| /* | 
 |  * Copyright 1995, Russell King. | 
 |  * | 
 |  * Based on the arm32 version by RMK (and others). Their copyrights apply to | 
 |  * Those parts. | 
 |  * Modified for arm26 by Ian Molton on 25/11/04 | 
 |  * | 
 |  * bit 0 is the LSB of an "unsigned long" quantity. | 
 |  * | 
 |  * Please note that the code in this file should never be included | 
 |  * from user space.  Many of these are not implemented in assembler | 
 |  * since they would be too costly.  Also, they require privileged | 
 |  * instructions (which are not available from user mode) to ensure | 
 |  * that they are atomic. | 
 |  */ | 
 |  | 
 | #ifndef __ASM_ARM_BITOPS_H | 
 | #define __ASM_ARM_BITOPS_H | 
 |  | 
 | #ifdef __KERNEL__ | 
 |  | 
 | #include <linux/compiler.h> | 
 | #include <asm/system.h> | 
 |  | 
 | #define smp_mb__before_clear_bit()	do { } while (0) | 
 | #define smp_mb__after_clear_bit()	do { } while (0) | 
 |  | 
 | /* | 
 |  * These functions are the basis of our bit ops. | 
 |  * | 
 |  * First, the atomic bitops. These use native endian. | 
 |  */ | 
 | static inline void ____atomic_set_bit(unsigned int bit, volatile unsigned long *p) | 
 | { | 
 | 	unsigned long flags; | 
 | 	unsigned long mask = 1UL << (bit & 31); | 
 |  | 
 | 	p += bit >> 5; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	*p |= mask; | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | static inline void ____atomic_clear_bit(unsigned int bit, volatile unsigned long *p) | 
 | { | 
 | 	unsigned long flags; | 
 | 	unsigned long mask = 1UL << (bit & 31); | 
 |  | 
 | 	p += bit >> 5; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	*p &= ~mask; | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | static inline void ____atomic_change_bit(unsigned int bit, volatile unsigned long *p) | 
 | { | 
 | 	unsigned long flags; | 
 | 	unsigned long mask = 1UL << (bit & 31); | 
 |  | 
 | 	p += bit >> 5; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	*p ^= mask; | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | static inline int | 
 | ____atomic_test_and_set_bit(unsigned int bit, volatile unsigned long *p) | 
 | { | 
 | 	unsigned long flags; | 
 | 	unsigned int res; | 
 | 	unsigned long mask = 1UL << (bit & 31); | 
 |  | 
 | 	p += bit >> 5; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	res = *p; | 
 | 	*p = res | mask; | 
 | 	local_irq_restore(flags); | 
 |  | 
 | 	return res & mask; | 
 | } | 
 |  | 
 | static inline int | 
 | ____atomic_test_and_clear_bit(unsigned int bit, volatile unsigned long *p) | 
 | { | 
 | 	unsigned long flags; | 
 | 	unsigned int res; | 
 | 	unsigned long mask = 1UL << (bit & 31); | 
 |  | 
 | 	p += bit >> 5; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	res = *p; | 
 | 	*p = res & ~mask; | 
 | 	local_irq_restore(flags); | 
 |  | 
 | 	return res & mask; | 
 | } | 
 |  | 
 | static inline int | 
 | ____atomic_test_and_change_bit(unsigned int bit, volatile unsigned long *p) | 
 | { | 
 | 	unsigned long flags; | 
 | 	unsigned int res; | 
 | 	unsigned long mask = 1UL << (bit & 31); | 
 |  | 
 | 	p += bit >> 5; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	res = *p; | 
 | 	*p = res ^ mask; | 
 | 	local_irq_restore(flags); | 
 |  | 
 | 	return res & mask; | 
 | } | 
 |  | 
 | /* | 
 |  * Now the non-atomic variants.  We let the compiler handle all | 
 |  * optimisations for these.  These are all _native_ endian. | 
 |  */ | 
 | static inline void __set_bit(int nr, volatile unsigned long *p) | 
 | { | 
 | 	p[nr >> 5] |= (1UL << (nr & 31)); | 
 | } | 
 |  | 
