|  | /* | 
|  | * ip27-irq.c: Highlevel interrupt handling for IP27 architecture. | 
|  | * | 
|  | * Copyright (C) 1999, 2000 Ralf Baechle (ralf@gnu.org) | 
|  | * Copyright (C) 1999, 2000 Silicon Graphics, Inc. | 
|  | * Copyright (C) 1999 - 2001 Kanoj Sarcar | 
|  | */ | 
|  |  | 
|  | #undef DEBUG | 
|  |  | 
|  | #include <linux/init.h> | 
|  | #include <linux/irq.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/signal.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/ioport.h> | 
|  | #include <linux/timex.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/random.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/kernel_stat.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/bitops.h> | 
|  |  | 
|  | #include <asm/bootinfo.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/mipsregs.h> | 
|  | #include <asm/system.h> | 
|  |  | 
|  | #include <asm/processor.h> | 
|  | #include <asm/pci/bridge.h> | 
|  | #include <asm/sn/addrs.h> | 
|  | #include <asm/sn/agent.h> | 
|  | #include <asm/sn/arch.h> | 
|  | #include <asm/sn/hub.h> | 
|  | #include <asm/sn/intr.h> | 
|  |  | 
|  | /* | 
|  | * Linux has a controller-independent x86 interrupt architecture. | 
|  | * every controller has a 'controller-template', that is used | 
|  | * by the main code to do the right thing. Each driver-visible | 
|  | * interrupt source is transparently wired to the apropriate | 
|  | * controller. Thus drivers need not be aware of the | 
|  | * interrupt-controller. | 
|  | * | 
|  | * Various interrupt controllers we handle: 8259 PIC, SMP IO-APIC, | 
|  | * PIIX4's internal 8259 PIC and SGI's Visual Workstation Cobalt (IO-)APIC. | 
|  | * (IO-APICs assumed to be messaging to Pentium local-APICs) | 
|  | * | 
|  | * the code is designed to be easily extended with new/different | 
|  | * interrupt controllers, without having to do assembly magic. | 
|  | */ | 
|  |  | 
|  | extern asmlinkage void ip27_irq(void); | 
|  |  | 
|  | extern struct bridge_controller *irq_to_bridge[]; | 
|  | extern int irq_to_slot[]; | 
|  |  | 
|  | /* | 
|  | * use these macros to get the encoded nasid and widget id | 
|  | * from the irq value | 
|  | */ | 
|  | #define IRQ_TO_BRIDGE(i)		irq_to_bridge[(i)] | 
|  | #define	SLOT_FROM_PCI_IRQ(i)		irq_to_slot[i] | 
|  |  | 
|  | static inline int alloc_level(int cpu, int irq) | 
|  | { | 
|  | struct hub_data *hub = hub_data(cpu_to_node(cpu)); | 
|  | struct slice_data *si = cpu_data[cpu].data; | 
|  | int level; | 
|  |  | 
|  | level = find_first_zero_bit(hub->irq_alloc_mask, LEVELS_PER_SLICE); | 
|  | if (level >= LEVELS_PER_SLICE) | 
|  | panic("Cpu %d flooded with devices\n", cpu); | 
|  |  | 
|  | __set_bit(level, hub->irq_alloc_mask); | 
|  | si->level_to_irq[level] = irq; | 
|  |  | 
|  | return level; | 
|  | } | 
|  |  | 
|  | static inline int find_level(cpuid_t *cpunum, int irq) | 
|  | { | 
|  | int cpu, i; | 
|  |  | 
|  | for_each_online_cpu(cpu) { | 
|  | struct slice_data *si = cpu_data[cpu].data; | 
|  |  | 
|  | for (i = BASE_PCI_IRQ; i < LEVELS_PER_SLICE; i++) | 
|  | if (si->level_to_irq[i] == irq) { | 
|  | *cpunum = cpu; | 
|  |  | 
|  | return i; | 
|  | } | 
|  | } | 
|  |  | 
|  | panic("Could not identify cpu/level for irq %d\n", irq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find first bit set | 
|  | */ | 
|  | static int ms1bit(unsigned long x) | 
|  | { | 
|  | int b = 0, s; | 
|  |  | 
