|  | /* | 
|  | * davinci_nand.c - NAND Flash Driver for DaVinci family chips | 
|  | * | 
|  | * Copyright © 2006 Texas Instruments. | 
|  | * | 
|  | * Port to 2.6.23 Copyright © 2008 by: | 
|  | *   Sander Huijsen <Shuijsen@optelecom-nkf.com> | 
|  | *   Troy Kisky <troy.kisky@boundarydevices.com> | 
|  | *   Dirk Behme <Dirk.Behme@gmail.com> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/clk.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/mtd/nand.h> | 
|  | #include <linux/mtd/partitions.h> | 
|  |  | 
|  | #include <mach/nand.h> | 
|  |  | 
|  | #include <asm/mach-types.h> | 
|  |  | 
|  |  | 
|  | /* | 
|  | * This is a device driver for the NAND flash controller found on the | 
|  | * various DaVinci family chips.  It handles up to four SoC chipselects, | 
|  | * and some flavors of secondary chipselect (e.g. based on A12) as used | 
|  | * with multichip packages. | 
|  | * | 
|  | * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC | 
|  | * available on chips like the DM355 and OMAP-L137 and needed with the | 
|  | * more error-prone MLC NAND chips. | 
|  | * | 
|  | * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY | 
|  | * outputs in a "wire-AND" configuration, with no per-chip signals. | 
|  | */ | 
|  | struct davinci_nand_info { | 
|  | struct mtd_info		mtd; | 
|  | struct nand_chip	chip; | 
|  | struct nand_ecclayout	ecclayout; | 
|  |  | 
|  | struct device		*dev; | 
|  | struct clk		*clk; | 
|  | bool			partitioned; | 
|  |  | 
|  | bool			is_readmode; | 
|  |  | 
|  | void __iomem		*base; | 
|  | void __iomem		*vaddr; | 
|  |  | 
|  | uint32_t		ioaddr; | 
|  | uint32_t		current_cs; | 
|  |  | 
|  | uint32_t		mask_chipsel; | 
|  | uint32_t		mask_ale; | 
|  | uint32_t		mask_cle; | 
|  |  | 
|  | uint32_t		core_chipsel; | 
|  | }; | 
|  |  | 
|  | static DEFINE_SPINLOCK(davinci_nand_lock); | 
|  | static bool ecc4_busy; | 
|  |  | 
|  | #define to_davinci_nand(m) container_of(m, struct davinci_nand_info, mtd) | 
|  |  | 
|  |  | 
|  | static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info, | 
|  | int offset) | 
|  | { | 
|  | return __raw_readl(info->base + offset); | 
|  | } | 
|  |  | 
|  | static inline void davinci_nand_writel(struct davinci_nand_info *info, | 
|  | int offset, unsigned long value) | 
|  | { | 
|  | __raw_writel(value, info->base + offset); | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * Access to hardware control lines:  ALE, CLE, secondary chipselect. | 
|  | */ | 
|  |  | 
|  | static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd, | 
|  | unsigned int ctrl) | 
|  | { | 
|  | struct davinci_nand_info	*info = to_davinci_nand(mtd); | 
|  | uint32_t			addr = info->current_cs; | 
|  | struct nand_chip		*nand = mtd->priv; | 
|  |  | 
|  | /* Did the control lines change? */ | 
|  | if (ctrl & NAND_CTRL_CHANGE) { | 
|  | if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE) | 
|  | addr |= info->mask_cle; | 
|  | else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE) | 
|  | addr |= info->mask_ale; | 
|  |  | 
|  | nand->IO_ADDR_W = (void __iomem __force *)addr; | 
|  | } | 
|  |  | 
|  | if (cmd != NAND_CMD_NONE) | 
|  | iowrite8(cmd, nand->IO_ADDR_W); | 
|  | } | 
|  |  | 
|  | static void nand_davinci_select_chip(struct mtd_info *mtd, int chip) | 
|  | { | 
|  | struct davinci_nand_info	*info = to_davinci_nand(mtd); | 
|  | uint32_t			addr = info->ioaddr; | 
|  |  | 
|  | /* maybe kick in a second chipselect */ | 
|  | if (chip > 0) | 
|  | addr |= info->mask_chipsel; | 
|  | info->current_cs = addr; | 
|  |  | 
