xleft -= actual; | 
|  | sp->xhead += actual; | 
|  | sp->led_state = 0x60; | 
|  | sp->tty->driver->write(sp->tty, &sp->led_state, 1); | 
|  | sp->status2 = 0; | 
|  | } else | 
|  | mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100); | 
|  | } | 
|  |  | 
|  | /* ----> 6pack timer interrupt handler and friends. <---- */ | 
|  |  | 
|  | /* Encapsulate one AX.25 frame and stuff into a TTY queue. */ | 
|  | static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len) | 
|  | { | 
|  | unsigned char *msg, *p = icp; | 
|  | int actual, count; | 
|  |  | 
|  | if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */ | 
|  | msg = "oversized transmit packet!"; | 
|  | goto out_drop; | 
|  | } | 
|  |  | 
|  | if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */ | 
|  | msg = "oversized transmit packet!"; | 
|  | goto out_drop; | 
|  | } | 
|  |  | 
|  | if (p[0] > 5) { | 
|  | msg = "invalid KISS command"; | 
|  | goto out_drop; | 
|  | } | 
|  |  | 
|  | if ((p[0] != 0) && (len > 2)) { | 
|  | msg = "KISS control packet too long"; | 
|  | goto out_drop; | 
|  | } | 
|  |  | 
|  | if ((p[0] == 0) && (len < 15)) { | 
|  | msg = "bad AX.25 packet to transmit"; | 
|  | goto out_drop; | 
|  | } | 
|  |  | 
|  | count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay); | 
|  | set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags); | 
|  |  | 
|  | switch (p[0]) { | 
|  | case 1:	sp->tx_delay = p[1]; | 
|  | return; | 
|  | case 2:	sp->persistence = p[1]; | 
|  | return; | 
|  | case 3:	sp->slottime = p[1]; | 
|  | return; | 
|  | case 4:	/* ignored */ | 
|  | return; | 
|  | case 5:	sp->duplex = p[1]; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (p[0] != 0) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * In case of fullduplex or DAMA operation, we don't take care about the | 
|  | * state of the DCD or of any timers, as the determination of the | 
|  | * correct time to send is the job of the AX.25 layer. We send | 
|  | * immediately after data has arrived. | 
|  | */ | 
|  | if (sp->duplex == 1) { | 
|  | sp->led_state = 0x70; | 
|  | sp->tty->driver->write(sp->tty, &sp->led_state, 1); | 
|  | sp->tx_enable = 1; | 
|  | actual = sp->tty->driver->write(sp->tty, sp->xbuff, count); | 
|  | sp->xleft = count - actual; | 
|  | sp->xhead = sp->xbuff + actual; | 
|  | sp->led_state = 0x60; | 
|  | sp->tty->driver->write(sp->tty, &sp->led_state, 1); | 
|  | } else { | 
|  | sp->xleft = count; | 
|  | sp->xhead = sp->xbuff; | 
|  | sp->status2 = count; | 
|  | sp_xmit_on_air((unsigned long)sp); | 
|  | } | 
|  |  | 
|  | return; | 
|  |  | 
|  | out_drop: | 
|  | sp->stats.tx_dropped++; | 
|  | netif_start_queue(sp->dev); | 
|  | if (net_ratelimit()) | 
|  | printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg); | 
|  | } | 
|  |  | 
|  | /* Encapsulate an IP datagram and kick it into a TTY queue. */ | 
|  |  | 
|  | static int sp_xmit(struct sk_buff *skb, struct net_device *dev) | 
|  | { | 
|  | struct sixpack *sp = netdev_priv(dev); | 
|  |  | 
|  | spin_lock_bh(&sp->lock); | 
|  | /* We were not busy, so we are now... :-) */ | 
|  | netif_stop_queue(dev); | 
|  | sp->stats.tx_bytes += skb->len; | 
|  | sp_encaps(sp, skb->data, skb->len); | 
|  | spin_unlock_bh(&sp->lock); | 
|  |  | 
|  | dev_kfree_skb(skb); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sp_open_dev(struct net_device *dev) | 