|  | s = 16; if (x >> 16 == 0) s = 0; b += s; x >>= s; | 
|  | s =  8; if (x >>  8 == 0) s = 0; b += s; x >>= s; | 
|  | s =  4; if (x >>  4 == 0) s = 0; b += s; x >>= s; | 
|  | s =  2; if (x >>  2 == 0) s = 0; b += s; x >>= s; | 
|  | s =  1; if (x >>  1 == 0) s = 0; b += s; | 
|  |  | 
|  | return b; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This code is unnecessarily complex, because we do IRQF_DISABLED | 
|  | * intr enabling. Basically, once we grab the set of intrs we need | 
|  | * to service, we must mask _all_ these interrupts; firstly, to make | 
|  | * sure the same intr does not intr again, causing recursion that | 
|  | * can lead to stack overflow. Secondly, we can not just mask the | 
|  | * one intr we are do_IRQing, because the non-masked intrs in the | 
|  | * first set might intr again, causing multiple servicings of the | 
|  | * same intr. This effect is mostly seen for intercpu intrs. | 
|  | * Kanoj 05.13.00 | 
|  | */ | 
|  |  | 
|  | static void ip27_do_irq_mask0(void) | 
|  | { | 
|  | int irq, swlevel; | 
|  | hubreg_t pend0, mask0; | 
|  | cpuid_t cpu = smp_processor_id(); | 
|  | int pi_int_mask0 = | 
|  | (cputoslice(cpu) == 0) ?  PI_INT_MASK0_A : PI_INT_MASK0_B; | 
|  |  | 
|  | /* copied from Irix intpend0() */ | 
|  | pend0 = LOCAL_HUB_L(PI_INT_PEND0); | 
|  | mask0 = LOCAL_HUB_L(pi_int_mask0); | 
|  |  | 
|  | pend0 &= mask0;		/* Pick intrs we should look at */ | 
|  | if (!pend0) | 
|  | return; | 
|  |  | 
|  | swlevel = ms1bit(pend0); | 
|  | #ifdef CONFIG_SMP | 
|  | if (pend0 & (1UL << CPU_RESCHED_A_IRQ)) { | 
|  | LOCAL_HUB_CLR_INTR(CPU_RESCHED_A_IRQ); | 
|  | } else if (pend0 & (1UL << CPU_RESCHED_B_IRQ)) { | 
|  | LOCAL_HUB_CLR_INTR(CPU_RESCHED_B_IRQ); | 
|  | } else if (pend0 & (1UL << CPU_CALL_A_IRQ)) { | 
|  | LOCAL_HUB_CLR_INTR(CPU_CALL_A_IRQ); | 
|  | smp_call_function_interrupt(); | 
|  | } else if (pend0 & (1UL << CPU_CALL_B_IRQ)) { | 
|  | LOCAL_HUB_CLR_INTR(CPU_CALL_B_IRQ); | 
|  | smp_call_function_interrupt(); | 
|  | } else | 
|  | #endif | 
|  | { | 
|  | /* "map" swlevel to irq */ | 
|  | struct slice_data *si = cpu_data[cpu].data; | 
|  |  | 
|  | irq = si->level_to_irq[swlevel]; | 
|  | do_IRQ(irq); | 
|  | } | 
|  |  | 
|  | LOCAL_HUB_L(PI_INT_PEND0); | 
|  | } | 
|  |  | 
|  | static void ip27_do_irq_mask1(void) | 
|  | { | 
|  | int irq, swlevel; | 
|  | hubreg_t pend1, mask1; | 
|  | cpuid_t cpu = smp_processor_id(); | 
|  | int pi_int_mask1 = (cputoslice(cpu) == 0) ?  PI_INT_MASK1_A : PI_INT_MASK1_B; | 
|  | struct slice_data *si = cpu_data[cpu].data; | 
|  |  | 
|  | /* copied from Irix intpend0() */ | 
|  | pend1 = LOCAL_HUB_L(PI_INT_PEND1); | 
|  | mask1 = LOCAL_HUB_L(pi_int_mask1); | 
|  |  | 
|  | pend1 &= mask1;		/* Pick intrs we should look at */ | 
|  | if (!pend1) | 
|  | return; | 
|  |  | 
|  | swlevel = ms1bit(pend1); | 
|  | /* "map" swlevel to irq */ | 
|  | irq = si->level_to_irq[swlevel]; | 
|  | LOCAL_HUB_CLR_INTR(swlevel); | 
|  | do_IRQ(irq); | 
|  |  | 
|  | LOCAL_HUB_L(PI_INT_PEND1); | 
|  | } | 
|  |  | 
|  | static void ip27_prof_timer(void) | 
|  | { | 
|  | panic("CPU %d got a profiling interrupt", smp_processor_id()); | 
|  | } | 
|  |  | 
|  | static void ip27_hub_error(void) | 
|  | { | 
|  | panic("CPU %d got a hub error interrupt", smp_processor_id()); | 
|  | } | 
|  |  | 
|  | static int intr_connect_level(int cpu, int bit) | 
|  | { | 
|  | nasid_t nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu)); | 