|  | info->chip.IO_ADDR_W = (void __iomem __force *)addr; | 
|  | info->chip.IO_ADDR_R = info->chip.IO_ADDR_W; | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * 1-bit hardware ECC ... context maintained for each core chipselect | 
|  | */ | 
|  |  | 
|  | static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd) | 
|  | { | 
|  | struct davinci_nand_info *info = to_davinci_nand(mtd); | 
|  |  | 
|  | return davinci_nand_readl(info, NANDF1ECC_OFFSET | 
|  | + 4 * info->core_chipsel); | 
|  | } | 
|  |  | 
|  | static void nand_davinci_hwctl_1bit(struct mtd_info *mtd, int mode) | 
|  | { | 
|  | struct davinci_nand_info *info; | 
|  | uint32_t nandcfr; | 
|  | unsigned long flags; | 
|  |  | 
|  | info = to_davinci_nand(mtd); | 
|  |  | 
|  | /* Reset ECC hardware */ | 
|  | nand_davinci_readecc_1bit(mtd); | 
|  |  | 
|  | spin_lock_irqsave(&davinci_nand_lock, flags); | 
|  |  | 
|  | /* Restart ECC hardware */ | 
|  | nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET); | 
|  | nandcfr |= BIT(8 + info->core_chipsel); | 
|  | davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr); | 
|  |  | 
|  | spin_unlock_irqrestore(&davinci_nand_lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read hardware ECC value and pack into three bytes | 
|  | */ | 
|  | static int nand_davinci_calculate_1bit(struct mtd_info *mtd, | 
|  | const u_char *dat, u_char *ecc_code) | 
|  | { | 
|  | unsigned int ecc_val = nand_davinci_readecc_1bit(mtd); | 
|  | unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4); | 
|  |  | 
|  | /* invert so that erased block ecc is correct */ | 
|  | ecc24 = ~ecc24; | 
|  | ecc_code[0] = (u_char)(ecc24); | 
|  | ecc_code[1] = (u_char)(ecc24 >> 8); | 
|  | ecc_code[2] = (u_char)(ecc24 >> 16); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat, | 
|  | u_char *read_ecc, u_char *calc_ecc) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) | | 
|  | (read_ecc[2] << 16); | 
|  | uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) | | 
|  | (calc_ecc[2] << 16); | 
|  | uint32_t diff = eccCalc ^ eccNand; | 
|  |  | 
|  | if (diff) { | 
|  | if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) { | 
|  | /* Correctable error */ | 
|  | if ((diff >> (12 + 3)) < chip->ecc.size) { | 
|  | dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7); | 
|  | return 1; | 
|  | } else { | 
|  | return -1; | 
|  | } | 
|  | } else if (!(diff & (diff - 1))) { | 
|  | /* Single bit ECC error in the ECC itself, | 
|  | * nothing to fix */ | 
|  | return 1; | 
|  | } else { | 
|  | /* Uncorrectable error */ | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * 4-bit hardware ECC ... context maintained over entire AEMIF | 
|  | * | 
|  | * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME | 
|  | * since that forces use of a problematic "infix OOB" layout. | 
|  | * Among other things, it trashes manufacturer bad block markers. | 
|  | * Also, and specific to this hardware, it ECC-protects the "prepad" | 
|  | * in the OOB ... while having ECC protection for parts of OOB would | 
|  | * seem useful, the current MTD stack sometimes wants to update the | 
|  | * OOB without recomputing ECC. | 
|  | */ | 
|  |  | 
|  | static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode) | 
|  | { | 
|  | struct davinci_nand_info *info = to_davinci_nand(mtd); | 
|  | unsigned long flags; | 
|  | u32 val; | 
|  |  | 
|  | spin_lock_irqsave(&davinci_nand_lock, flags); | 
|  |  | 
|  | /* Start 4-bit ECC calculation for read/write */ | 
|  | val = davinci_nand_readl(info, NANDFCR_OFFSET); | 