|  | { | 
|  | struct sixpack *sp = netdev_priv(dev); | 
|  |  | 
|  | if (sp->tty == NULL) | 
|  | return -ENODEV; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Close the low-level part of the 6pack channel. */ | 
|  | static int sp_close(struct net_device *dev) | 
|  | { | 
|  | struct sixpack *sp = netdev_priv(dev); | 
|  |  | 
|  | spin_lock_bh(&sp->lock); | 
|  | if (sp->tty) { | 
|  | /* TTY discipline is running. */ | 
|  | clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags); | 
|  | } | 
|  | netif_stop_queue(dev); | 
|  | spin_unlock_bh(&sp->lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Return the frame type ID */ | 
|  | static int sp_header(struct sk_buff *skb, struct net_device *dev, | 
|  | unsigned short type, void *daddr, void *saddr, unsigned len) | 
|  | { | 
|  | #ifdef CONFIG_INET | 
|  | if (type != htons(ETH_P_AX25)) | 
|  | return ax25_hard_header(skb, dev, type, daddr, saddr, len); | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct net_device_stats *sp_get_stats(struct net_device *dev) | 
|  | { | 
|  | struct sixpack *sp = netdev_priv(dev); | 
|  | return &sp->stats; | 
|  | } | 
|  |  | 
|  | static int sp_set_mac_address(struct net_device *dev, void *addr) | 
|  | { | 
|  | struct sockaddr_ax25 *sa = addr; | 
|  |  | 
|  | spin_lock_irq(&dev->xmit_lock); | 
|  | memcpy(dev->dev_addr, &sa->sax25_call, AX25_ADDR_LEN); | 
|  | spin_unlock_irq(&dev->xmit_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sp_rebuild_header(struct sk_buff *skb) | 
|  | { | 
|  | #ifdef CONFIG_INET | 
|  | return ax25_rebuild_header(skb); | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void sp_setup(struct net_device *dev) | 
|  | { | 
|  | static char ax25_bcast[AX25_ADDR_LEN] = | 
|  | {'Q'<<1,'S'<<1,'T'<<1,' '<<1,' '<<1,' '<<1,'0'<<1}; | 
|  | static char ax25_test[AX25_ADDR_LEN] = | 
|  | {'L'<<1,'I'<<1,'N'<<1,'U'<<1,'X'<<1,' '<<1,'1'<<1}; | 
|  |  | 
|  | /* Finish setting up the DEVICE info. */ | 
|  | dev->mtu		= SIXP_MTU; | 
|  | dev->hard_start_xmit	= sp_xmit; | 
|  | dev->open		= sp_open_dev; | 
|  | dev->destructor		= free_netdev; | 
|  | dev->stop		= sp_close; | 
|  | dev->hard_header	= sp_header; | 
|  | dev->get_stats	        = sp_get_stats; | 
|  | dev->set_mac_address    = sp_set_mac_address; | 
|  | dev->hard_header_len	= AX25_MAX_HEADER_LEN; | 
|  | dev->addr_len		= AX25_ADDR_LEN; | 
|  | dev->type		= ARPHRD_AX25; | 
|  | dev->tx_queue_len	= 10; | 
|  | dev->rebuild_header	= sp_rebuild_header; | 
|  | dev->tx_timeout		= NULL; | 
|  |  | 
|  | /* Only activated in AX.25 mode */ | 
|  | memcpy(dev->broadcast, ax25_bcast, AX25_ADDR_LEN); | 
|  | memcpy(dev->dev_addr, ax25_test, AX25_ADDR_LEN); | 
|  |  | 
|  | SET_MODULE_OWNER(dev); | 
|  |  | 
|  | dev->flags		= 0; | 
|  | } | 
|  |  | 
|  | /* Send one completely decapsulated IP datagram to the IP layer. */ | 
|  |  | 
|  | /* | 
|  | * This is the routine that sends the received data to the kernel AX.25. | 
|  | * 'cmd' is the KISS command. For AX.25 data, it is zero. | 
|  | */ | 
|  |  | 
|  | static void sp_bump(struct sixpack *sp, char cmd) | 
|  | { | 
|  | struct sk_buff *skb; | 
|  | int count; | 
|  | unsigned char *ptr; | 
|  |  | 
|  | count = sp->rcount + 1; | 
|  |  | 
|  | sp->stats.rx_bytes += count; | 
|  |  | 
|  | if ((skb = dev_alloc_skb(count)) == NULL) | 