 | static inline void __clear_bit(int nr, volatile unsigned long *p) | 
 | { | 
 | 	p[nr >> 5] &= ~(1UL << (nr & 31)); | 
 | } | 
 |  | 
 | static inline void __change_bit(int nr, volatile unsigned long *p) | 
 | { | 
 | 	p[nr >> 5] ^= (1UL << (nr & 31)); | 
 | } | 
 |  | 
 | static inline int __test_and_set_bit(int nr, volatile unsigned long *p) | 
 | { | 
 | 	unsigned long oldval, mask = 1UL << (nr & 31); | 
 |  | 
 | 	p += nr >> 5; | 
 |  | 
 | 	oldval = *p; | 
 | 	*p = oldval | mask; | 
 | 	return oldval & mask; | 
 | } | 
 |  | 
 | static inline int __test_and_clear_bit(int nr, volatile unsigned long *p) | 
 | { | 
 | 	unsigned long oldval, mask = 1UL << (nr & 31); | 
 |  | 
 | 	p += nr >> 5; | 
 |  | 
 | 	oldval = *p; | 
 | 	*p = oldval & ~mask; | 
 | 	return oldval & mask; | 
 | } | 
 |  | 
 | static inline int __test_and_change_bit(int nr, volatile unsigned long *p) | 
 | { | 
 | 	unsigned long oldval, mask = 1UL << (nr & 31); | 
 |  | 
 | 	p += nr >> 5; | 
 |  | 
 | 	oldval = *p; | 
 | 	*p = oldval ^ mask; | 
 | 	return oldval & mask; | 
 | } | 
 |  | 
 | /* | 
 |  * This routine doesn't need to be atomic. | 
 |  */ | 
 | static inline int __test_bit(int nr, const volatile unsigned long * p) | 
 | { | 
 | 	return (p[nr >> 5] >> (nr & 31)) & 1UL; | 
 | } | 
 |  | 
 | /* | 
 |  * Little endian assembly bitops.  nr = 0 -> byte 0 bit 0. | 
 |  */ | 
 | extern void _set_bit_le(int nr, volatile unsigned long * p); | 
 | extern void _clear_bit_le(int nr, volatile unsigned long * p); | 
 | extern void _change_bit_le(int nr, volatile unsigned long * p); | 
 | extern int _test_and_set_bit_le(int nr, volatile unsigned long * p); | 
 | extern int _test_and_clear_bit_le(int nr, volatile unsigned long * p); | 
 | extern int _test_and_change_bit_le(int nr, volatile unsigned long * p); | 
 | extern int _find_first_zero_bit_le(void * p, unsigned size); | 
 | extern int _find_next_zero_bit_le(void * p, int size, int offset); | 
 | extern int _find_first_bit_le(const unsigned long *p, unsigned size); | 
 | extern int _find_next_bit_le(const unsigned long *p, int size, int offset); | 
 |  | 
 | /* | 
 |  * The __* form of bitops are non-atomic and may be reordered. | 
 |  */ | 
 | #define	ATOMIC_BITOP_LE(name,nr,p)		\ | 
 | 	(__builtin_constant_p(nr) ?		\ | 
 | 	 ____atomic_##name(nr, p) :		\ | 
 | 	 _##name##_le(nr,p)) | 
 |  | 
 | #define NONATOMIC_BITOP(name,nr,p)		\ | 
 | 	(____nonatomic_##name(nr, p)) | 
 |  | 
 | /* | 
 |  * These are the little endian, atomic definitions. | 
 |  */ | 
 | #define set_bit(nr,p)			ATOMIC_BITOP_LE(set_bit,nr,p) | 
 | #define clear_bit(nr,p)			ATOMIC_BITOP_LE(clear_bit,nr,p) | 
 | #define change_bit(nr,p)		ATOMIC_BITOP_LE(change_bit,nr,p) | 
 | #define test_and_set_bit(nr,p)		ATOMIC_BITOP_LE(test_and_set_bit,nr,p) | 
 | #define test_and_clear_bit(nr,p)	ATOMIC_BITOP_LE(test_and_clear_bit,nr,p) | 
 | #define test_and_change_bit(nr,p)	ATOMIC_BITOP_LE(test_and_change_bit,nr,p) | 
 | #define test_bit(nr,p)			__test_bit(nr,p) | 
 | #define find_first_zero_bit(p,sz)	_find_first_zero_bit_le(p,sz) | 
 | #define find_next_zero_bit(p,sz,off)	_find_next_zero_bit_le(p,sz,off) | 
 | #define find_first_bit(p,sz)		_find_first_bit_le(p,sz) | 
 | #define find_next_bit(p,sz,off)		_find_next_bit_le(p,sz,off) | 
 |  | 
 | #define WORD_BITOFF_TO_LE(x)		((x)) | 
 |  | 
 | /* | 
 |  * ffz = Find First Zero in word. Undefined if no zero exists, | 
 |  * so code should check against ~0UL first.. | 
 |  */ | 
 | static inline unsigned long ffz(unsigned long word) | 
 | { | 
 | 	int k; | 
 |  | 