|  | val &= ~(0x03 << 4); | 
|  | val |= (info->core_chipsel << 4) | BIT(12); | 
|  | davinci_nand_writel(info, NANDFCR_OFFSET, val); | 
|  |  | 
|  | info->is_readmode = (mode == NAND_ECC_READ); | 
|  |  | 
|  | spin_unlock_irqrestore(&davinci_nand_lock, flags); | 
|  | } | 
|  |  | 
|  | /* Read raw ECC code after writing to NAND. */ | 
|  | static void | 
|  | nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4]) | 
|  | { | 
|  | const u32 mask = 0x03ff03ff; | 
|  |  | 
|  | code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask; | 
|  | code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask; | 
|  | code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask; | 
|  | code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask; | 
|  | } | 
|  |  | 
|  | /* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */ | 
|  | static int nand_davinci_calculate_4bit(struct mtd_info *mtd, | 
|  | const u_char *dat, u_char *ecc_code) | 
|  | { | 
|  | struct davinci_nand_info *info = to_davinci_nand(mtd); | 
|  | u32 raw_ecc[4], *p; | 
|  | unsigned i; | 
|  |  | 
|  | /* After a read, terminate ECC calculation by a dummy read | 
|  | * of some 4-bit ECC register.  ECC covers everything that | 
|  | * was read; correct() just uses the hardware state, so | 
|  | * ecc_code is not needed. | 
|  | */ | 
|  | if (info->is_readmode) { | 
|  | davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Pack eight raw 10-bit ecc values into ten bytes, making | 
|  | * two passes which each convert four values (in upper and | 
|  | * lower halves of two 32-bit words) into five bytes.  The | 
|  | * ROM boot loader uses this same packing scheme. | 
|  | */ | 
|  | nand_davinci_readecc_4bit(info, raw_ecc); | 
|  | for (i = 0, p = raw_ecc; i < 2; i++, p += 2) { | 
|  | *ecc_code++ =   p[0]        & 0xff; | 
|  | *ecc_code++ = ((p[0] >>  8) & 0x03) | ((p[0] >> 14) & 0xfc); | 
|  | *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] <<  4) & 0xf0); | 
|  | *ecc_code++ = ((p[1] >>  4) & 0x3f) | ((p[1] >> 10) & 0xc0); | 
|  | *ecc_code++ =  (p[1] >> 18) & 0xff; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Correct up to 4 bits in data we just read, using state left in the | 
|  | * hardware plus the ecc_code computed when it was first written. | 
|  | */ | 
|  | static int nand_davinci_correct_4bit(struct mtd_info *mtd, | 
|  | u_char *data, u_char *ecc_code, u_char *null) | 
|  | { | 
|  | int i; | 
|  | struct davinci_nand_info *info = to_davinci_nand(mtd); | 
|  | unsigned short ecc10[8]; | 
|  | unsigned short *ecc16; | 
|  | u32 syndrome[4]; | 
|  | unsigned num_errors, corrected; | 
|  |  | 
|  | /* All bytes 0xff?  It's an erased page; ignore its ECC. */ | 
|  | for (i = 0; i < 10; i++) { | 
|  | if (ecc_code[i] != 0xff) | 
|  | goto compare; | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | compare: | 
|  | /* Unpack ten bytes into eight 10 bit values.  We know we're | 
|  | * little-endian, and use type punning for less shifting/masking. | 
|  | */ | 
|  | if (WARN_ON(0x01 & (unsigned) ecc_code)) | 
|  | return -EINVAL; | 
|  | ecc16 = (unsigned short *)ecc_code; | 
|  |  | 
|  | ecc10[0] =  (ecc16[0] >>  0) & 0x3ff; | 
|  | ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0); | 
|  | ecc10[2] =  (ecc16[1] >>  4) & 0x3ff; | 
|  | ecc10[3] = ((ecc16[1] >> 14) & 0x3)  | ((ecc16[2] << 2) & 0x3fc); | 
|  | ecc10[4] =  (ecc16[2] >>  8)         | ((ecc16[3] << 8) & 0x300); | 
|  | ecc10[5] =  (ecc16[3] >>  2) & 0x3ff; | 
|  | ecc10[6] = ((ecc16[3] >> 12) & 0xf)  | ((ecc16[4] << 4) & 0x3f0); | 