|  | goto out_mem; | 
|  |  | 
|  | ptr = skb_put(skb, count); | 
|  | *ptr++ = cmd;	/* KISS command */ | 
|  |  | 
|  | memcpy(ptr, sp->cooked_buf + 1, count); | 
|  | skb->protocol = ax25_type_trans(skb, sp->dev); | 
|  | netif_rx(skb); | 
|  | sp->dev->last_rx = jiffies; | 
|  | sp->stats.rx_packets++; | 
|  |  | 
|  | return; | 
|  |  | 
|  | out_mem: | 
|  | sp->stats.rx_dropped++; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* ----------------------------------------------------------------------- */ | 
|  |  | 
|  | /* | 
|  | * We have a potential race on dereferencing tty->disc_data, because the tty | 
|  | * layer provides no locking at all - thus one cpu could be running | 
|  | * sixpack_receive_buf while another calls sixpack_close, which zeroes | 
|  | * tty->disc_data and frees the memory that sixpack_receive_buf is using.  The | 
|  | * best way to fix this is to use a rwlock in the tty struct, but for now we | 
|  | * use a single global rwlock for all ttys in ppp line discipline. | 
|  | */ | 
|  | static DEFINE_RWLOCK(disc_data_lock); | 
|  |  | 
|  | static struct sixpack *sp_get(struct tty_struct *tty) | 
|  | { | 
|  | struct sixpack *sp; | 
|  |  | 
|  | read_lock(&disc_data_lock); | 
|  | sp = tty->disc_data; | 
|  | if (sp) | 
|  | atomic_inc(&sp->refcnt); | 
|  | read_unlock(&disc_data_lock); | 
|  |  | 
|  | return sp; | 
|  | } | 
|  |  | 
|  | static void sp_put(struct sixpack *sp) | 
|  | { | 
|  | if (atomic_dec_and_test(&sp->refcnt)) | 
|  | up(&sp->dead_sem); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called by the TTY driver when there's room for more data.  If we have | 
|  | * more packets to send, we send them here. | 
|  | */ | 
|  | static void sixpack_write_wakeup(struct tty_struct *tty) | 
|  | { | 
|  | struct sixpack *sp = sp_get(tty); | 
|  | int actual; | 
|  |  | 
|  | if (!sp) | 
|  | return; | 
|  | if (sp->xleft <= 0)  { | 
|  | /* Now serial buffer is almost free & we can start | 
|  | * transmission of another packet */ | 
|  | sp->stats.tx_packets++; | 
|  | clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); | 
|  | sp->tx_enable = 0; | 
|  | netif_wake_queue(sp->dev); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (sp->tx_enable) { | 
|  | actual = tty->driver->write(tty, sp->xhead, sp->xleft); | 
|  | sp->xleft -= actual; | 
|  | sp->xhead += actual; | 
|  | } | 
|  |  | 
|  | out: | 
|  | sp_put(sp); | 
|  | } | 
|  |  | 
|  | /* ----------------------------------------------------------------------- */ | 
|  |  | 
|  | static int sixpack_receive_room(struct tty_struct *tty) | 
|  | { | 
|  | return 65536;  /* We can handle an infinite amount of data. :-) */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle the 'receiver data ready' interrupt. | 
|  | * This function is called by the 'tty_io' module in the kernel when | 
|  | * a block of 6pack data has been received, which can now be decapsulated | 
|  | * and sent on to some IP layer for further processing. | 
|  | */ | 
|  | static void sixpack_receive_buf(struct tty_struct *tty, | 
|  | const unsigned char *cp, char *fp, int count) | 
|  | { | 
|  | struct sixpack *sp; | 
|  | unsigned char buf[512]; | 
|  | int count1; | 
|  |  | 
|  | if (!count) | 
|  | return; | 
|  |  | 
|  | sp = sp_get(tty); | 
|  | if (!sp) | 
|  | return; | 
|  |  | 