 | 	word = ~word; | 
 | 	k = 31; | 
 | 	if (word & 0x0000ffff) { k -= 16; word <<= 16; } | 
 | 	if (word & 0x00ff0000) { k -= 8;  word <<= 8;  } | 
 | 	if (word & 0x0f000000) { k -= 4;  word <<= 4;  } | 
 | 	if (word & 0x30000000) { k -= 2;  word <<= 2;  } | 
 | 	if (word & 0x40000000) { k -= 1; } | 
 |         return k; | 
 | } | 
 |  | 
 | /* | 
 |  * ffz = Find First Zero in word. Undefined if no zero exists, | 
 |  * so code should check against ~0UL first.. | 
 |  */ | 
 | static inline unsigned long __ffs(unsigned long word) | 
 | { | 
 | 	int k; | 
 |  | 
 | 	k = 31; | 
 | 	if (word & 0x0000ffff) { k -= 16; word <<= 16; } | 
 | 	if (word & 0x00ff0000) { k -= 8;  word <<= 8;  } | 
 | 	if (word & 0x0f000000) { k -= 4;  word <<= 4;  } | 
 | 	if (word & 0x30000000) { k -= 2;  word <<= 2;  } | 
 | 	if (word & 0x40000000) { k -= 1; } | 
 |         return k; | 
 | } | 
 |  | 
 | /* | 
 |  * fls: find last bit set. | 
 |  */ | 
 |  | 
 | #define fls(x) generic_fls(x) | 
 |  | 
 | /* | 
 |  * ffs: find first bit set. This is defined the same way as | 
 |  * the libc and compiler builtin ffs routines, therefore | 
 |  * differs in spirit from the above ffz (man ffs). | 
 |  */ | 
 |  | 
 | #define ffs(x) generic_ffs(x) | 
 |  | 
 | /* | 
 |  * Find first bit set in a 168-bit bitmap, where the first | 
 |  * 128 bits are unlikely to be set. | 
 |  */ | 
 | static inline int sched_find_first_bit(unsigned long *b) | 
 | { | 
 | 	unsigned long v; | 
 | 	unsigned int off; | 
 |  | 
 | 	for (off = 0; v = b[off], off < 4; off++) { | 
 | 		if (unlikely(v)) | 
 | 			break; | 
 | 	} | 
 | 	return __ffs(v) + off * 32; | 
 | } | 
 |  | 
 | /* | 
 |  * hweightN: returns the hamming weight (i.e. the number | 
 |  * of bits set) of a N-bit word | 
 |  */ | 
 |  | 
 | #define hweight32(x) generic_hweight32(x) | 
 | #define hweight16(x) generic_hweight16(x) | 
 | #define hweight8(x) generic_hweight8(x) | 
 |  | 
 | /* | 
 |  * Ext2 is defined to use little-endian byte ordering. | 
 |  * These do not need to be atomic. | 
 |  */ | 
 | #define ext2_set_bit(nr,p)			\ | 
 | 		__test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) | 
 | #define ext2_set_bit_atomic(lock,nr,p)          \ | 
 |                 test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) | 
 | #define ext2_clear_bit(nr,p)			\ | 
 | 		__test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) | 
 | #define ext2_clear_bit_atomic(lock,nr,p)        \ | 
 |                 test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) | 
 | #define ext2_test_bit(nr,p)			\ | 
 | 		__test_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) | 
 | #define ext2_find_first_zero_bit(p,sz)		\ | 
 | 		_find_first_zero_bit_le(p,sz) | 
 | #define ext2_find_next_zero_bit(p,sz,off)	\ | 
 | 		_find_next_zero_bit_le(p,sz,off) | 
 |  | 
 | /* | 
 |  * Minix is defined to use little-endian byte ordering. | 
 |  * These do not need to be atomic. | 
 |  */ | 
 | #define minix_set_bit(nr,p)			\ | 
 | 		__set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) | 
 | #define minix_test_bit(nr,p)			\ | 
 | 		__test_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) | 
 | #define minix_test_and_set_bit(nr,p)		\ | 
 | 		__test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) | 
 | #define minix_test_and_clear_bit(nr,p)		\ | 
 | 		__test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) | 
 | #define minix_find_first_zero_bit(p,sz)		\ | 
 | 		_find_first_zero_bit_le(p,sz) | 
 |  | 
 | #endif /* __KERNEL__ */ | 
 |  | 
 | #endif /* _ARM_BITOPS_H */ |