|  | ecc10[7] =  (ecc16[4] >>  6) & 0x3ff; | 
|  |  | 
|  | /* Tell ECC controller about the expected ECC codes. */ | 
|  | for (i = 7; i >= 0; i--) | 
|  | davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]); | 
|  |  | 
|  | /* Allow time for syndrome calculation ... then read it. | 
|  | * A syndrome of all zeroes 0 means no detected errors. | 
|  | */ | 
|  | davinci_nand_readl(info, NANDFSR_OFFSET); | 
|  | nand_davinci_readecc_4bit(info, syndrome); | 
|  | if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3])) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Clear any previous address calculation by doing a dummy read of an | 
|  | * error address register. | 
|  | */ | 
|  | davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET); | 
|  |  | 
|  | /* Start address calculation, and wait for it to complete. | 
|  | * We _could_ start reading more data while this is working, | 
|  | * to speed up the overall page read. | 
|  | */ | 
|  | davinci_nand_writel(info, NANDFCR_OFFSET, | 
|  | davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13)); | 
|  | for (;;) { | 
|  | u32	fsr = davinci_nand_readl(info, NANDFSR_OFFSET); | 
|  |  | 
|  | switch ((fsr >> 8) & 0x0f) { | 
|  | case 0:		/* no error, should not happen */ | 
|  | davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET); | 
|  | return 0; | 
|  | case 1:		/* five or more errors detected */ | 
|  | davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET); | 
|  | return -EIO; | 
|  | case 2:		/* error addresses computed */ | 
|  | case 3: | 
|  | num_errors = 1 + ((fsr >> 16) & 0x03); | 
|  | goto correct; | 
|  | default:	/* still working on it */ | 
|  | cpu_relax(); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | correct: | 
|  | /* correct each error */ | 
|  | for (i = 0, corrected = 0; i < num_errors; i++) { | 
|  | int error_address, error_value; | 
|  |  | 
|  | if (i > 1) { | 
|  | error_address = davinci_nand_readl(info, | 
|  | NAND_ERR_ADD2_OFFSET); | 
|  | error_value = davinci_nand_readl(info, | 
|  | NAND_ERR_ERRVAL2_OFFSET); | 
|  | } else { | 
|  | error_address = davinci_nand_readl(info, | 
|  | NAND_ERR_ADD1_OFFSET); | 
|  | error_value = davinci_nand_readl(info, | 
|  | NAND_ERR_ERRVAL1_OFFSET); | 
|  | } | 
|  |  | 
|  | if (i & 1) { | 
|  | error_address >>= 16; | 
|  | error_value >>= 16; | 
|  | } | 
|  | error_address &= 0x3ff; | 
|  | error_address = (512 + 7) - error_address; | 
|  |  | 
|  | if (error_address < 512) { | 
|  | data[error_address] ^= error_value; | 
|  | corrected++; | 
|  | } | 
|  | } | 
|  |  | 
|  | return corrected; | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * NOTE:  NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's | 
|  | * how these chips are normally wired.  This translates to both 8 and 16 | 
|  | * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4). | 
|  | * | 
|  | * For now we assume that configuration, or any other one which ignores | 
|  | * the two LSBs for NAND access ... so we can issue 32-bit reads/writes | 
|  | * and have that transparently morphed into multiple NAND operations. | 
|  | */ | 
|  | static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  |  | 
|  | if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0) | 
|  | ioread32_rep(chip->IO_ADDR_R, buf, len >> 2); | 
|  | else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0) | 
|  | ioread16_rep(chip->IO_ADDR_R, buf, len >> 1); | 
|  | else | 
|  | ioread8_rep(chip->IO_ADDR_R, buf, len); | 
|  | } | 
|  |  | 