|  | memcpy(buf, cp, count < sizeof(buf) ? count : sizeof(buf)); | 
|  |  | 
|  | /* Read the characters out of the buffer */ | 
|  |  | 
|  | count1 = count; | 
|  | while (count) { | 
|  | count--; | 
|  | if (fp && *fp++) { | 
|  | if (!test_and_set_bit(SIXPF_ERROR, &sp->flags)) | 
|  | sp->stats.rx_errors++; | 
|  | continue; | 
|  | } | 
|  | } | 
|  | sixpack_decode(sp, buf, count1); | 
|  |  | 
|  | sp_put(sp); | 
|  | if (test_and_clear_bit(TTY_THROTTLED, &tty->flags) | 
|  | && tty->driver->unthrottle) | 
|  | tty->driver->unthrottle(tty); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Try to resync the TNC. Called by the resync timer defined in | 
|  | * decode_prio_command | 
|  | */ | 
|  |  | 
|  | #define TNC_UNINITIALIZED	0 | 
|  | #define TNC_UNSYNC_STARTUP	1 | 
|  | #define TNC_UNSYNCED		2 | 
|  | #define TNC_IN_SYNC		3 | 
|  |  | 
|  | static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state) | 
|  | { | 
|  | char *msg; | 
|  |  | 
|  | switch (new_tnc_state) { | 
|  | default:			/* gcc oh piece-o-crap ... */ | 
|  | case TNC_UNSYNC_STARTUP: | 
|  | msg = "Synchronizing with TNC"; | 
|  | break; | 
|  | case TNC_UNSYNCED: | 
|  | msg = "Lost synchronization with TNC\n"; | 
|  | break; | 
|  | case TNC_IN_SYNC: | 
|  | msg = "Found TNC"; | 
|  | break; | 
|  | } | 
|  |  | 
|  | sp->tnc_state = new_tnc_state; | 
|  | printk(KERN_INFO "%s: %s\n", sp->dev->name, msg); | 
|  | } | 
|  |  | 
|  | static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state) | 
|  | { | 
|  | int old_tnc_state = sp->tnc_state; | 
|  |  | 
|  | if (old_tnc_state != new_tnc_state) | 
|  | __tnc_set_sync_state(sp, new_tnc_state); | 
|  | } | 
|  |  | 
|  | static void resync_tnc(unsigned long channel) | 
|  | { | 
|  | struct sixpack *sp = (struct sixpack *) channel; | 
|  | static char resync_cmd = 0xe8; | 
|  |  | 
|  | /* clear any data that might have been received */ | 
|  |  | 
|  | sp->rx_count = 0; | 
|  | sp->rx_count_cooked = 0; | 
|  |  | 
|  | /* reset state machine */ | 
|  |  | 
|  | sp->status = 1; | 
|  | sp->status1 = 1; | 
|  | sp->status2 = 0; | 
|  |  | 
|  | /* resync the TNC */ | 
|  |  | 
|  | sp->led_state = 0x60; | 
|  | sp->tty->driver->write(sp->tty, &sp->led_state, 1); | 
|  | sp->tty->driver->write(sp->tty, &resync_cmd, 1); | 
|  |  | 
|  |  | 
|  | /* Start resync timer again -- the TNC might be still absent */ | 
|  |  | 
|  | del_timer(&sp->resync_t); | 
|  | sp->resync_t.data	= (unsigned long) sp; | 
|  | sp->resync_t.function	= resync_tnc; | 
|  | sp->resync_t.expires	= jiffies + SIXP_RESYNC_TIMEOUT; | 
|  | add_timer(&sp->resync_t); | 
|  | } | 
|  |  | 
|  | static inline int tnc_init(struct sixpack *sp) | 
|  | { | 
|  | unsigned char inbyte = 0xe8; | 
|  |  | 
|  | tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP); | 
|  |  | 
|  | sp->tty->driver->write(sp->tty, &inbyte, 1); | 
|  |  | 
|  | del_timer(&sp->resync_t); | 
|  | sp->resync_t.data = (unsigned long) sp; | 
|  | sp->resync_t.function = resync_tnc; | 
|  | sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT; | 
|  | add_timer(&sp->resync_t); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Open the high-level part of the 6pack channel. | 
|  | * This function is called by the TTY module when the | 
|  | * 6pack line discipline is called for.  Because we are | 
|  | * sure the tty line exists, we only have to link it to | 
