|  | /* | 
|  | * lib/reed_solomon/decode_rs.c | 
|  | * | 
|  | * Overview: | 
|  | *   Generic Reed Solomon encoder / decoder library | 
|  | * | 
|  | * Copyright 2002, Phil Karn, KA9Q | 
|  | * May be used under the terms of the GNU General Public License (GPL) | 
|  | * | 
|  | * Adaption to the kernel by Thomas Gleixner (tglx@linutronix.de) | 
|  | * | 
|  | * $Id: decode_rs.c,v 1.7 2005/11/07 11:14:59 gleixner Exp $ | 
|  | * | 
|  | */ | 
|  |  | 
|  | /* Generic data width independent code which is included by the | 
|  | * wrappers. | 
|  | */ | 
|  | { | 
|  | int deg_lambda, el, deg_omega; | 
|  | int i, j, r, k, pad; | 
|  | int nn = rs->nn; | 
|  | int nroots = rs->nroots; | 
|  | int fcr = rs->fcr; | 
|  | int prim = rs->prim; | 
|  | int iprim = rs->iprim; | 
|  | uint16_t *alpha_to = rs->alpha_to; | 
|  | uint16_t *index_of = rs->index_of; | 
|  | uint16_t u, q, tmp, num1, num2, den, discr_r, syn_error; | 
|  | /* Err+Eras Locator poly and syndrome poly The maximum value | 
|  | * of nroots is 8. So the necessary stack size will be about | 
|  | * 220 bytes max. | 
|  | */ | 
|  | uint16_t lambda[nroots + 1], syn[nroots]; | 
|  | uint16_t b[nroots + 1], t[nroots + 1], omega[nroots + 1]; | 
|  | uint16_t root[nroots], reg[nroots + 1], loc[nroots]; | 
|  | int count = 0; | 
|  | uint16_t msk = (uint16_t) rs->nn; | 
|  |  | 
|  | /* Check length parameter for validity */ | 
|  | pad = nn - nroots - len; | 
|  | if (pad < 0 || pad >= nn) | 
|  | return -ERANGE; | 
|  |  | 
|  | /* Does the caller provide the syndrome ? */ | 
|  | if (s != NULL) | 
|  | goto decode; | 
|  |  | 
|  | /* form the syndromes; i.e., evaluate data(x) at roots of | 
|  | * g(x) */ | 
|  | for (i = 0; i < nroots; i++) | 
|  | syn[i] = (((uint16_t) data[0]) ^ invmsk) & msk; | 
|  |  | 
|  | for (j = 1; j < len; j++) { | 
|  | for (i = 0; i < nroots; i++) { | 
|  | if (syn[i] == 0) { | 
|  | syn[i] = (((uint16_t) data[j]) ^ | 
|  | invmsk) & msk; | 
|  | } else { | 
|  | syn[i] = ((((uint16_t) data[j]) ^ | 
|  | invmsk) & msk) ^ | 
|  | alpha_to[rs_modnn(rs, index_of[syn[i]] + | 
|  | (fcr + i) * prim)]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | for (j = 0; j < nroots; j++) { | 
|  | for (i = 0; i < nroots; i++) { | 
|  | if (syn[i] == 0) { | 
|  | syn[i] = ((uint16_t) par[j]) & msk; | 
|  | } else { | 
|  | syn[i] = (((uint16_t) par[j]) & msk) ^ | 
|  | alpha_to[rs_modnn(rs, index_of[syn[i]] + | 
|  | (fcr+i)*prim)]; | 
|  | } | 
|  | } | 
|  | } | 
|  | s = syn; | 
|  |  | 
|  | /* Convert syndromes to index form, checking for nonzero condition */ | 
|  | syn_error = 0; | 
|  | for (i = 0; i < nroots; i++) { | 
|  | syn_error |= s[i]; | 
|  | s[i] = index_of[s[i]]; | 
|  | } | 
|  |  | 
|  | if (!syn_error) { | 
|  | /* if syndrome is zero, data[] is a codeword and there are no | 