|  | static void nand_davinci_write_buf(struct mtd_info *mtd, | 
|  | const uint8_t *buf, int len) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  |  | 
|  | if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0) | 
|  | iowrite32_rep(chip->IO_ADDR_R, buf, len >> 2); | 
|  | else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0) | 
|  | iowrite16_rep(chip->IO_ADDR_R, buf, len >> 1); | 
|  | else | 
|  | iowrite8_rep(chip->IO_ADDR_R, buf, len); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check hardware register for wait status. Returns 1 if device is ready, | 
|  | * 0 if it is still busy. | 
|  | */ | 
|  | static int nand_davinci_dev_ready(struct mtd_info *mtd) | 
|  | { | 
|  | struct davinci_nand_info *info = to_davinci_nand(mtd); | 
|  |  | 
|  | return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0); | 
|  | } | 
|  |  | 
|  | static void __init nand_dm6446evm_flash_init(struct davinci_nand_info *info) | 
|  | { | 
|  | uint32_t regval, a1cr; | 
|  |  | 
|  | /* | 
|  | * NAND FLASH timings @ PLL1 == 459 MHz | 
|  | *  - AEMIF.CLK freq   = PLL1/6 = 459/6 = 76.5 MHz | 
|  | *  - AEMIF.CLK period = 1/76.5 MHz = 13.1 ns | 
|  | */ | 
|  | regval = 0 | 
|  | | (0 << 31)           /* selectStrobe */ | 
|  | | (0 << 30)           /* extWait (never with NAND) */ | 
|  | | (1 << 26)           /* writeSetup      10 ns */ | 
|  | | (3 << 20)           /* writeStrobe     40 ns */ | 
|  | | (1 << 17)           /* writeHold       10 ns */ | 
|  | | (0 << 13)           /* readSetup       10 ns */ | 
|  | | (3 << 7)            /* readStrobe      60 ns */ | 
|  | | (0 << 4)            /* readHold        10 ns */ | 
|  | | (3 << 2)            /* turnAround      ?? ns */ | 
|  | | (0 << 0)            /* asyncSize       8-bit bus */ | 
|  | ; | 
|  | a1cr = davinci_nand_readl(info, A1CR_OFFSET); | 
|  | if (a1cr != regval) { | 
|  | dev_dbg(info->dev, "Warning: NAND config: Set A1CR " \ | 
|  | "reg to 0x%08x, was 0x%08x, should be done by " \ | 
|  | "bootloader.\n", regval, a1cr); | 
|  | davinci_nand_writel(info, A1CR_OFFSET, regval); | 
|  | } | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------------*/ | 
|  |  | 
|  | /* An ECC layout for using 4-bit ECC with small-page flash, storing | 
|  | * ten ECC bytes plus the manufacturer's bad block marker byte, and | 
|  | * and not overlapping the default BBT markers. | 
|  | */ | 
|  | static struct nand_ecclayout hwecc4_small __initconst = { | 
|  | .eccbytes = 10, | 
|  | .eccpos = { 0, 1, 2, 3, 4, | 
|  | /* offset 5 holds the badblock marker */ | 
|  | 6, 7, | 
|  | 13, 14, 15, }, | 
|  | .oobfree = { | 
|  | {.offset = 8, .length = 5, }, | 
|  | {.offset = 16, }, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | /* An ECC layout for using 4-bit ECC with large-page (2048bytes) flash, | 
|  | * storing ten ECC bytes plus the manufacturer's bad block marker byte, | 
|  | * and not overlapping the default BBT markers. | 
|  | */ | 
|  | static struct nand_ecclayout hwecc4_2048 __initconst = { | 
|  | .eccbytes = 40, | 
|  | .eccpos = { | 
|  | /* at the end of spare sector */ | 
|  | 24, 25, 26, 27, 28, 29,	30, 31, 32, 33, | 
|  | 34, 35, 36, 37, 38, 39,	40, 41, 42, 43, | 
|  | 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, | 
|  | 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, | 
|  | }, | 
|  | .oobfree = { | 
|  | /* 2 bytes at offset 0 hold manufacturer badblock markers */ | 
|  | {.offset = 2, .length = 22, }, | 
|  | /* 5 bytes at offset 8 hold BBT markers */ | 