|  | * a free 6pcack channel... | 
|  | */ | 
|  | static int sixpack_open(struct tty_struct *tty) | 
|  | { | 
|  | char *rbuff = NULL, *xbuff = NULL; | 
|  | struct net_device *dev; | 
|  | struct sixpack *sp; | 
|  | unsigned long len; | 
|  | int err = 0; | 
|  |  | 
|  | if (!capable(CAP_NET_ADMIN)) | 
|  | return -EPERM; | 
|  |  | 
|  | dev = alloc_netdev(sizeof(struct sixpack), "sp%d", sp_setup); | 
|  | if (!dev) { | 
|  | err = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | sp = netdev_priv(dev); | 
|  | sp->dev = dev; | 
|  |  | 
|  | spin_lock_init(&sp->lock); | 
|  | atomic_set(&sp->refcnt, 1); | 
|  | init_MUTEX_LOCKED(&sp->dead_sem); | 
|  |  | 
|  | /* !!! length of the buffers. MTU is IP MTU, not PACLEN!  */ | 
|  |  | 
|  | len = dev->mtu * 2; | 
|  |  | 
|  | rbuff = kmalloc(len + 4, GFP_KERNEL); | 
|  | xbuff = kmalloc(len + 4, GFP_KERNEL); | 
|  |  | 
|  | if (rbuff == NULL || xbuff == NULL) { | 
|  | err = -ENOBUFS; | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | spin_lock_bh(&sp->lock); | 
|  |  | 
|  | sp->tty = tty; | 
|  |  | 
|  | sp->rbuff	= rbuff; | 
|  | sp->xbuff	= xbuff; | 
|  |  | 
|  | sp->mtu		= AX25_MTU + 73; | 
|  | sp->buffsize	= len; | 
|  | sp->rcount	= 0; | 
|  | sp->rx_count	= 0; | 
|  | sp->rx_count_cooked = 0; | 
|  | sp->xleft	= 0; | 
|  |  | 
|  | sp->flags	= 0;		/* Clear ESCAPE & ERROR flags */ | 
|  |  | 
|  | sp->duplex	= 0; | 
|  | sp->tx_delay    = SIXP_TXDELAY; | 
|  | sp->persistence = SIXP_PERSIST; | 
|  | sp->slottime    = SIXP_SLOTTIME; | 
|  | sp->led_state   = 0x60; | 
|  | sp->status      = 1; | 
|  | sp->status1     = 1; | 
|  | sp->status2     = 0; | 
|  | sp->tx_enable   = 0; | 
|  |  | 
|  | netif_start_queue(dev); | 
|  |  | 
|  | init_timer(&sp->tx_t); | 
|  | sp->tx_t.function = sp_xmit_on_air; | 
|  | sp->tx_t.data = (unsigned long) sp; | 
|  |  | 
|  | init_timer(&sp->resync_t); | 
|  |  | 
|  | spin_unlock_bh(&sp->lock); | 
|  |  | 
|  | /* Done.  We have linked the TTY line to a channel. */ | 
|  | tty->disc_data = sp; | 
|  |  | 
|  | /* Now we're ready to register. */ | 
|  | if (register_netdev(dev)) | 
|  | goto out_free; | 
|  |  | 
|  | tnc_init(sp); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_free: | 
|  | kfree(xbuff); | 
|  | kfree(rbuff); | 
|  |  | 
|  | if (dev) | 
|  | free_netdev(dev); | 
|  |  | 
|  | out: | 
|  | return err; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Close down a 6pack channel. | 
|  | * This means flushing out any pending queues, and then restoring the | 
|  | * TTY line discipline to what it was before it got hooked to 6pack | 
|  | * (which usually is TTY again). | 
|  | */ | 
|  | static void sixpack_close(struct tty_struct *tty) | 
|  | { | 
|  | struct sixpack *sp; | 
|  |  | 
|  | write_lock(&disc_data_lock); | 
|  | sp = tty->disc_data; | 
|  | tty->disc_data = NULL; | 
|  | write_unlock(&disc_data_lock); | 
|  | if (sp == 0) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * We have now ensured that nobody can start using ap from now on, but | 
|  | * we have to wait for all existing users to finish. | 
|  | */ | 
|  | if (!atomic_dec_and_test(&sp->refcnt)) | 
|  | down(&sp->dead_sem); | 
|  |  | 
|  | unregister_netdev(sp->dev); | 
|  |  | 
|  | del_timer(&sp->tx_t); | 
|  | del_timer(&sp->resync_t); | 
|  |  | 
|  | /* Free all 6pack frame buffers. */ | 