|  | * errors to correct. So return data[] unmodified | 
|  | */ | 
|  | count = 0; | 
|  | goto finish; | 
|  | } | 
|  |  | 
|  | decode: | 
|  | memset(&lambda[1], 0, nroots * sizeof(lambda[0])); | 
|  | lambda[0] = 1; | 
|  |  | 
|  | if (no_eras > 0) { | 
|  | /* Init lambda to be the erasure locator polynomial */ | 
|  | lambda[1] = alpha_to[rs_modnn(rs, | 
|  | prim * (nn - 1 - eras_pos[0]))]; | 
|  | for (i = 1; i < no_eras; i++) { | 
|  | u = rs_modnn(rs, prim * (nn - 1 - eras_pos[i])); | 
|  | for (j = i + 1; j > 0; j--) { | 
|  | tmp = index_of[lambda[j - 1]]; | 
|  | if (tmp != nn) { | 
|  | lambda[j] ^= | 
|  | alpha_to[rs_modnn(rs, u + tmp)]; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; i < nroots + 1; i++) | 
|  | b[i] = index_of[lambda[i]]; | 
|  |  | 
|  | /* | 
|  | * Begin Berlekamp-Massey algorithm to determine error+erasure | 
|  | * locator polynomial | 
|  | */ | 
|  | r = no_eras; | 
|  | el = no_eras; | 
|  | while (++r <= nroots) {	/* r is the step number */ | 
|  | /* Compute discrepancy at the r-th step in poly-form */ | 
|  | discr_r = 0; | 
|  | for (i = 0; i < r; i++) { | 
|  | if ((lambda[i] != 0) && (s[r - i - 1] != nn)) { | 
|  | discr_r ^= | 
|  | alpha_to[rs_modnn(rs, | 
|  | index_of[lambda[i]] + | 
|  | s[r - i - 1])]; | 
|  | } | 
|  | } | 
|  | discr_r = index_of[discr_r];	/* Index form */ | 
|  | if (discr_r == nn) { | 
|  | /* 2 lines below: B(x) <-- x*B(x) */ | 
|  | memmove (&b[1], b, nroots * sizeof (b[0])); | 
|  | b[0] = nn; | 
|  | } else { | 
|  | /* 7 lines below: T(x) <-- lambda(x)-discr_r*x*b(x) */ | 
|  | t[0] = lambda[0]; | 
|  | for (i = 0; i < nroots; i++) { | 
|  | if (b[i] != nn) { | 
|  | t[i + 1] = lambda[i + 1] ^ | 
|  | alpha_to[rs_modnn(rs, discr_r + | 
|  | b[i])]; | 
|  | } else | 
|  | t[i + 1] = lambda[i + 1]; | 
|  | } | 
|  | if (2 * el <= r + no_eras - 1) { | 
|  | el = r + no_eras - el; | 
|  | /* | 
|  | * 2 lines below: B(x) <-- inv(discr_r) * | 
|  | * lambda(x) | 
|  | */ | 
|  | for (i = 0; i <= nroots; i++) { | 
|  | b[i] = (lambda[i] == 0) ? nn : | 
|  | rs_modnn(rs, index_of[lambda[i]] | 
|  | - discr_r + nn); | 
|  | } | 
|  | } else { | 
|  | /* 2 lines below: B(x) <-- x*B(x) */ | 
|  | memmove(&b[1], b, nroots * sizeof(b[0])); | 
|  | b[0] = nn; | 
|  | } | 
|  | memcpy(lambda, t, (nroots + 1) * sizeof(t[0])); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Convert lambda to index form and compute deg(lambda(x)) */ | 
|  | deg_lambda = 0; | 
|  | for (i = 0; i < nroots + 1; i++) { | 
|  | lambda[i] = index_of[lambda[i]]; | 
|  | if (lambda[i] != nn) | 
|  | deg_lambda = i; | 
|  | } | 
|  | /* Find roots of error+erasure locator polynomial by Chien search */ | 
|  | memcpy(®[1], &lambda[1], nroots * sizeof(reg[0])); | 