|  | /* 8 bytes at offset 16 hold JFFS2 clean markers */ | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static int __init nand_davinci_probe(struct platform_device *pdev) | 
|  | { | 
|  | struct davinci_nand_pdata	*pdata = pdev->dev.platform_data; | 
|  | struct davinci_nand_info	*info; | 
|  | struct resource			*res1; | 
|  | struct resource			*res2; | 
|  | void __iomem			*vaddr; | 
|  | void __iomem			*base; | 
|  | int				ret; | 
|  | uint32_t			val; | 
|  | nand_ecc_modes_t		ecc_mode; | 
|  |  | 
|  | /* insist on board-specific configuration */ | 
|  | if (!pdata) | 
|  | return -ENODEV; | 
|  |  | 
|  | /* which external chipselect will we be managing? */ | 
|  | if (pdev->id < 0 || pdev->id > 3) | 
|  | return -ENODEV; | 
|  |  | 
|  | info = kzalloc(sizeof(*info), GFP_KERNEL); | 
|  | if (!info) { | 
|  | dev_err(&pdev->dev, "unable to allocate memory\n"); | 
|  | ret = -ENOMEM; | 
|  | goto err_nomem; | 
|  | } | 
|  |  | 
|  | platform_set_drvdata(pdev, info); | 
|  |  | 
|  | res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 
|  | res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1); | 
|  | if (!res1 || !res2) { | 
|  | dev_err(&pdev->dev, "resource missing\n"); | 
|  | ret = -EINVAL; | 
|  | goto err_nomem; | 
|  | } | 
|  |  | 
|  | vaddr = ioremap(res1->start, res1->end - res1->start); | 
|  | base = ioremap(res2->start, res2->end - res2->start); | 
|  | if (!vaddr || !base) { | 
|  | dev_err(&pdev->dev, "ioremap failed\n"); | 
|  | ret = -EINVAL; | 
|  | goto err_ioremap; | 
|  | } | 
|  |  | 
|  | info->dev		= &pdev->dev; | 
|  | info->base		= base; | 
|  | info->vaddr		= vaddr; | 
|  |  | 
|  | info->mtd.priv		= &info->chip; | 
|  | info->mtd.name		= dev_name(&pdev->dev); | 
|  | info->mtd.owner		= THIS_MODULE; | 
|  |  | 
|  | info->mtd.dev.parent	= &pdev->dev; | 
|  |  | 
|  | info->chip.IO_ADDR_R	= vaddr; | 
|  | info->chip.IO_ADDR_W	= vaddr; | 
|  | info->chip.chip_delay	= 0; | 
|  | info->chip.select_chip	= nand_davinci_select_chip; | 
|  |  | 
|  | /* options such as NAND_USE_FLASH_BBT or 16-bit widths */ | 
|  | info->chip.options	= pdata->options; | 
|  |  | 
|  | info->ioaddr		= (uint32_t __force) vaddr; | 
|  |  | 
|  | info->current_cs	= info->ioaddr; | 
|  | info->core_chipsel	= pdev->id; | 
|  | info->mask_chipsel	= pdata->mask_chipsel; | 
|  |  | 
|  | /* use nandboot-capable ALE/CLE masks by default */ | 
|  | info->mask_ale		= pdata->mask_cle ? : MASK_ALE; | 
|  | info->mask_cle		= pdata->mask_cle ? : MASK_CLE; | 
|  |  | 
|  | /* Set address of hardware control function */ | 
|  | info->chip.cmd_ctrl	= nand_davinci_hwcontrol; | 
|  | info->chip.dev_ready	= nand_davinci_dev_ready; | 
|  |  | 
|  | /* Speed up buffer I/O */ | 
|  | info->chip.read_buf     = nand_davinci_read_buf; | 
|  | info->chip.write_buf    = nand_davinci_write_buf; | 
|  |  | 
|  | /* Use board-specific ECC config */ | 
|  | ecc_mode		= pdata->ecc_mode; | 
|  |  | 
|  | ret = -EINVAL; | 
|  | switch (ecc_mode) { | 
|  | case NAND_ECC_NONE: | 
|  | case NAND_ECC_SOFT: | 
|  | pdata->ecc_bits = 0; | 
|  | break; | 
|  | case NAND_ECC_HW: | 
|  | if (pdata->ecc_bits == 4) { | 
|  | /* No sanity checks:  CPUs must support this, | 
|  | * and the chips may not use NAND_BUSWIDTH_16. | 
|  | */ | 
|  |  | 
|  | /* No sharing 4-bit hardware between chipselects yet */ | 
|  | spin_lock_irq(&davinci_nand_lock); | 
|  | if (ecc4_busy) | 
|  | ret = -EBUSY; | 
|  | else | 
|  | ecc4_busy = true; | 
|  | spin_unlock_irq(&davinci_nand_lock); | 
|  |  | 
|  | if (ret == -EBUSY) | 
|  | goto err_ecc; | 
|  |  | 
|  | info->chip.ecc.calculate = nand_davinci_calculate_4bit; | 