|  | kfree(sp->rbuff); | 
|  | kfree(sp->xbuff); | 
|  | } | 
|  |  | 
|  | /* Perform I/O control on an active 6pack channel. */ | 
|  | static int sixpack_ioctl(struct tty_struct *tty, struct file *file, | 
|  | unsigned int cmd, unsigned long arg) | 
|  | { | 
|  | struct sixpack *sp = sp_get(tty); | 
|  | struct net_device *dev = sp->dev; | 
|  | unsigned int tmp, err; | 
|  |  | 
|  | if (!sp) | 
|  | return -ENXIO; | 
|  |  | 
|  | switch(cmd) { | 
|  | case SIOCGIFNAME: | 
|  | err = copy_to_user((void __user *) arg, dev->name, | 
|  | strlen(dev->name) + 1) ? -EFAULT : 0; | 
|  | break; | 
|  |  | 
|  | case SIOCGIFENCAP: | 
|  | err = put_user(0, (int __user *) arg); | 
|  | break; | 
|  |  | 
|  | case SIOCSIFENCAP: | 
|  | if (get_user(tmp, (int __user *) arg)) { | 
|  | err = -EFAULT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | sp->mode = tmp; | 
|  | dev->addr_len        = AX25_ADDR_LEN; | 
|  | dev->hard_header_len = AX25_KISS_HEADER_LEN + | 
|  | AX25_MAX_HEADER_LEN + 3; | 
|  | dev->type            = ARPHRD_AX25; | 
|  |  | 
|  | err = 0; | 
|  | break; | 
|  |  | 
|  | case SIOCSIFHWADDR: { | 
|  | char addr[AX25_ADDR_LEN]; | 
|  |  | 
|  | if (copy_from_user(&addr, | 
|  | (void __user *) arg, AX25_ADDR_LEN)) { | 
|  | err = -EFAULT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | spin_lock_irq(&dev->xmit_lock); | 
|  | memcpy(dev->dev_addr, &addr, AX25_ADDR_LEN); | 
|  | spin_unlock_irq(&dev->xmit_lock); | 
|  |  | 
|  | err = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Allow stty to read, but not set, the serial port */ | 
|  | case TCGETS: | 
|  | case TCGETA: | 
|  | err = n_tty_ioctl(tty, (struct file *) file, cmd, arg); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | err = -ENOIOCTLCMD; | 
|  | } | 
|  |  | 
|  | sp_put(sp); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static struct tty_ldisc sp_ldisc = { | 
|  | .owner		= THIS_MODULE, | 
|  | .magic		= TTY_LDISC_MAGIC, | 
|  | .name		= "6pack", | 
|  | .open		= sixpack_open, | 
|  | .close		= sixpack_close, | 
|  | .ioctl		= sixpack_ioctl, | 
|  | .receive_buf	= sixpack_receive_buf, | 
|  | .receive_room	= sixpack_receive_room, | 
|  | .write_wakeup	= sixpack_write_wakeup, | 
|  | }; | 
|  |  | 
|  | /* Initialize 6pack control device -- register 6pack line discipline */ | 
|  |  | 
|  | static char msg_banner[]  __initdata = KERN_INFO \ | 
|  | "AX.25: 6pack driver, " SIXPACK_VERSION "\n"; | 
|  | static char msg_regfail[] __initdata = KERN_ERR  \ | 
|  | "6pack: can't register line discipline (err = %d)\n"; | 
|  |  | 
|  | static int __init sixpack_init_driver(void) | 
|  | { | 
|  | int status; | 
|  |  | 
|  | printk(msg_banner); | 
|  |  | 
|  | /* Register the provided line protocol discipline */ | 
|  | if ((status = tty_register_ldisc(N_6PACK, &sp_ldisc)) != 0) | 
|  | printk(msg_regfail, status); | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static const char msg_unregfail[] __exitdata = KERN_ERR \ | 
|  | "6pack: can't unregister line discipline (err = %d)\n"; | 
|  |  | 
|  | static void __exit sixpack_exit_driver(void) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if ((ret = tty_unregister_ldisc(N_6PACK))) | 
|  | printk(msg_unregfail, ret); | 
|  | } | 
|  |  | 
|  | /* encode an AX.25 packet into 6pack */ | 
|  |  | 