|  | struct slice_data *si = cpu_data[cpu].data; | 
|  |  | 
|  | set_bit(bit, si->irq_enable_mask); | 
|  |  | 
|  | if (!cputoslice(cpu)) { | 
|  | REMOTE_HUB_S(nasid, PI_INT_MASK0_A, si->irq_enable_mask[0]); | 
|  | REMOTE_HUB_S(nasid, PI_INT_MASK1_A, si->irq_enable_mask[1]); | 
|  | } else { | 
|  | REMOTE_HUB_S(nasid, PI_INT_MASK0_B, si->irq_enable_mask[0]); | 
|  | REMOTE_HUB_S(nasid, PI_INT_MASK1_B, si->irq_enable_mask[1]); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int intr_disconnect_level(int cpu, int bit) | 
|  | { | 
|  | nasid_t nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu)); | 
|  | struct slice_data *si = cpu_data[cpu].data; | 
|  |  | 
|  | clear_bit(bit, si->irq_enable_mask); | 
|  |  | 
|  | if (!cputoslice(cpu)) { | 
|  | REMOTE_HUB_S(nasid, PI_INT_MASK0_A, si->irq_enable_mask[0]); | 
|  | REMOTE_HUB_S(nasid, PI_INT_MASK1_A, si->irq_enable_mask[1]); | 
|  | } else { | 
|  | REMOTE_HUB_S(nasid, PI_INT_MASK0_B, si->irq_enable_mask[0]); | 
|  | REMOTE_HUB_S(nasid, PI_INT_MASK1_B, si->irq_enable_mask[1]); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Startup one of the (PCI ...) IRQs routes over a bridge.  */ | 
|  | static unsigned int startup_bridge_irq(unsigned int irq) | 
|  | { | 
|  | struct bridge_controller *bc; | 
|  | bridgereg_t device; | 
|  | bridge_t *bridge; | 
|  | int pin, swlevel; | 
|  | cpuid_t cpu; | 
|  |  | 
|  | pin = SLOT_FROM_PCI_IRQ(irq); | 
|  | bc = IRQ_TO_BRIDGE(irq); | 
|  | bridge = bc->base; | 
|  |  | 
|  | pr_debug("bridge_startup(): irq= 0x%x  pin=%d\n", irq, pin); | 
|  | /* | 
|  | * "map" irq to a swlevel greater than 6 since the first 6 bits | 
|  | * of INT_PEND0 are taken | 
|  | */ | 
|  | swlevel = find_level(&cpu, irq); | 
|  | bridge->b_int_addr[pin].addr = (0x20000 | swlevel | (bc->nasid << 8)); | 
|  | bridge->b_int_enable |= (1 << pin); | 
|  | bridge->b_int_enable |= 0x7ffffe00;	/* more stuff in int_enable */ | 
|  |  | 
|  | /* | 
|  | * Enable sending of an interrupt clear packt to the hub on a high to | 
|  | * low transition of the interrupt pin. | 
|  | * | 
|  | * IRIX sets additional bits in the address which are documented as | 
|  | * reserved in the bridge docs. | 
|  | */ | 
|  | bridge->b_int_mode |= (1UL << pin); | 
|  |  | 
|  | /* | 
|  | * We assume the bridge to have a 1:1 mapping between devices | 
|  | * (slots) and intr pins. | 
|  | */ | 
|  | device = bridge->b_int_device; | 
|  | device &= ~(7 << (pin*3)); | 
|  | device |= (pin << (pin*3)); | 
|  | bridge->b_int_device = device; | 
|  |  | 
|  | bridge->b_wid_tflush; | 
|  |  | 
|  | intr_connect_level(cpu, swlevel); | 
|  |  | 
|  | return 0;       /* Never anything pending.  */ | 
|  | } | 
|  |  | 
|  | /* Shutdown one of the (PCI ...) IRQs routes over a bridge.  */ | 
|  | static void shutdown_bridge_irq(unsigned int irq) | 
|  | { | 
|  | struct bridge_controller *bc = IRQ_TO_BRIDGE(irq); | 
|  | bridge_t *bridge = bc->base; | 
|  | int pin, swlevel; | 
|  | cpuid_t cpu; | 
|  |  | 
|  | pr_debug("bridge_shutdown: irq 0x%x\n", irq); | 
|  | pin = SLOT_FROM_PCI_IRQ(irq); | 
|  |  | 
|  | /* | 
|  | * map irq to a swlevel greater than 6 since the first 6 bits | 
|  | * of INT_PEND0 are taken | 
|  | */ | 
|  | swlevel = find_level(&cpu, irq); | 
|  | intr_disconnect_level(cpu, swlevel); | 
|  |  | 
|  | bridge->b_int_enable &= ~(1 << pin); | 
|  | bridge->b_wid_tflush; | 
|  | } | 
|  |  | 