|  | count = 0;		/* Number of roots of lambda(x) */ | 
|  | for (i = 1, k = iprim - 1; i <= nn; i++, k = rs_modnn(rs, k + iprim)) { | 
|  | q = 1;		/* lambda[0] is always 0 */ | 
|  | for (j = deg_lambda; j > 0; j--) { | 
|  | if (reg[j] != nn) { | 
|  | reg[j] = rs_modnn(rs, reg[j] + j); | 
|  | q ^= alpha_to[reg[j]]; | 
|  | } | 
|  | } | 
|  | if (q != 0) | 
|  | continue;	/* Not a root */ | 
|  | /* store root (index-form) and error location number */ | 
|  | root[count] = i; | 
|  | loc[count] = k; | 
|  | /* If we've already found max possible roots, | 
|  | * abort the search to save time | 
|  | */ | 
|  | if (++count == deg_lambda) | 
|  | break; | 
|  | } | 
|  | if (deg_lambda != count) { | 
|  | /* | 
|  | * deg(lambda) unequal to number of roots => uncorrectable | 
|  | * error detected | 
|  | */ | 
|  | count = -1; | 
|  | goto finish; | 
|  | } | 
|  | /* | 
|  | * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo | 
|  | * x**nroots). in index form. Also find deg(omega). | 
|  | */ | 
|  | deg_omega = deg_lambda - 1; | 
|  | for (i = 0; i <= deg_omega; i++) { | 
|  | tmp = 0; | 
|  | for (j = i; j >= 0; j--) { | 
|  | if ((s[i - j] != nn) && (lambda[j] != nn)) | 
|  | tmp ^= | 
|  | alpha_to[rs_modnn(rs, s[i - j] + lambda[j])]; | 
|  | } | 
|  | omega[i] = index_of[tmp]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 = | 
|  | * inv(X(l))**(fcr-1) and den = lambda_pr(inv(X(l))) all in poly-form | 
|  | */ | 
|  | for (j = count - 1; j >= 0; j--) { | 
|  | num1 = 0; | 
|  | for (i = deg_omega; i >= 0; i--) { | 
|  | if (omega[i] != nn) | 
|  | num1 ^= alpha_to[rs_modnn(rs, omega[i] + | 
|  | i * root[j])]; | 
|  | } | 
|  | num2 = alpha_to[rs_modnn(rs, root[j] * (fcr - 1) + nn)]; | 
|  | den = 0; | 
|  |  | 
|  | /* lambda[i+1] for i even is the formal derivative | 
|  | * lambda_pr of lambda[i] */ | 
|  | for (i = min(deg_lambda, nroots - 1) & ~1; i >= 0; i -= 2) { | 
|  | if (lambda[i + 1] != nn) { | 
|  | den ^= alpha_to[rs_modnn(rs, lambda[i + 1] + | 
|  | i * root[j])]; | 
|  | } | 
|  | } | 
|  | /* Apply error to data */ | 
|  | if (num1 != 0 && loc[j] >= pad) { | 
|  | uint16_t cor = alpha_to[rs_modnn(rs,index_of[num1] + | 
|  | index_of[num2] + | 
|  | nn - index_of[den])]; | 
|  | /* Store the error correction pattern, if a | 
|  | * correction buffer is available */ | 
|  | if (corr) { | 
|  | corr[j] = cor; | 
|  | } else { | 
|  | /* If a data buffer is given and the | 
|  | * error is inside the message, | 
|  | * correct it */ | 
|  | if (data && (loc[j] < (nn - nroots))) | 
|  | data[loc[j] - pad] ^= cor; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | finish: | 
|  | if (eras_pos != NULL) { | 
|  | for (i = 0; i < count; i++) | 
|  | eras_pos[i] = loc[i] - pad; | 
|  | } | 
|  | return count; | 
|  |  | 
|  | } |