|  | static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw, | 
|  | int length, unsigned char tx_delay) | 
|  | { | 
|  | int count = 0; | 
|  | unsigned char checksum = 0, buf[400]; | 
|  | int raw_count = 0; | 
|  |  | 
|  | tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK; | 
|  | tx_buf_raw[raw_count++] = SIXP_SEOF; | 
|  |  | 
|  | buf[0] = tx_delay; | 
|  | for (count = 1; count < length; count++) | 
|  | buf[count] = tx_buf[count]; | 
|  |  | 
|  | for (count = 0; count < length; count++) | 
|  | checksum += buf[count]; | 
|  | buf[length] = (unsigned char) 0xff - checksum; | 
|  |  | 
|  | for (count = 0; count <= length; count++) { | 
|  | if ((count % 3) == 0) { | 
|  | tx_buf_raw[raw_count++] = (buf[count] & 0x3f); | 
|  | tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30); | 
|  | } else if ((count % 3) == 1) { | 
|  | tx_buf_raw[raw_count++] |= (buf[count] & 0x0f); | 
|  | tx_buf_raw[raw_count] =	((buf[count] >> 2) & 0x3c); | 
|  | } else { | 
|  | tx_buf_raw[raw_count++] |= (buf[count] & 0x03); | 
|  | tx_buf_raw[raw_count++] = (buf[count] >> 2); | 
|  | } | 
|  | } | 
|  | if ((length % 3) != 2) | 
|  | raw_count++; | 
|  | tx_buf_raw[raw_count++] = SIXP_SEOF; | 
|  | return raw_count; | 
|  | } | 
|  |  | 
|  | /* decode 4 sixpack-encoded bytes into 3 data bytes */ | 
|  |  | 
|  | static void decode_data(struct sixpack *sp, unsigned char inbyte) | 
|  | { | 
|  | unsigned char *buf; | 
|  |  | 
|  | if (sp->rx_count != 3) { | 
|  | sp->raw_buf[sp->rx_count++] = inbyte; | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | buf = sp->raw_buf; | 
|  | sp->cooked_buf[sp->rx_count_cooked++] = | 
|  | buf[0] | ((buf[1] << 2) & 0xc0); | 
|  | sp->cooked_buf[sp->rx_count_cooked++] = | 
|  | (buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0); | 
|  | sp->cooked_buf[sp->rx_count_cooked++] = | 
|  | (buf[2] & 0x03) | (inbyte << 2); | 
|  | sp->rx_count = 0; | 
|  | } | 
|  |  | 
|  | /* identify and execute a 6pack priority command byte */ | 
|  |  | 
|  | static void decode_prio_command(struct sixpack *sp, unsigned char cmd) | 
|  | { | 
|  | unsigned char channel; | 
|  | int actual; | 
|  |  | 
|  | channel = cmd & SIXP_CHN_MASK; | 
|  | if ((cmd & SIXP_PRIO_DATA_MASK) != 0) {     /* idle ? */ | 
|  |  | 
|  | /* RX and DCD flags can only be set in the same prio command, | 
|  | if the DCD flag has been set without the RX flag in the previous | 
|  | prio command. If DCD has not been set before, something in the | 
|  | transmission has gone wrong. In this case, RX and DCD are | 
|  | cleared in order to prevent the decode_data routine from | 
|  | reading further data that might be corrupt. */ | 
|  |  | 
|  | if (((sp->status & SIXP_DCD_MASK) == 0) && | 
|  | ((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) { | 
|  | if (sp->status != 1) | 
|  | printk(KERN_DEBUG "6pack: protocol violation\n"); | 
|  | else | 
|  | sp->status = 0; | 
|  | cmd &= !SIXP_RX_DCD_MASK; | 
|  | } | 
|  | sp->status = cmd & SIXP_PRIO_DATA_MASK; | 
|  | } else { /* output watchdog char if idle */ | 
|  | if ((sp->status2 != 0) && (sp->duplex == 1)) { | 
|  | sp->led_state = 0x70; | 
|  | sp->tty->driver->write(sp->tty, &sp->led_state, 1); | 
|  | sp->tx_enable = 1; | 
|  | actual = sp->tty->driver->write(sp->tty, sp->xbuff, sp->status2); | 
|  | sp->xleft -= actual; | 
|  | sp->xhead += actual; | 
|  | sp->led_state = 0x60; | 