|  | static inline void enable_bridge_irq(unsigned int irq) | 
|  | { | 
|  | cpuid_t cpu; | 
|  | int swlevel; | 
|  |  | 
|  | swlevel = find_level(&cpu, irq);	/* Criminal offence */ | 
|  | intr_connect_level(cpu, swlevel); | 
|  | } | 
|  |  | 
|  | static inline void disable_bridge_irq(unsigned int irq) | 
|  | { | 
|  | cpuid_t cpu; | 
|  | int swlevel; | 
|  |  | 
|  | swlevel = find_level(&cpu, irq);	/* Criminal offence */ | 
|  | intr_disconnect_level(cpu, swlevel); | 
|  | } | 
|  |  | 
|  | static struct irq_chip bridge_irq_type = { | 
|  | .name		= "bridge", | 
|  | .startup	= startup_bridge_irq, | 
|  | .shutdown	= shutdown_bridge_irq, | 
|  | .ack		= disable_bridge_irq, | 
|  | .mask		= disable_bridge_irq, | 
|  | .mask_ack	= disable_bridge_irq, | 
|  | .unmask		= enable_bridge_irq, | 
|  | }; | 
|  |  | 
|  | void __devinit register_bridge_irq(unsigned int irq) | 
|  | { | 
|  | set_irq_chip_and_handler(irq, &bridge_irq_type, handle_level_irq); | 
|  | } | 
|  |  | 
|  | int __devinit request_bridge_irq(struct bridge_controller *bc) | 
|  | { | 
|  | int irq = allocate_irqno(); | 
|  | int swlevel, cpu; | 
|  | nasid_t nasid; | 
|  |  | 
|  | if (irq < 0) | 
|  | return irq; | 
|  |  | 
|  | /* | 
|  | * "map" irq to a swlevel greater than 6 since the first 6 bits | 
|  | * of INT_PEND0 are taken | 
|  | */ | 
|  | cpu = bc->irq_cpu; | 
|  | swlevel = alloc_level(cpu, irq); | 
|  | if (unlikely(swlevel < 0)) { | 
|  | free_irqno(irq); | 
|  |  | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | /* Make sure it's not already pending when we connect it. */ | 
|  | nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu)); | 
|  | REMOTE_HUB_CLR_INTR(nasid, swlevel); | 
|  |  | 
|  | intr_connect_level(cpu, swlevel); | 
|  |  | 
|  | register_bridge_irq(irq); | 
|  |  | 
|  | return irq; | 
|  | } | 
|  |  | 
|  | asmlinkage void plat_irq_dispatch(void) | 
|  | { | 
|  | unsigned long pending = read_c0_cause() & read_c0_status(); | 
|  | extern unsigned int rt_timer_irq; | 
|  |  | 
|  | if (pending & CAUSEF_IP4) | 
|  | do_IRQ(rt_timer_irq); | 
|  | else if (pending & CAUSEF_IP2)	/* PI_INT_PEND_0 or CC_PEND_{A|B} */ | 
|  | ip27_do_irq_mask0(); | 
|  | else if (pending & CAUSEF_IP3)	/* PI_INT_PEND_1 */ | 
|  | ip27_do_irq_mask1(); | 
|  | else if (pending & CAUSEF_IP5) | 
|  | ip27_prof_timer(); | 
|  | else if (pending & CAUSEF_IP6) | 
|  | ip27_hub_error(); | 
|  | } | 
|  |  | 
|  | void __init arch_init_irq(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | void install_ipi(void) | 
|  | { | 
|  | int slice = LOCAL_HUB_L(PI_CPU_NUM); | 
|  | int cpu = smp_processor_id(); | 
|  | struct slice_data *si = cpu_data[cpu].data; | 
|  | struct hub_data *hub = hub_data(cpu_to_node(cpu)); | 
|  | int resched, call; | 
|  |  | 
|  | resched = CPU_RESCHED_A_IRQ + slice; | 
|  | __set_bit(resched, hub->irq_alloc_mask); | 
|  | __set_bit(resched, si->irq_enable_mask); | 
|  | LOCAL_HUB_CLR_INTR(resched); | 
|  |  | 
|  | call = CPU_CALL_A_IRQ + slice; | 
|  | __set_bit(call, hub->irq_alloc_mask); | 
|  | __set_bit(call, si->irq_enable_mask); | 
|  | LOCAL_HUB_CLR_INTR(call); | 
|  |  | 
|  | if (slice == 0) { | 
|  | LOCAL_HUB_S(PI_INT_MASK0_A, si->irq_enable_mask[0]); | 
|  | LOCAL_HUB_S(PI_INT_MASK1_A, si->irq_enable_mask[1]); | 
|  | } else { | 
|  | LOCAL_HUB_S(PI_INT_MASK0_B, si->irq_enable_mask[0]); | 
|  | LOCAL_HUB_S(PI_INT_MASK1_B, si->irq_enable_mask[1]); | 
|  | } | 
|  | } |