|  | info->chip.ecc.correct = nand_davinci_correct_4bit; | 
|  | info->chip.ecc.hwctl = nand_davinci_hwctl_4bit; | 
|  | info->chip.ecc.bytes = 10; | 
|  | } else { | 
|  | info->chip.ecc.calculate = nand_davinci_calculate_1bit; | 
|  | info->chip.ecc.correct = nand_davinci_correct_1bit; | 
|  | info->chip.ecc.hwctl = nand_davinci_hwctl_1bit; | 
|  | info->chip.ecc.bytes = 3; | 
|  | } | 
|  | info->chip.ecc.size = 512; | 
|  | break; | 
|  | default: | 
|  | ret = -EINVAL; | 
|  | goto err_ecc; | 
|  | } | 
|  | info->chip.ecc.mode = ecc_mode; | 
|  |  | 
|  | info->clk = clk_get(&pdev->dev, "aemif"); | 
|  | if (IS_ERR(info->clk)) { | 
|  | ret = PTR_ERR(info->clk); | 
|  | dev_dbg(&pdev->dev, "unable to get AEMIF clock, err %d\n", ret); | 
|  | goto err_clk; | 
|  | } | 
|  |  | 
|  | ret = clk_enable(info->clk); | 
|  | if (ret < 0) { | 
|  | dev_dbg(&pdev->dev, "unable to enable AEMIF clock, err %d\n", | 
|  | ret); | 
|  | goto err_clk_enable; | 
|  | } | 
|  |  | 
|  | /* EMIF timings should normally be set by the boot loader, | 
|  | * especially after boot-from-NAND.  The *only* reason to | 
|  | * have this special casing for the DM6446 EVM is to work | 
|  | * with boot-from-NOR ... with CS0 manually re-jumpered | 
|  | * (after startup) so it addresses the NAND flash, not NOR. | 
|  | * Even for dev boards, that's unusually rude... | 
|  | */ | 
|  | if (machine_is_davinci_evm()) | 
|  | nand_dm6446evm_flash_init(info); | 
|  |  | 
|  | spin_lock_irq(&davinci_nand_lock); | 
|  |  | 
|  | /* put CSxNAND into NAND mode */ | 
|  | val = davinci_nand_readl(info, NANDFCR_OFFSET); | 
|  | val |= BIT(info->core_chipsel); | 
|  | davinci_nand_writel(info, NANDFCR_OFFSET, val); | 
|  |  | 
|  | spin_unlock_irq(&davinci_nand_lock); | 
|  |  | 
|  | /* Scan to find existence of the device(s) */ | 
|  | ret = nand_scan_ident(&info->mtd, pdata->mask_chipsel ? 2 : 1); | 
|  | if (ret < 0) { | 
|  | dev_dbg(&pdev->dev, "no NAND chip(s) found\n"); | 
|  | goto err_scan; | 
|  | } | 
|  |  | 
|  | /* Update ECC layout if needed ... for 1-bit HW ECC, the default | 
|  | * is OK, but it allocates 6 bytes when only 3 are needed (for | 
|  | * each 512 bytes).  For the 4-bit HW ECC, that default is not | 
|  | * usable:  10 bytes are needed, not 6. | 
|  | */ | 
|  | if (pdata->ecc_bits == 4) { | 
|  | int	chunks = info->mtd.writesize / 512; | 
|  |  | 
|  | if (!chunks || info->mtd.oobsize < 16) { | 
|  | dev_dbg(&pdev->dev, "too small\n"); | 
|  | ret = -EINVAL; | 
|  | goto err_scan; | 
|  | } | 
|  |  | 
|  | /* For small page chips, preserve the manufacturer's | 
|  | * badblock marking data ... and make sure a flash BBT | 
|  | * table marker fits in the free bytes. | 
|  | */ | 
|  | if (chunks == 1) { | 
|  | info->ecclayout = hwecc4_small; | 
|  | info->ecclayout.oobfree[1].length = | 
|  | info->mtd.oobsize - 16; | 
|  | goto syndrome_done; | 
|  | } | 
|  | if (chunks == 4) { | 
|  | info->ecclayout = hwecc4_2048; | 
|  | info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST; | 
|  | goto syndrome_done; | 
|  | } | 
|  |  | 
|  | /* 4KiB page chips are not yet supported. The eccpos from | 
|  | * nand_ecclayout cannot hold 80 bytes and change to eccpos[] | 
|  | * breaks userspace ioctl interface with mtd-utils. Once we | 
|  | * resolve this issue, NAND_ECC_HW_OOB_FIRST mode can be used | 
|  | * for the 4KiB page chips. | 
|  | */ | 
|  | dev_warn(&pdev->dev, "no 4-bit ECC support yet " | 
|  | "for 4KiB-page NAND\n"); | 
|  | ret = -EIO; | 
|  | goto err_scan; | 
|  |  | 