|  | sp->status2 = 0; | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  | /* needed to trigger the TNC watchdog */ | 
|  | sp->tty->driver->write(sp->tty, &sp->led_state, 1); | 
|  |  | 
|  | /* if the state byte has been received, the TNC is present, | 
|  | so the resync timer can be reset. */ | 
|  |  | 
|  | if (sp->tnc_state == TNC_IN_SYNC) { | 
|  | del_timer(&sp->resync_t); | 
|  | sp->resync_t.data	= (unsigned long) sp; | 
|  | sp->resync_t.function	= resync_tnc; | 
|  | sp->resync_t.expires	= jiffies + SIXP_INIT_RESYNC_TIMEOUT; | 
|  | add_timer(&sp->resync_t); | 
|  | } | 
|  |  | 
|  | sp->status1 = cmd & SIXP_PRIO_DATA_MASK; | 
|  | } | 
|  |  | 
|  | /* identify and execute a standard 6pack command byte */ | 
|  |  | 
|  | static void decode_std_command(struct sixpack *sp, unsigned char cmd) | 
|  | { | 
|  | unsigned char checksum = 0, rest = 0, channel; | 
|  | short i; | 
|  |  | 
|  | channel = cmd & SIXP_CHN_MASK; | 
|  | switch (cmd & SIXP_CMD_MASK) {     /* normal command */ | 
|  | case SIXP_SEOF: | 
|  | if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) { | 
|  | if ((sp->status & SIXP_RX_DCD_MASK) == | 
|  | SIXP_RX_DCD_MASK) { | 
|  | sp->led_state = 0x68; | 
|  | sp->tty->driver->write(sp->tty, &sp->led_state, 1); | 
|  | } | 
|  | } else { | 
|  | sp->led_state = 0x60; | 
|  | /* fill trailing bytes with zeroes */ | 
|  | sp->tty->driver->write(sp->tty, &sp->led_state, 1); | 
|  | rest = sp->rx_count; | 
|  | if (rest != 0) | 
|  | for (i = rest; i <= 3; i++) | 
|  | decode_data(sp, 0); | 
|  | if (rest == 2) | 
|  | sp->rx_count_cooked -= 2; | 
|  | else if (rest == 3) | 
|  | sp->rx_count_cooked -= 1; | 
|  | for (i = 0; i < sp->rx_count_cooked; i++) | 
|  | checksum += sp->cooked_buf[i]; | 
|  | if (checksum != SIXP_CHKSUM) { | 
|  | printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum); | 
|  | } else { | 
|  | sp->rcount = sp->rx_count_cooked-2; | 
|  | sp_bump(sp, 0); | 
|  | } | 
|  | sp->rx_count_cooked = 0; | 
|  | } | 
|  | break; | 
|  | case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n"); | 
|  | break; | 
|  | case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n"); | 
|  | break; | 
|  | case SIXP_RX_BUF_OVL: | 
|  | printk(KERN_DEBUG "6pack: RX buffer overflow\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* decode a 6pack packet */ | 
|  |  | 
|  | static void | 
|  | sixpack_decode(struct sixpack *sp, unsigned char *pre_rbuff, int count) | 
|  | { | 
|  | unsigned char inbyte; | 
|  | int count1; | 
|  |  | 
|  | for (count1 = 0; count1 < count; count1++) { | 
|  | inbyte = pre_rbuff[count1]; | 
|  | if (inbyte == SIXP_FOUND_TNC) { | 
|  | tnc_set_sync_state(sp, TNC_IN_SYNC); | 
|  | del_timer(&sp->resync_t); | 
|  | } | 
|  | if ((inbyte & SIXP_PRIO_CMD_MASK) != 0) | 
|  | decode_prio_command(sp, inbyte); | 
|  | else if ((inbyte & SIXP_STD_CMD_MASK) != 0) | 
|  | decode_std_command(sp, inbyte); | 
|  | else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK) | 
|  | decode_data(sp, inbyte); | 
|  | } | 
|  | } | 
|  |  | 
|  | MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>"); | 
|  | MODULE_DESCRIPTION("6pack driver for AX.25"); | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_ALIAS_LDISC(N_6PACK); | 
|  |  | 
|  | module_init(sixpack_init_driver); | 
|  | module_exit(sixpack_exit_driver); |