|  | syndrome_done: | 
|  | info->chip.ecc.layout = &info->ecclayout; | 
|  | } | 
|  |  | 
|  | ret = nand_scan_tail(&info->mtd); | 
|  | if (ret < 0) | 
|  | goto err_scan; | 
|  |  | 
|  | if (mtd_has_partitions()) { | 
|  | struct mtd_partition	*mtd_parts = NULL; | 
|  | int			mtd_parts_nb = 0; | 
|  |  | 
|  | if (mtd_has_cmdlinepart()) { | 
|  | static const char *probes[] __initconst = | 
|  | { "cmdlinepart", NULL }; | 
|  |  | 
|  | mtd_parts_nb = parse_mtd_partitions(&info->mtd, probes, | 
|  | &mtd_parts, 0); | 
|  | } | 
|  |  | 
|  | if (mtd_parts_nb <= 0) { | 
|  | mtd_parts = pdata->parts; | 
|  | mtd_parts_nb = pdata->nr_parts; | 
|  | } | 
|  |  | 
|  | /* Register any partitions */ | 
|  | if (mtd_parts_nb > 0) { | 
|  | ret = add_mtd_partitions(&info->mtd, | 
|  | mtd_parts, mtd_parts_nb); | 
|  | if (ret == 0) | 
|  | info->partitioned = true; | 
|  | } | 
|  |  | 
|  | } else if (pdata->nr_parts) { | 
|  | dev_warn(&pdev->dev, "ignoring %d default partitions on %s\n", | 
|  | pdata->nr_parts, info->mtd.name); | 
|  | } | 
|  |  | 
|  | /* If there's no partition info, just package the whole chip | 
|  | * as a single MTD device. | 
|  | */ | 
|  | if (!info->partitioned) | 
|  | ret = add_mtd_device(&info->mtd) ? -ENODEV : 0; | 
|  |  | 
|  | if (ret < 0) | 
|  | goto err_scan; | 
|  |  | 
|  | val = davinci_nand_readl(info, NRCSR_OFFSET); | 
|  | dev_info(&pdev->dev, "controller rev. %d.%d\n", | 
|  | (val >> 8) & 0xff, val & 0xff); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_scan: | 
|  | clk_disable(info->clk); | 
|  |  | 
|  | err_clk_enable: | 
|  | clk_put(info->clk); | 
|  |  | 
|  | spin_lock_irq(&davinci_nand_lock); | 
|  | if (ecc_mode == NAND_ECC_HW_SYNDROME) | 
|  | ecc4_busy = false; | 
|  | spin_unlock_irq(&davinci_nand_lock); | 
|  |  | 
|  | err_ecc: | 
|  | err_clk: | 
|  | err_ioremap: | 
|  | if (base) | 
|  | iounmap(base); | 
|  | if (vaddr) | 
|  | iounmap(vaddr); | 
|  |  | 
|  | err_nomem: | 
|  | kfree(info); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __exit nand_davinci_remove(struct platform_device *pdev) | 
|  | { | 
|  | struct davinci_nand_info *info = platform_get_drvdata(pdev); | 
|  | int status; | 
|  |  | 
|  | if (mtd_has_partitions() && info->partitioned) | 
|  | status = del_mtd_partitions(&info->mtd); | 
|  | else | 
|  | status = del_mtd_device(&info->mtd); | 
|  |  | 
|  | spin_lock_irq(&davinci_nand_lock); | 
|  | if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME) | 
|  | ecc4_busy = false; | 
|  | spin_unlock_irq(&davinci_nand_lock); | 
|  |  | 
|  | iounmap(info->base); | 
|  | iounmap(info->vaddr); | 
|  |  | 
|  | nand_release(&info->mtd); | 
|  |  | 
|  | clk_disable(info->clk); | 
|  | clk_put(info->clk); | 
|  |  | 
|  | kfree(info); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct platform_driver nand_davinci_driver = { | 
|  | .remove		= __exit_p(nand_davinci_remove), | 
|  | .driver		= { | 
|  | .name	= "davinci_nand", | 
|  | }, | 
|  | }; | 
|  | MODULE_ALIAS("platform:davinci_nand"); | 
|  |  | 
|  | static int __init nand_davinci_init(void) | 
|  | { | 
|  | return platform_driver_probe(&nand_davinci_driver, nand_davinci_probe); | 
|  | } | 
|  | module_init(nand_davinci_init); | 
|  |  | 
|  | static void __exit nand_davinci_exit(void) | 
|  | { | 
|  | platform_driver_unregister(&nand_davinci_driver); | 
|  | } | 
|  | module_exit(nand_davinci_exit); | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_AUTHOR("Texas Instruments"); | 
|  | MODULE_DESCRIPTION("Davinci NAND flash driver"); | 
|  |  |